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Conformal indices of Riemannian manifolds

THOMAS P. BRANSON &#x26; BENT ØRSTED

Abstract Let P be a formally self-adjoint, conformally covariant differential operator on tensor
fields, defined for Riemannian manifolds ( M, g), and suppose that the leading symbol of P is

always positive definite. For example, P could be the conformal Laplacian on functions,

D == à + (n - 2) K/4( n -1), where n = dim M and K = scalar curvature. Then the t° coefficient
in the Minakshisundaram-Pleijel ( MP) asymptotic expansion of the L2 trace of the heat operator
exp( - tP) is a conformal invariant for compact, even dimensional M. Invariance and non-invari-
ance results for the to coefficient are obtained for some non-conformally covariant operators, and
for all the operators studied, the first conformal variation of the other MP coefficients is given
explicitly.

Compositio Mathematica 60: 261-293 (1986)
© Martinus Nijhoff Publishers, Dordrecht - Printed in the Netherlands

0. Introduction

Conformal geometry on a smooth manifold M with metric tensor g is a

subject with a long history and a rapidly growing literature, on issues ranging
from relativity and relativistic wave equations to curvature prescription, pseu-
doconvex comains in C n, and CR structure. Simply stated, conformal geome-
try deals with objects that deform nicely when g is replaced by g2g, where 0
is a smooth positive function on M. At the center are always differential
operators which depend only on the conformal class {g2g} of g; these are the
conformal covariants. An example is the conformal Laplacian D = à + ( n -
2)K/4(n - 1), where n = dim M and K is the scalar curvature, properly
understood as acting between two bundles of densities. An important problem
concerns local invariants U = U( g); in local coordinates, invariant polynomi-
als in derivatives of the metric tensor and its inverse: When does such a U or
its integral deform as if Q were just a constant? For the significance of this
question in complex and CR geometry see Fefferman-Graham [1984], Burns-
Diederich-Shnider [1977], and Jerison-Lee [1984].

In this paper we consider positive definite (Riemannian) metrics and

associate to any formally self-adjoint conformal covariant P with positive
definite leading symbol (necessary of even order 2/) a conformal index
c(M, g, P), defined when M is compact and even-dimensional. By work of
Branson [1982,1984], several such P exist. c(M, g, P) is a number depending
only on the conformal class of g, and is given by the integral of the local scalar

TB partially supported by NSF Grant DMS-8418876 and a U.S.-Industrialized Countries Ex-
change Followship; both authors partially supported by NATO Collaborative Research Grant
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invariant Un/2 in the Minakshisundaram-Pleijel (MP) expansion of the kemel
function H( t, x, y } for exp( - tP ):

Otherwise stated, c(M, g, P) is the t ° term in the asymptotic expansion of
the L2 trace of exp( - tP ). In the case of the conformal Laplacian, the
conformal index is known to physicists as the trace anomaly (Hawking [1977],
Dowker-Kennedy [1978]). A by-product of our proof of the invariance of
c(M, g, P) is a formula for the first conformal variation of the other U(x, P)
( n not necessarily even) which shows that for i =1= n/2, the Euler-Lagrange
equation for conformal variation of f Ui reads Ui = 0; for volume-preserving
conformal variation, U = constant.

The invariance of c(M, g, P) is exactly the assertion that under g - Q2g,
the integral of Un/2 deforms as if g were constant. Schimming [1981] (see also
Wünch [1985], p. 186) has observed that in the case of the conformal

Laplacian D, the MP coefficient U(n-2)/2 behaves this way before integrating;
specifically,

(The power of Q involved depends on homogeneity considerations; Un f2 is of

exactly the right homogeneity to have a chance of producing a conformal
index.) The proof of (0.1) is based on a formal connexion between the systems
of transport equations giving: (1) the fundamental solution of the conformal
d’Alembertian 0 + ( n - 2) R’/4( n - 1) on an n-dimensional Lorentz manifold
(see, e.g., Friedlander [1975]), and (2) the fundamental solution of the heat
equation (the kernel function for exp( - tD)) based on the conformal Lapla-
cian on an n-dimensional Riemannian manifold (see, e.g., Berger et al. [1971]).
Presumably this proof extends to more general conformal covariants P whose
Lorentz versions have appropriate hyperbolicity properties.

The natural extension of conformal index theory to non-positive definite
metrics is not treated in this paper, nor are the analogous questions for CR
structure; we believe, however, that these will be fruitful lines of enquiry. In
fact, by analytic continuation in signature, one can assert the existence of
conformal indices which are integrals of local invariants for compact M of any
signature. In particular, these give biholomorphic invariants of pseudo-convex
domains V in en through the construction of the Fefferman bundle (Feffer-
man [1976], Lee [1985]), which carries a Lorentz conformal structure reflecting
the geometry of V. Within Riemannian geometry, an interesting question is
that of a possible relationship between c(M, g, D) and the critical values of
the Yamabe functional
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and similarly for Yamabe functionals based on other conformal covariants
(Branson [1984], Sec. 4). It should also be possible to relate conformal indices
to Lefschetz fixed point formulas (see Gilkey [1979] for the relation of MP
expansions to these formulas), and to treat manifolds with boundary.

This paper is organized as follows. In Section 1 we introduce the conformal
Laplacian and define conformal covariants in general. Section 2 is an ex-

panded account of the question raised above on conformal deformation of
local invariants, and its relation to MP expansions. In Section 3, we prove the
main theorems using the calculus of pseudo-differential operators and a

generalization of a fundamental formula of Ray and Singer for the first

variation of the L2 trace of exp( - t0). In Section 4.a, we look at the case of
non-conformally covariant operators. In particular, we get a non-invariance
result for f Un /2 (il + aK on functions) forez ( n - 2)/4(n - 1) : a metric

which is critical for conformal variations must satisfy a constant curvature
condition. The square of the Dirac operator, though not conformally co-
variant, does produce a conformal index. In Section 4.b, we do some explicit
illustrative calculations with Uo, U, and U2 of the à + aK on functions. Section
4.c indicates how the second conformal variation can be calculated. In Section

4.d, we draw two curious consequences of the proofs in Section 3 in the case
where (M, g) admits a conformal vector field T with infinitesimal conformal
factor w E C°°(M, R): w must be L2-orthogonal to (1) U(P) for i =/= n/2, and
(2) 103C8 I 12 + ... + 1 03C8m 12, where P is any formally self-adjoint conformal
covariant with positive definite leading symbol, and 03C81’...’ 03C8m is an orthonor-

mal basis of the real À-eigensections of P, À ~ 0. Section 4.e is about a

connexion between the ideas of Section 3 and the theory of Lax pairs. In
Section 5, we give our original argument for the invariance of the conformal
index in the case of the conformal Laplacian D on functions; this was outlined
in Branson-0rsted [1984]. This argument has the advantage of involving only
classical analysis through the transport equations, but is difficult to make in
the general setting of Section 3. S. Rosenberg and T. Parker [1985] have also
constructed a proof of invariance in this special case, based on an appropriate
zeta function and properties of its analytic continuation. A zeta function
argament for the invariance of c(M, g, D) is also outlined in Dowker-Ken-
nedy [1978], p. 906.

The authors are indebted to S. Rosenberg for pointing out the formula of
Ray-Singer [1971], Sec. 6, a generalization of which is an important part of the
argument in Section 3, and for pointing out that a proof of the invariance of
c(M, g, D ) should also yield variational formulas for all the f U,(D). Special
acknowledgement is due to the referee for extensive education on the pseudo-
differential operator calculus and its applications to Section 3.

1. The conformal Laplacian

Let (M, g) be a Coo compact Riemannian manifold of dimension n &#x3E; 2. Let
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~ = - V’ ÀV’ À be the Laplacian on functions in M. It is well-known that the
operator

is conformally covariant in the sense that if 0  Q E COO(M), g = g2g, and D is
the above operator calculated in the metric g, then

(That is, D determines an operator between two bundles of densities that
depends only on the conformal class {02g} of g.) The infinitesimal form of
(1.1) may be written as follows: Let w (-= C°°(M ), and let g run through the
one-parameter family eu’, u E R. Set

Evaluating (1.1) at x E M and differentiating, we get

where mw is multiplication by w, and [ - , - ] denotes the commutator.
Several other general conformally covariant differential operators P on

tensor fields are known; a systematic account is given in Branson [1984]. By
definition, such operators satisfy a covariance relation analogous to (1.1): if

g = SZ 2g,

for all relevant tensor fields W, and some a, bER. The infinitesimal covari-
ance law corresponding to (1.2) is then

2. The heat kernel and the Minakshisundaram-Pleijel coefficients

The objects of this paper is to calculate the conformal variation of the

Minakshisundaram-Pleijel (MP) coefficients appearing in the small-time

asymptotic expansion of the heat kernel based on a conformally covariant
operator P. It will turn out that each such operator with strong enough
ellipticity properties gives rise, through the MP expansion, to a conformal
index, or numerical invariant of conformal structure.
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Suppose M is a smooth n-dimensional compact manifold without boundary,
let F be a Hermitian vector bundle over M, and let P : C°° ( F ) ~ C’(F) be
an elliptic differential operator of even order 2/, with positive definite leading
symbol. It is well-known (see, for example, Gilkey [1984,1980]) that the L2
trace of the kernel function for exp( - tP ) has an asymptotic expansion

where the U are given by local polynomial expressions in derivatives of the
total symbol of P.

Suppose now that F is a tensor bundle and the symbol of P is given by a
universal polynomial expression in the derivatives of the metric tensor, so that
the U are also given by such expressions. By homogeneity considerations, if P
deforms according to

under uniform dilation of the metric, the U will deform similarly:

By Weyl’s invariant theory, this means that U is a level 2i local scalar

invariant, i.e., an  R-linear combination of universal expressions

where R is the Riemann curvature tensor, a and 03B2 are multi-indices, indices
after the bar denote covariant derivatives, and " trace" represents some parti-
tioning of all the indices into pairs, the raising of one index in each pair, and
contraction to a scalar. In particular, the MP coefficients

will be COO functions of the real parameter u, as the metric ranges through the
e2uwg, for a fixed w c- C°°(M). Recalling the notation of Section 1, we shall
show that if P satisfies all the above assumptions and is formally self-adjoint
and conformally covariant, then

In particular, an/2 is a conformal invariant for even n.
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One could also ask for the conformal variation of the U themselves. Local
conformal invariants, i.e. level m local scalar invariants L for which

or, infinitesimally,

are rare (see Fefferman-Graham [1984], Günther-Wünsch [1985]). The sim-
plest nontrivial local invariant, K, does not have this property: applying (1.2)
to (p = 1, we get

But it was remarked by Schimming [1981] (see also Wünsch [1985], p. 186)
that for even n, the quantity U(n-2),12 obtained from the conformal Laplacian
D is a local conformal invariant. Schimming’s argument exploits a formal
connexion between the classical system of transport equations defining the U
(see Berger et al. [1971]) and Hadamard’s transport system for the fundamen-
tal solution of the conformal d’Alembertian 0 + (n - 2)K/4(n - 1) on n-di-
mensional Lorentz manifolds (see, e.g., Friedlander [1975]). It is too much,
however, to expect that all the U generated by D will be local conformal
invariants, even though this would be consistent with (2.1). For example,

(see Section 4.b below) is invariant only for n = 4, where Schimming’s remark
applies.

From the point of view of conformal variation of the U, (2.1) says that

where 8 = d* is the divergence carrying one-forms to functions: Sq = - v À71À.
Indeed, the metric variation g = 2 w g has the effect (d vol)’ = nw d vol on the
invariant measure, and it is shown in Branson [1984] that Q is a linear

combination of universal expressions of the form

After repeated integration by parts, this reduces modulo the range of 8 to WL,
where L is some level 2i local scalar invariant. Exact divergences integrate to
zero, and since w is arbitrary in CI(M), (2.1) forces L = U,.
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3. Variation of a général heat kemel

In this section we prove a general theorem on the variation of the heat kernel
of a formally self-adjoint differential operator D with positive definite leading
symbol. This will allow us to compute the first conformal variation of the L2
trace of exp( - tD) for conformally covariant D with this strong ellipticity
property. The main technique is that of pseudo-differential operators as

developed in, e.g., Seeley [1967] and Gilkey [1974,1984]. The main point is that
the standard manipulations with symbols and operators between Sobolev
spaces can be made differentiable in an external real parameter u. As a result,
the MP expansion can be differentiated term by term in u.

In the following, fix a smooth Hermitian vector bundle F over a smooth
compact manifold M, of dimension n and without boundary, with smooth
positive measure Jl. Let D : C°°(F) ~ C°°(F) be a formally self-adjoint dif-
ferential operator of even order 21 with positive definite leading symbol. (In
particular, D is elliptic.) Actually we want to consider a smoothly varying
one-parameter family of such setups: let u run through a real interval ( - E, E ).
If

in local coordinates, ( - , - )(u) is the Hermitian structure on F, and D( u ) is
our one-parameter family of differential operators (formally self-adjoint in
ju(u) and ( - , - &#x3E;(u), with leading symbol positive definite in ( - , - )( u )), and if
(p and Ç are C°° sections of F, then

should be jointly COO in x and u. In our applications, F will be a tensor
bundle with Hermitian structure given by the choice of a Riemannian metric
on M; this choice will also determine jn. D will also be built naturally from
the metric, which will run through a one-parameter family g(u) within a
conformal class.

REMARK 3.1: : D( u ) has real discrete spectrum À-, (u) i + 00, j = 0,1,2, ....
Following through the estimates in, e.g., Lemma 1.6.4 of Gilkey [1984], we can
get a lower bound A on the bottom eigenvalue Ào(u) which is uniform for u
in some compact interval [ - à, 8]. This allows us to fix a cone C of small slope
about the ray (z OE R, z &#x3E; min(A, O)} in the complex plane as in Gilkey
[1984], p. 48, which encloses the spectrum of D(u) for all u E [ - 8, 8].

REMARK 3.2: The L 2(F) norm varies with u, since it depends on ., . &#x3E;( u)
and ii(u), but the different norms are all equivalent. The same can be said of
the Sobolev class LS ( F ) norms
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In fact, there are positive constants c(s ) and C( s ) for which

Thus it will not be important for the estimates below whether we think of
these norms as varying, or just fix the u = 0 norms.

We denote by Sk the class of symbols p = p ( x, 03BE, À, u ) defining endomor-
phisms of Fx (x E M ) satisfying (in local coordinates)

(3.1.a) p is smooth in the cotangent variables (x, 1) and in the parameter
u; 

(3.1.b) p is holomorphic in the complex parameter À on the complement of
the fixed cone C;

(3.1.c) 1 a£’ aJ’ ay asp 1

This symbol class is invariant under coordinate changes, and is transferred
from R" to M using partitions of unity in the usual way. Composition in the
algebra of pseudo-differential operators satisfies

where a runs over multi-indices, and " ~
" 

means modulo lower order terms,
as in Gilkey [1984], Lemma 1.7.1. Let 1 1 s,s’ denote the norm in the spaces
B( L2S , Ls 2s’) of bounded operators from LS to L s 2@. If 1 p I-m,m is finite for
m &#x3E; k + n/2, then P has a Ck kernel function L(x, y, P) (Seeley [1969], p.
181), and the sup norm of the k-th derivatives of L can be estimated:

(See Seeley [1969], p. 181, or Gilkey [1984] Lemma 1.2.9.) Furthermore, (3.3)
can be made uniform for u in some interval [ - 8, 03B4 ]. If 03C3 ( P ) E S - k, then
1.7.1(b) of Gilkey [1984] together with the uniformity in u implies

for k greater than or equal to some constant k(m). For the resolvent

R(À) = (D - À)-l, Theorem 1 (page 269) of Seeley [1969] or Lemma 1.6.6 of
Gilkey [1984] implies

uniformly in u, for some positive power a(s).
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We can find approximate resolvents Rk(À) by constructing, in each coordi-
nate patch, the symbol of an operator which approximately inverts D - À, and
patching these operators together with a partition of unity. If 03C3(D) = P21 +
P2/-1 + ... +po with Pj j-homogeneous in 03BE, and our trial resolvent symbol is
r -21 + ... + r -2/-k with r jointly i-homogeneous in 03BE and À1/2/, we define

By (3.2), this will assure that

Fix m and let a(m) be as in estimate (3.5). Let q = m + a(m), and let
k &#x3E; k(q) be chosen to apply estimate (3.4) to I - (D - À)Rk(À):

Let H( t, x, y ) E Fx 0 Fy* ~ 1 An 1 y be the kernel function of exp( - tD ) ( 1 An 1
is the bundle of densities, sections of which are measures), and Hk(t, x, y ) the
kernel of the approximate heat semigroup

defined in analogy with

Estimate (3.7) gives rise to the operator estimate
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uniformly in u for large k and small t (see Gilkey [1984], p. 53). Estimates
(3.3) and (3.7) now imply

uniformly in u for large k and small t.

Now the Hk(t, x, x ), and thus by (3.8) H( t, x, x), are easily seen to admit
asymptotic expansions in t. The same will be true of the kernel functions of

the u-derivatives of exp( - tD) and Ek(t); this is the important point of the
main result of this section:

THEOREM 3.3 : Let M, F, ju (u), D(u), and C be as above. Let H( t, x, y) E F,
Q9 Fy* ~ 1 An y be the kernel function of exp( - tD). Then

(a) The fibrewise trace of H( t, x, x) has an asymptotic expansion

where V:(x, D, u) is a smooth measure given in local coordinates by a poly-
nomial in the jets of the total symbol of D(u). As a result,

(b) TrL2 exp( - tD) is smooth in u, and one can differentiate (3.10) term by
term to get

PROOF: First note that the L2 trace does not depend on which of the

equivalent norms Il. Il L2(u) we use. The existence of the asymptotic expan-
sions (3.9), (3.10) was already indicated above, following, e.g., Gilkey [1984].
For (b), consider the operators involved as f!4( L;, Ls, )-valued functions of u
for appropriate s and s’, and differentiate:
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The two terms on the right in (3.12) can now be estimated separately. For the
second, set q=m +21+a(m)+ a(m + 21) and let k&#x3E;k(q):

Similarly, for the first term,

since (d/du)(I - (D - À)Rk(À)) has symbol in S-k. Now we can perform a
contour integration and argue as in the proof of Lemma 1.7.3 of Gilkey [1984]
to get norm estimates

for large k and small t. Estimate (3.3) and (3.12)-(3.14) then show that

for large k and small t. There are similar estimates for the higher u-deriva-
tives. Let 1 (t) and fk ( t ) be the L2 traces of exp( - tD ) and Ek ( t ) respectively.
Setting x = y, taking the fibrewise trace, and integrating over M, we get
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for large k and small t.

This reduces the proof of (b) to that of the corresponding statement for the
approximate traces fk(t). Now the operator Ek ( t ) is built from the

using a partition of unity, in exactly the way that Rk(X) is built from the
rj(À). The ej are infinitely smoothing symbols, and

where dx.., is the coordinate-dependent measure on a chart containing x and
trivializing F. By the joint homogeneity of j in e and Àl/2/, ,

Defining

and using Cauchy’s theorem to shift the path of integration from taC to 8C,
we get

As in Gilkey [1984], p. 54, the Vi vanish for half-integral i. Since all integrals
above converge absolutely, we can differentiate with respect to u under the
integral sign to obtain

which, in view of (3.15), completes the proof of the theorem. El

For future purposes, we record a generalization of Theorem 3.3. The argu-
ments above suffice to prove:

THEOREM 3.4: : In Theorem 3.3, exp( - tD(u)) may be replaced bi
B(u) exp( - tD(u)), where B(u) is a smooth one-parameter auxiliary family of
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b-th order differential operators, provided we replace t(21-n)/21 with t(21 - n - c)211
where c = 2[b/2]. (3.11) also holds for higher u-derivatives:

The left-hand side of (3.11) can now be computed using a formula of Ray
and Singer [1971]. For the sake of completeness, we give the proof of this in a
general setting. (Ray and Singer treat the case of metric deformations of the
Laplacian.)

PROPOSITION 3.5: With assumptions as in Theorem 3.3, we have

PROOF: exp( - tD(u)) is infinitely smoothing and forms a semigroup (see, e.g.,
Seeley [1967], p. 301). Without loss of generality, we can prove (3.16) at u = 0.
Let D = D(0) and

For a fixed t &#x3E; 0, consider

which is convergent in the trace norm and u-differentiable. We then get
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since the fact that exp( - tD) is infinitely smoothing justifies cyclic permuta-
tion of operators under the trace. Integrating by parts, we get

We are now in a position to associate global invariants to differential oper-
ators satisfying a very general type of covariance law. Our main application
will be to the case in which u is a parameter of conformal deformation for the
metric tensor, and D(u) is a conformally covariant differential operator on
tensor fields which is naturally constructed from the metric.

THEOREM 3.6: Let M, F, tt(u), D(u), C, and V, be as in Theorem 3.3. Assume
that

for some a, b E R and w ~ COO(M, R), where m03C9 is multiplication by w and
[ ., .] ] is the commutator. Then for the coefficients in (3.9),

PROOF: The peu) = mexp(_uúJ)D(O)meXp(uúJ) are an isospectral family of oper-
ators satisfying the assumptions of Proposition 3.5, P(u) being self-adjoint in
the Hermitian structure ( ’, -)(0) and measure e2uúJJ.L(O). Thus

Since

(3.16) with P(u) in place of D(u) gives
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This, along with (3.17) and (3.16) (now applied to D( u)), gives

Now the trace and the E-derivative may be interchanged:

But the operator w exp(-t(I +,E)D) has kernel function w(x)H«l +
£)t, x, y ), so that by (3.9),

Theorem 3.4 and (3.19), (3.20) now give two asymptotic expansions for

(Tr exp( - tD))., and comparing terms, we get (3.18). m

COROLLARY 3.7: Let M be a smooth compact manifold of dimension n &#x3E; 1 and
without boundary. Let g be a Riemannian metric on M, and consider the

one-parameter conformal family of metrics g(u) = e2uwg, where w is fixed in
COO(M, R). Let d vol(u) be the Riemannian measure and D(u) = A(u) + ( n -
2)K(u)/4(n - 1) the conformal Laplacian determined by g(u). Let Ui(x, D, u)
be the level 2i local scalar invariants given by (3.9) :

(Recall Section 2.) Then

and in fact

where 8 = d * is the divergence. In particular, c( M, g, D) = fM u,,/2 d vol is a
cOnfOrmal invariant for even n. 

M
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PROOF: We only need to prove (3.21) at u = 0, since the statement about

(d/du) 1,,=u. will follow upon replacing g by e 2uo’g. But this is just an
application of Theorem 3.6 with a = ( n - 2)/2, b - a = 2, and 1 = 1 (recall
(1.2)). The argument for (3.22) was given in Section 2. (3.21) shows that

c(M, g, D) is constant on one-parameter conformal families of metrics, and
thus on the conf ormal class of g. n

It should be noted that Corollary 3.7 is directly accessible by elementary
methods using transport equations. This was our first approach (Branson-
0rsted [1984]), and it is still of some potential interest, especially for the case
of noncompact M. Therefore, we have given an elementary treatment of the
case of the conformal Laplacian D is an appendix (Section 5). We also do
some explicit calculations with Uo, U1 and U2 of D in Section 4.

There are other known formally self-adjoint, conformally covariant oper-
ators whose leading symbols are positive definite. Branson [1982] introduced a
general second-order conformally covariant operator D2,k on differential forms
of arbitrary order k, with leading term ( n - 2k + 2)8d + ( n - 2k - 2) d03B4, for
n =A 1, 2. Now the symbol of d is exterior multiplication E(03BE), and that of 03BE
interior multiplication i ( 1 ). i ( 03BE ) ~ (03BE ) and ~ ( 03BE ) 1 (03BE ) are positive semidefinite for
03BE~ 0, and t(03BE)~(03BE) + ~(03BE)t(03BE) = |03BE|2. Thus D2,k is grist for our mill if

k  (n - 2)/2. Paneitz [1983] gave a general fourth-order conformally co-
variant operator D4 on functions, with leading term A2, for n =1= 1, 2. Branson
[1984] generalized this to a fourth-order D4,k on k-forms, n ~ 1, 2, 4, with

leading term ( n - 2k + 4)(03B4d)2 + ( n - 2k - 4)(d03B4) 2 = Ô{(n - 2k + 4)03B4d + ( n
- 2k - 4) d03B4}. This has positive definite leading symbol for k  ( n - 4)/2. In
each case the number b - a appearing in (3.17). (recall also (1.4)) is the order
of the operator 2/, so we have:

COROLLARY 3.8: For D = D2,k ( k  ( n - 2)/2), D4 ( n &#x3E; 2), or D4, k ( k  ( n -
4)/2), the local scalar invariants U given by (3.9) through V, = U d vol satisfy

(3.21) and (3.22), and c(M, g, D) = Un/2 d vol is a conformal invariant forM
even n. 0

More generally, we have Corollary 3.10 below.

DEFINITION 3.9: The following tensor fields on a Riemannian manifold

(M, g) are said to be natural: (1) g, (2) gl = (gafi), (3) the Riemann tensor
R; and if S and T are natural tensors, (4) CT, where C is any contraction, (5)
p T, where p is the Riemannian covariant derivative, (6) S 0 T. The following
differential operators on tensor fields are said to be natural: (1) T 0 , where T
is a natural tensor, (2) any transposition of tensor indices, (3) vs, (4) contrac-
tions, (5) compositions of (1)-(4).

COROLLARY 3.10: Let D be a natural differential operator of order 21, on tensor
fields of a certain degree and symmetry type in Riemannian manifolds. Suppose
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that D is always formally self-adjoint, always has positive definite leading symbol,
is ( - 2/ )-homogeneous under uniform dilations,

and is conformally covariant:

Then the local scalar invariants Ui given by (3.9) through U, = U, d vol satisfy

(3.21) and (3.22), and c(M, g, D) = Un/2 d vol is a conformal invariant forM
even n.

PROOF: We need only observe that (3.23) and (3.24) together force b - a = 21.
a

4. Remarks, further results, and some explicit calculations

a. The proof of Theorem 3.6 has content even for operators which are not
conformally covariant. For example, let P = à + aK = D + bK on functions,
where a e R and D is the conformal Laplacian (so that b = a - ( n - 2)/4( n
- 1)). Then

by (1.2) and (2.2), and the proof of Theorem 3.6 shows that

This gives a non-invariance result: if the "extra" term in (4.1) is to be zero for
all (V E CI (M, R), we must have U, - 1 1 range à in L 2 :

THEOREM 4.1 : Let n be even, and let P be as above with b # 0. ( In particular, P
could be the ordinary Laplacian on functions if n &#x3E; 2.) Then a metric g is critical

for the functional fm U ,/2 d vol within its conformal class if and only if

U(n-2)/2(g) is constant. In particular, if n = 4, g is critical for f U2 d vol
within its conformal class if and only if g has constant scalar curvature. D
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The assertion about n = 4 cornes from (2.3). When n = 2, U(n-2)/2 = Uo =
(403C0) -1 so Ul d vol is always a conformal invariant, as we know it shouldM

be: U, must be a multiple of K, and lM K d vol is a topological invariant inM
dimension 2.

In another direction, let (M, g) be a compact Riemannian manifold with
spin structure, and consider the Dirac operator P on the spin bundle S. With
the inner product given by the adjunction Ax: Sx ~ Sx* (see, e.g., Kosmann

[1972] Sec. 1.3.2), S is a Hermitian vector bundle and P is self-adjoint.
Though P2 is not conformally covariant, it still produces a global conformal
invariant. Recall (Kosmann [1975]) that P is covariant: if 0  03A9~ C~(M),

where y is the fundamental section of TM @ S @ S *. (The convention for
identifying spinors produced by conformally related metrics is as in Choquet-
Bruhat and Christodoulou [1981].) But for g = exp(uw) and *= d/du,

To follow the proof of Theorem 3.6, we need to calculate

TrL2(( P2 ). exp( - tp2)). From the unfamiliar term in (p2)* we get

since the fact that exp( - tP2) is infinitely smoothing justifies cyclic permuta-
tion of operators under the trace. Thus

and we have the conclusion of Corollary 3.7 for the local invariants U,
produced by P 2 :
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and c(M, g, y, P2) = Un/2 d vol is a conformal invariant for even n.M

b. Let R, r, and be the Riemann, Ricci, and scalar curvatures, with sign
conventions that make r and K positive on standard spheres. Let

C is the Weyl conformal curvature tensor, and Tl and J carry the information in
r and K in a way that is convenient for conformal deformation theory.

Consider the operators P = à + aK = D + bK on functions ( b not neces-
sarily nonzero), where D is the conformal Laplacian. For convenience, in this
section only, we write LI for what was formerly (4’7T)n/2Ui. By Gilkey [1975],

using Vaa = J, where !! R 112 = Ra{3ÀJJ.Ra/3ÀJJ.’  ~ r 112 = r03B103B2r03B103B2, etc. In the special
case b = 0,

(3.22) predicts that

U, ( D ) ·* = - 2iwU,( D ) + (exact divergence) .
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By Branson [1984], Secs. Id and 2a,

This and the Bianchi identity V03B103B2|03B1 = JI P give an explicit expression for

U2 ( D ) ’ + 4(,JU2(D) as an exact divergence:

When n = 6, U2(D) * + 4,wU2(D) = 0, as we know it should be by Schimming’s
remarks on U(n-2)/2. When n = 4, U1(D) is a linear combination of Il C Il 2, an
exact divergence, and the Pfaffian (Euler characteristic density)

since

Of course, U1 + 203C9Ul = 2( 6 - a)( n - 1) 0394w is an exact divergence for all n
and any P = 0394 + aK.
We can also make a computational test of (4.1); here we expect

The U. and U, cases are clear; for U2,
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by (4.2) and (4.3). Thus by (4.4),

as predicted by (4.5).

c. To treat the question of conformal stability for the functionals fm Un/2(D2M
+ bK)d vol of Theorem 4.1, one must calculate their second conformal
variation. By (4.1), this is equivalent to calculating the first variation of

U(n-2)/2- One can do this by adapting the argument of Schimming mentioned
in Sec. 2. Details of this calculation will appear separately.

d. The isospectrality argument in the proof of Theorem 3.6 could be replaced
by the observation (made in the proof of Proposition 3.5) that the presence of
an infinitely smoothing operator justifies cyclic permutation of operators
under the trace:

so that TrL2([D, wj ] exp( - tD» = 0. This calculation goes through if m,, is

replaced by any finite-order pseudo-differential operator. Two curious conse-
quences of this are obtained of we consider a conformal vector field T on
(M, g),
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where LT is the Lie derivative and w E=- Coo (M, R). (In classical notation, (4.6)
reads ~03B1T03B2  + B1pTa = 2’-JgaP’ so necessarily nw = 17 ÀTÀ.) If D is a conformally
covariant operator satisfying (1.4), then

see, e.g., Branson [1984]. If D is as in Section 3, the left-hand side of (4.7)
contributes nothing upon multiplying by exp( - tD ) and tracing: if b # a,

(Recall the argument giving (3.19), (3.20).)
This yields:

COROLLARY 4.2: Let D be a natural differential operator (in the sense of
Definition 3.9) which is conformally covariant in the sense of (1.4), with b # a.
Suppose that D is always formally self-adjoint with positive definite leading
symbol, and let U, be the local scalar invariants given by (3.9) through V, =

Ui d vol. If ú.) is an infinitesimal conformal factor as in (4.6), then ú.) ~ U, in L2
for i =1= n/2. lJ

If we knew that the conformal vector field T integrated to a local one-
parameter group {hu} of global transformations (necessarily conformal), we
could argue alternatively that the [D, LT ] term in (4.7) contributes nothing
because

and the (h ù -1) Dh u · are isospectral. Here h u. is the natural action of the

diffeomorphism h u on tensors (Helgason [1978], p. 90).
Using (4.8) in another way, we get

for all t &#x3E; 0, where H is the kernel function for exp( - tD), and {pj} is an

orthonormal basis of L2 ( F ) with Dp) = À) p). |pj | 2 is calculated in the

natural Riemannian structure carried by tensor bundles over a Riemannian
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manifold. But we cannot have L ak e - 111, = 0 for all t &#x3E; 0 for distinct /-L k
unless all the ak are zero. Thus we have :

COROLLARY 4.3: Let D be as in Corollary 4.2, and suppose that ú) is an

infinitesimal conformal factor as in (4.6). Let 03C8j,1, ... , 03C8j,m, be an orthonormal
basis of the Àj eigenspace of D, Àj # 0. Then 

On the sphere S n with the standard metric, a basis of the infinitesimal
conformal factors w is given by the homogeneous coordinate functions

x0,..., xn. Since Sn is a conformally flat Einstein manifold, all local scalar

invariants are constant. Since x a d vol = 0, Corollary 4.2 checks in this
Sn

example. For Corollary 4.3, at least in the case where D is the conformal

Laplacian on functions à + ( n - 2) K/4( n - 1) = à + (n - 2) n/4, note that

each eigenspace consists of polynomials in the xa of a certain homogeneity.
Thus if q, 2 is the function on the right in (4.9), x03B103A8j2 is odd in x a, so that

e. The ideas in this paper are naturally connected with the theory of Lax pairs
(Kubawara [1982]). Take, for example, one of the operators P = 0394 + aK on
functions and vary the metric g = gu. If we can find a curve Bu of skew-adjoint
(unbounded) operators on L2 with

then the operator family Pu will lie within a unitary equivalence class, and thus
be isospectral. (This setup requires that the L2 inner product, and thus the
Riemannian measure d volu, be independent of u. Kubawara [1982] shows
that this can be arranged by absorbing the change in d vol u into the action of
the diffeomorphism group, which acts trivially from the point of view of
isospectrality.) Because of problems with domains of unbounded operators,
one cannot necessarily make sense of (4.10). But if we assume that the Bu are
finite order pseudo-differential operators, (4.10) makes sense on C°°(M), a
dense subspace of L2 ( M, g). The Ray-Singer formula (Proposition 3.5) and
the observation at the beginning of Section 4.d then show that the spectral
distribution Y- e-l’, is independent of u, even if the Bu are not skew:
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The point of view of the present paper is that if

for some nicely behaved Qu, only Qu affects the first variation in the spectral
distribution. Analysis of Tr,2Q exp( - tP) then reveals which aspects of the
spectral distribution are stationary under the deformation; in our examples,
these are the conformal indices.

5. Appendix: The transport equations

In this section we give the original "classical" proof of Corollary 3.7 outlined
in Branson-0rsted [1984]. The u-differentiability implied in (3.21) is no

problem, since universal local scalar invariants and the Riemannian measure
are u-differentiable. The strategy for proving (3.21) is to look at the initial
value problem which defines the heat kernel,

where D = à + (n - 2)K/4(n - 1) on functions and &#x26; is the Dirac distribu-

tion ; and its formal conformal variation

Here D is (d/du) 1 u=0D as the metric runs through a one-parameter family
e2uwg, wE COO(M, R). The initial condition in (5.2) is motivated by the fact
that (d vol)’ = nw d vol, and we now think of our kernels as functions, not
measures. Calculating the unique solution to (5.2) in two different ways will

give us two asymptotic expansions of h ( t, y, y ) d vol( y ) as t 10, and
M 

termwise comparison will give (3.21). We will not need to prove that h = H.
The first expansion comes from the integral formula for the solution of

(5.2):
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(Convergence of the intégral near T = t is clear; for convergence near T = 0

rewrite the integral as ((Dz)*H(t - T, x, z )) H( T, z, y ) d z. Here and below,
M

we write d z for d vol( z.) This gives

The second term on the right in (5.3) can be rewritten as

by the semigroup law for the heat kernel. Writing DzH(t, z, w) 1 w=z =
D(1)H(t, z, z) to indicate that D acts in the first space variable, we have

(This can be regarded as a "classical" version of the Ray-Singer formula
(3.16).) Using our formula (1.2) for D and the fact that H solves the heat
equation, we get
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We would now like to show that the last term on the right in (5.4) vanishes.
Consider the problem

The (unique) solution of (5.5) is clearly k ( t, x, y) = -(w(x) +
w(y)) H(t, x, y ); yet the argument carried out above in the case of h gives

This shows that so (5.4) implies

where the U are the local invariants of Corollary 3.7. (That the asymptotic
expansion of H(t, x, y ) can be differentiated term by term with respect to t
can be shown by carefully following the argument in Berger et al. [1971].
Specifically, it is easy to show that one can take D, term by term; the result
then follows from the transport and heat equations. The argument with k is a
"classical" version of the isospectrality argument in the proof of Theorem 3.6.
The operator m03A9-1Dm03A9 is formally self-adjoint in the smooth measure
g2 d volg, and the initial condition in (5.5) just keeps track of this change of
measure.)

To get another asymptotic expansion for f m h ( t, y, y) dy, we examine theM
classical construction of H via the transport equations as in Berger et al.

[1971]. Let e be a uniform injectivity radius for the exponential map on M,
and let q(x, y ) E COO(M X M, [0,1]) be a cutoff function which is 1 in a

neighborhood of the diagonal = y} and 0 on (dist(x, y) &#x3E; E }. Then H has
an asymptotic expansion
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where Q = Q ( x, y ) = (dist( x, y))2, and the two-point functions ~ E C~ ({03C3 
~2}, R) are uniquely defined by the system

Here d, à, and D act in the x variable, and  , &#x3E; is the pairing of one-forms
determined by g.

Letting everything depend on the conformal parameter u, we can find an
injectivity radius which is uniform over M, and uniform for u in some

[-8, 8], by the standard theorem on smooth dependence on coefficients for
solutions of initial value ODE problems (see, e.g., Miller and Murray [1954],
Sec. 4.5). Thus we can pick a cutoff 11 which is independent of u. Formal

term-by-term differentiation of the right-hand side of (5.7) then gives

We pause to calculate cr.

LEMMA 5.1: Let E be as above. Then a is Coo in u on {a ,E2}, and à = 203C903C3,
where i3=i3(x, y) is the average of tA) along the g-geodesic z(r), 0  r  1 ,
joining y to x :

PROOF: Fix y E M, and let 01, .... 0n, be a g-orthonormal basis of the tangent
space Mv, so that v«(u) = e-u’(Y)v,,, is an e2UWg-orthonormal basis. Let x«(u)
be normal coordinates adapted to these bases: the exponential at y of

xa(u) va(u) in the metric e2uwg is x. Then by the above smooth dependence
theorem and the smooth dependence of inverse functions on parameters, x a is
Cw in u on {a  E2}. Since a = gaf3(Y )xaxf3 (see, e.g., Friedlander [1975],
Theorem 1.2.3), a is CI in u.

Working now in a fixed coordinate system on {xla(x, y)~2}, if z(r),
0  r  1 is the geodesic j oining y to x, then
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independent of r (i.e., z(r) has constant speed). Thus

Since iw(0) = il’(1) = 0,

by the geodesic equation

where ralJ À = 1- gJLÀ( 3pgaJL + 3agIJJL - 3JLgalJ) are the Christoffel symbols. This
reduces (5.9) to

as desired. 0

Retuming to the main argument, the lemma and (5.8) suggest asymptoti-
cally expanding h +,iôaHl2t in the hope that the (p, will appear. First we try
to obtain two-point functions T,(x, y ) for which
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formally solves (5.2). Setting R = t-n/2 e-03C3/4t, we have

by the product rule D( fg) =fDg+(Af)g- 2(df, dg), (1.2), and (du, do) =
4Q. Here all differential operators act in the x variable, w =w(x), and
w = w(x, y). Now if y==va is the radial geodesic polar coordinate at y,
arw = ( w - 13) /r, or (do, dcj) = 2(a - w ). Thus the series (5.10) will formally
solve the differential equation for h if

where we put 03C8- 1 = ~ - 1 = 0.
We claim that one solution of (5.11) is 4,, = ~i. The explicit formulas
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show that the ~l are differentiable in u. The ~, must satisfy the conformal
variation of the transport equations for ~, viz.

by Lemma 5.1 and (.,.)·= -203C9(., .). But À = - 2wà - (n - 2)dw, d·&#x3E;
by (1.2) and (2.2), so (5.12) is just (5.11) for 41j = §E, .

The above calculations show that if H= at + Dx,

then

in analogy with

This was the point of getting a formal solution of the h-equation. Since

(Po (y, y ) = 0 and uRlt ---&#x3E; 2n8y(x) as t 10, h k has the right initial condition:

Now recall the method by which the exact heat kernel H is constructed from
the parametrix Hk (Berger et al. [1971], Sec. III.E). Define the convolution
F *G for, say, F, G E C°([o, oo) X M X M) by

Then if FE C°([0, oo) X M X M) and k &#x3E; n/2, Hk*F exists, and

This means H = Hk + Hk *Fk will satisfy the heat equation if ’y(?Hk + Fk +
(HHk)*Fk = 0, or
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Because of the initial condition (5.14), the identity for hk analogous to

(5.15) is

Thus a trial solution will satisfy YEh + DH = 0 if

Formally, this says that 

This leads us to look at

since I + Fk* formally inverts I + (£Hk)*, and it is straightforward to show
that this fk does indeed satisfy (5.16). Since Fk and Hhk + DHk are 0(tk-(nl2))
for large k, L and fk are 0(tk-(n/2») also, giving h - hk = hk *Fk + Hk *fk =
0(t(k-(n/2)). Thus 

k k k + Hk *fk

so that

Since 1
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Comparing (5.17) and (5.6), we get

as desired for (3.21).
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