Compositio Mathematica

E. BALLICO

Ph. Ellia

On the hypersurfaces containing a general projective curve

Compositio Mathematica, tome 60, no 1 (1986), p. 85-95
http://www.numdam.org/item?id=CM_1986__60_1_85_0
© Foundation Compositio Mathematica, 1986, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

ON THE HYPERSURFACES CONTAINING A GENERAL PROJECTIVE CURVE

E. Ballico and Ph. Ellia

If C is a smooth curve in \mathbb{P}^{N} a natural question to ask is the number of hypersurfaces of degree k containing the curve C. This turns out to the study of the natural map of restriction $r_{C}(k): H^{0}\left(\mathbb{P}^{N}, \mathcal{O}_{\mathbb{P}^{N}}(k)\right) \rightarrow$ $H^{0}\left(C, \mathcal{O}_{C}(k)\right)$. We say that C has maximal rank if for every $k \geqslant 1 r_{C}(k)$ has maximal rank as a map between vector spaces. In this paper we prove the following theorem.

Theorem 1: Fix integers N, d, g with $N \geqslant 3, g \geqslant 0, d \geqslant \max (2 g-1, g+$ $N)$. Then a general non degenerate embedding of degree d in \mathbb{P}^{N} of a general curve of genus g has maximal rank.

The proof of Theorem 1 gives as a byproduct the following result.
Theorem 2: Fix an integer $N \geqslant 3$. There exists a function $e_{N}: \mathbb{N} \rightarrow \mathbb{N}$ with
$\lim _{g \rightarrow+\infty} e_{N}(g)=+\infty$ and with the following property: for all integers d, g $\underset{\text { with }}{g \rightarrow+\infty} g \geqslant 0, d \geqslant 2 g-e_{N}(g)$, a general embedding of degree d in \mathbb{P}^{N} of a general curve of genus g has maximal rank.

Both theorems are particular cases of the maximal rank conjecture, which states that a general embedding of a curve with general moduli has maximal rank.

Previously we proved stronger results for $N=4$ ([2]) and $N=3$ ([3]). We use in an essential way reducible curves and the general methods introduced in [5] and [7]. The smoothing theorems we use were proved in [9] and [6].

Notations

We work over an algebraically closed field. Fix a closed subscheme X of a projective space K. Let $r_{X, K}(n): H^{0}\left(K, \mathcal{O}_{K}(n)\right) \rightarrow H^{0}\left(X, \mathcal{O}_{X}(n)\right)$ be the restriction map and let $\mathscr{J}_{X, K}$ be the ideal sheaf of X in K. If $K=\mathbb{P}^{N}$, we will write often $r_{X}(n)$ and \mathscr{J}_{X} instead of $r_{X, K}(n)$ and $\mathscr{J}_{X, K}$. Fix integers d, g, N with $N \geqslant 3, g \geqslant 0, d>0$. Let $Z(d, g ; N)$ be the
closure in the Hilbert scheme Hilb \mathbb{P}^{N} of the set of smooth, connected curves C in \mathbb{P}^{N} with $\operatorname{deg} C=d, C$ of genus $g, h^{1}\left(C, \mathcal{O}_{C}(1)\right)=0$, and spanning a linear space of dimension $\min (N, d-g)$. Obviously $Z(d, g ; N)$ is irreducible.

Fix a curve C and a line L in $\mathbb{P}^{N} ; L$ is a k-secant to $C, k=1,2$, if it intersects C exactly at k points, all smooth points of C, and quasi-transversally.

§1. Preliminaries

As in [7], [1], [2], [3] we use in an essential way the existence of suitable reducible curves in $Z(d, g ; N)$. Fix a curve $X \in Z(d, g ; N)$ with at most ordinary nodes as singularities and $h^{1}\left(X, N_{X}\right)=0$, where N_{X} is the normal bundle of X in \mathbb{P}^{N} and a line L which is k-secant to X with $k=1$ or 2 . If $d<g+N$ and $k=1$, assume that L is not contained in the linear space spanned by X. Then $X \cup L$ is in $Z(d+1, g+k-1 ; N)$ ([9] or [6]).

Fix integers d, g, N with $g \geqslant 0, N \geqslant 3$ and $d \geqslant g+N$. If $d=N$, we say that $(N, 0 ; N)$ has critical value 1 . If $d>N$, let n be the first integer $m \geqslant 2$ such that

$$
\begin{equation*}
m d+1-g \leqslant\binom{ N+m}{N} \tag{1}
\end{equation*}
$$

in this case we say that $(d, g ; N)$ (or (d, g) for short) has critical value n. Note that if (1) is satisfied, then

$$
d(m+1)+1-g \leqslant\binom{ N+m+1}{N}
$$

because (1) implies

$$
d \leqslant\binom{ N+m}{N} /(m-1)
$$

and the inequality we have to check follows from the inequality:

$$
d<\binom{N+m}{N-1}
$$

We say that the surjective part of Theorem 1 holds in \mathbb{P}^{N} for a datum (d, g) with critical value n if for a general $Y \in Z(d, g ; N)$ the restriction map $r_{Y}(n)$ is surjective. We say that the injective part of Theorem 1 holds for the datum $(d, g ; N)$ with critical value n if for a general $X \in Z(d, g ; N)$ the map $r_{X}(n-1)$ is injective. By Castelnuovo's lemma
([8], p. 99) Theorem 1 holds if for all data the injective and the surjective parts of Theorem 1 are true. Theorem 1 is trivial for all data with critical value 1 . The injective part of Theorem 1 is trivial for all data with critical value 2 .

In 1.1 we show in particular that the surjective part of Theorem 1 is true for all data with critical value 2 . The next result can be considered as a partial extension to non-complete linear systems of [1].

Proposition 1.1: Fix integers d, g, N with $N \geqslant 3, g \geqslant 0, d \geqslant g+N$ and $2 d+1-g \leqslant(N+1)(N+2) / 2$. Then a general element of $Z(d, g ; N)$ has maximal rank.

Proof: If $d=g+N$, the result was proved in [1]. Assume $d>g+N$ and the result true for $(d-1, g ; N)$. Fix $X \in Z(d-1, g ; N)$ with maximal rank, hence with $r_{X}(2)$ surjective. It is sufficient to prove that for a general line L intersecting X, we have $\operatorname{dim} \operatorname{Ker} r_{X \cup L}(2) \leqslant$ $\operatorname{dim} \operatorname{Ker} r_{X}(2)-2$. We may assume X irreducible. Fix a point P which is not a base point of $H^{0}\left(\mathbb{P}^{N}, \mathscr{J}_{X}(2)\right)$. If L is a line containing P we have $\operatorname{dim} \operatorname{Ker} r_{X \cup L}(2) \leqslant \operatorname{dim} \operatorname{Ker} r_{X}(2)-1$. Fix a quadric Q containing X and P. If $L \not \subset Q$, then $\operatorname{dim} \operatorname{Ker} r_{X \cup L}(2)<\operatorname{dim} \operatorname{Ker} r_{X \cup\{\mathrm{P}\}}(2)$: we won. If P^{\prime} is a point of Q, P^{\prime} near P, then P^{\prime} is not a base point of $H^{0}\left(\mathbb{P}^{N}, \mathscr{J}_{X}(2)\right)$. Hence we won if for a fixed $A \in X$ and a general P^{\prime} in Q, the line $\left[A P^{\prime}\right]$ is not contained in Q. If for all such $P^{\prime},\left[A P^{\prime}\right]$ is contained in Q, then Q is a cone with vertex A. But since X is non-degenerate, Q cannot be a cone with vertex containing X.

§2. Intersection with a hyperplane

The following easy lemma is the heart of this paper.
Lemma 2.1: Fix $N \geqslant 3, n \geqslant 1$. Let $C \subset \mathbb{P}^{N}$ be a nondegenerate, irreducible curve and $H \subset \mathbb{P}^{N}$ a hyperplane. Fix a vector subspace V of $H^{0}\left(H, \mathcal{O}_{H}(n)\right)$. For a curve A in \mathbb{P}^{N}, A intersecting transversally H, set $V(A):=\{f \in$ $V: f(P)=0$ for each P in $A \cap H\}$. Then for a general reducible conic S such that each of the irreducible components of S intersects C, we have $\operatorname{dim} V(S)=\max (0, \operatorname{dim} V-2)$.

Proof: For a general line intersecting C, we have $\operatorname{dim} V(L)=$ $\max (0, \operatorname{dim} V-1)$. Hence we may assume $\operatorname{dim} V \geqslant 2$. Suppose that the lemma is false. Then for every line R intersecting C and L but not contained in $H, V(L)$ has $R \cap H$ in the base locus. But if R is near to L, $R \cap H$ is not in the base locus of V, hence $L \cap H$ is in the base locus of $V(R)$ and we have $V(R)=V(L)$. For a general line B intersecting C and R we have $V(B)=V(R)$. In a finite number of steps we obtain that
$V(L)$ has H in the base locus, because C is not degenerate: contradiction.

This lemma is the key difference between this paper and [2]. Now the proofs are easier and shorter, but the result weaker. To show how we will use this lemma we state an immediate Corollary of 2.1.

Corollary 2.2: Fix non negative integers n, d, g, x, n, j with $N \geqslant 3$, $n \geqslant 1, x \leqslant d$. Fix a hyperplane H in \mathbb{P}^{N} and a curve W in H with $r_{W, H}(n)$ surjective. Let j be the dimension of the linear space spanned by W; if $j \leqslant N-2$ assume $x \leqslant j+1$ and set $j^{\prime}=j$; otherwise set $j^{\prime}=j+1$. Assume $d \geqslant 2 g+\max \left(0, x-j^{\prime}-1\right)$. Then there exists $Y \in Z(d, g ; N)$, Y intersecting transversally H, with $\operatorname{card}(Y \cap W)=x$ and $r_{W \cup(Y \cap H), H}(n)$ of maximal rank.

Proof: Note that $\operatorname{Aut}(H)$ acts transitively on the set of $N+1$ ordered points of H such that any N of them span H. Hence the case $d=N$ is trivial and we assume $d>N$. For the same reason there is a curve $C \in Z(N+1, \min (1, g) ; N)$ intersecting H transversally with $\operatorname{card}(C \cap$ $W)=\min (N+1, x)$ and $r_{W \cup(C \cap H), H}(n)$ of maximal rank. Then we take $\max (0, N+1-x)$ lines L_{i}, each L_{l} intersecting both C and W. Then we apply 2.1.

§3. Proof of Theorem 1

In section 1 we proved Theorem 1 for curves with critical value at most 2. Since Theorem 1 is known to be true in \mathbb{P}^{3} and \mathbb{P}^{4} ([3],[2]), it is sufficient to prove the following two lemmas.

Lemma 3.1: Fix $N \geqslant 5, n \geqslant 3$. Assume that theorem 1 hold in \mathbb{P}^{s} for all s with $3 \leqslant s \leqslant N-1$ and that theorem 1 holds in \mathbb{P}^{N} for all data with critical value $<n$. Then the surjectivity part of theorem 1 holds in \mathbb{P}^{N} for all data with critical value n.

Lemma 3.2: Fix $N \geqslant 5, n \geqslant 3$. Assume that theorem 1 holds in \mathbb{P}^{s} for all s with $3 \leqslant s \leqslant N-1$ and that theorem 1 holds in \mathbb{P}^{N} for all data with critical value $<n$. Then the injectivity part of theorem 1 holds in \mathbb{P}^{N} for all data with critical value n.

In this section we prove 3.1 and 3.2 , hence Theorem 1. Fix a datum (d, g) with $d \geqslant \max (g+N, 2 g-1)$ and critical value $n \geqslant 3$ in \mathbb{P}^{N}, $N \geqslant 5$.

Proof of Lemma 3.1: Fix natural numbers p, g^{\prime} with $p \leqslant g, g^{\prime} \leqslant g$ and maximal with the following properties

$$
\begin{aligned}
& (2 p+N)(n-1)+1-p \leqslant\binom{ N+n-1}{N} \\
& (n-1)\left(\max \left(g^{\prime}+N, 2 g^{\prime}-1\right)\right)+1-g^{\prime} \leqslant\binom{ N+n-1}{N}
\end{aligned}
$$

The integers p, g^{\prime} exist because $(N, 0 ; N)$ has critical value $1 \leqslant n-1$. Define integers $f \geqslant 2 p+N, d^{\prime} \geqslant \max \left(g^{\prime}+N, 2 g^{\prime}-1\right)$ by the relations

$$
\begin{align*}
& \binom{N+n-1}{N}-n+2 \leqslant(n-1) f+1-p \leqslant\binom{ N+n-1}{N} \tag{2}\\
& \binom{N+n-1}{N}-n+2 \leqslant(n-1) d^{\prime}+1-g^{\prime} \leqslant\binom{ N+n-1}{N} \tag{3}
\end{align*}
$$

Note that $p \leqslant g^{\prime}$ and $f \leqslant d^{\prime}<d$ because (d, g) has critical value n. Set $d^{\prime \prime}=d-d^{\prime}, g^{\prime \prime}=g-g^{\prime}, x=\min ([(d-f+1) / 2], g-p), j=g-p-x$, $e=\binom{N+n}{N}-n d-1+g$,

$$
\begin{aligned}
& k=\binom{N+n-1}{N}-(n-1) f-1+p \\
& k^{\prime}=\binom{N+n-1}{N}-(n-1) d^{\prime}-1+g^{\prime}
\end{aligned}
$$

By (2) and (3) we have $0 \leqslant k \leqslant n-2$ and $0 \leqslant k^{\prime} \leqslant n-2$. By the definition of k and e we obtain

$$
\begin{equation*}
(d-f) n+1-(g-p)+(f-1)+(e-k)=\binom{N+n-1}{N-1} \tag{4}
\end{equation*}
$$

By the maximality of p we have either $p=g$ or $f \leqslant 2 p+N+1$, hence $d-f \geqslant 2(g-p)-N-2$. Hence we have $j \leqslant(N+3) / 2$. By the maximality of g^{\prime} we have either $g^{\prime}=g$ or $d^{\prime} \leqslant 2 g^{\prime}$ or $g^{\prime}+N \geqslant 2 g^{\prime}-1$ and $d^{\prime} \leqslant g^{\prime}+N+1$. Assume $g^{\prime}+N \geqslant 2 g^{\prime}-1$, hence $g^{\prime} \leqslant N+1$. Since $k^{\prime} \leqslant$ $n-2$ we obtain

$$
(n-1)\left(g^{\prime}+N+1\right)+1-g^{\prime}+(n-2) \leqslant\binom{ N+n-1}{N}
$$

which is false for $N \geqslant 5, n \geqslant 3$. Hence we have $d^{\prime \prime} \geqslant 2 g^{\prime \prime}-1$.
We need two numerical lemmas:
Sublemma 3.3: If $N \geqslant 5$ and $n \geqslant 3$, we have $f \geqslant 2 n-4+N$.

Proof: Since

$$
(n-1) f \geqslant\binom{ N+n-1}{N}-1,
$$

the lemma is trivial.
Sublemma 3.4: Assume $k>e$. Then
(a) $d-f \geqslant 2 n-1+N$ if $N \geqslant 5, n \geqslant 4$ or $N \geqslant 6, n \geqslant 3$.
(b) $d-f \geqslant 9$ if $N=5, n=3$ and if $d-f=9$, then $g-p \leqslant 4$.
(c) $d^{\prime \prime} \geqslant n-1 ; d-f \geqslant 2 N-2$, hence $d-f \geqslant x+N-1$.

Proof: (a) By (2) we have

$$
f \leqslant\binom{ N+n}{N} /(n-3 / 2)
$$

Then (4) gives the contradiction if $N \geqslant 5, n \geqslant 6$ or $N \geqslant 6, n=5$ or $N \geqslant 7, n=4$ or $N \geqslant 12, n=3$. The remaining cases for (a) and (b) have to be checked directly. For example assume $N=5, n=3$. By the definitions of p and f we obtain $p \leqslant 3$ and $f \leqslant 11$. From (4) we get $d-f \geqslant 9$ and if $d-f=9$, then $g-p \leqslant 4$. Part (c) is easier.

We distinguish 5 cases.
Case (A): $k \leqslant e, d-f \geqslant g-p+1, d-f \geqslant 6$. Take a hyperplane H. We claim the existence of $W \subset H, W \in Z(d-f, x ; N-1)$ with $r_{W, H}(n)$ surjective. Indeed since $d-f-x \geqslant 3$, we have $Z(d-f, x ; N-1) \neq \emptyset$. If a general $W \in Z(d-f, x ; N-1)$ spans H, the claim follows from the inductive assumption, (4) and the inequality $f-1 \geqslant j$ which holds by 3.3. If a general $W \in Z(d-f, x ; N-1)$ does not span H, it spans a linear space of dimension $d-f-x \geqslant 3$ and we may use the inductive assumption and the inequality

$$
n(d-f)+1-x \leqslant\binom{ d-f-x+n}{n}
$$

which is true if $n \geqslant 3, d-f \geqslant 6$.
We may assume that a curve W as in the claim contains $j+1$ general points of H because $d-f-x \geqslant j+1$. By the inductive assumption, the inequality $f-p \geqslant N+j+1$ and Corollary 2.2 we may find $X \in$ $Z(f, p ; N), X$ intersecting transversally H, with $\operatorname{card}(X \cap W)=j+1$ and $r_{W \cup(X \cap H), H}(n)$ surjective. Since W can be degenerate to a suitable union of lines, $X \cup W$ is a smooth point of Hilb \mathbb{P}^{N} and $W \cup W \in$ $Z(d, g ; N)$.

Take $A \subset \mathbb{P}^{N} \backslash H, B \subset H$, with $\operatorname{card}(A)=k, \operatorname{card}(B)=e-k, A$ and B general. It is sufficient to prove that $r_{X \cup W \cup A \cup B}(n)$ is injective, hence
bijective. Take $f \in H^{0}\left(\mathbb{P}^{N}, \mathscr{J}_{X \cup W \cup A \cup B}(n)\right)$. The restriction of h to H vanishes on $W \cup(X \cap H) \cup B$, hence vanishes identically. Thus h is divided by the equation z of H. Since h / z vanishes on $X \cup A$, we have $h=0$.

Case (B): $k>e, p \geqslant k-e$. Assume $d-f \leqslant g-p+n-2$. Since $d-f \geqslant$ $2(g-p)-N-2$, we find $d-f \leqslant 2 n-2+N$, contradicting 3.4. We take a general $E \in Z(f, p-k+e ; N)$ with $r_{E}(n-1)$ surjective, hence $h^{0}\left(\mathbb{P}^{N}, \mathscr{J}_{E}(n-1)\right)=e$. Note that by 3.3 and a degeneration of E to a union of lines, we may assume that E contains $1+k-e+j$ general points of a hyperplane H. We may take $W \in Z(d-f, x ; N-1), W \subset H$, with $r_{W, H}(n)$ surjective and $\operatorname{card}(W \cap E)=1+k-e+j$ because $d-f$ $-x \geqslant N-1$ and $d-f-x \geqslant j+k-e+1$ by 3.4 ; in particular W spans H. By 2.2 we may deform E to E^{\prime}, W to W^{\prime} with $r_{E^{\prime}}(n-1)$ surjective, $r_{W^{\prime} \cap\left(E^{\prime} \cap H\right), H}(n)$ surjective and $\operatorname{card}\left(E^{\prime} \cap W^{\prime}\right)=1+k-e+j$. Note that $W^{\prime} \cup E^{\prime} \in Z(d, g ; N)$. As in case A) we prove the surjectivity of $r_{E^{\prime} \cup W^{\prime}}(n)$.

Case (C): $k>e, p<k-e$. Note that we have $p=g=g^{\prime}$ because by 2.3 we cannot have $f \leqslant 2 p+N+1 \leqslant 2 n-5+N$; hence $f=d^{\prime}$. By a particular case of the main result of [4] there exists $F \subset \mathbb{P}^{N}, F$ disjoint union of a rational curve T of degree $f-(k-e-g)$ and $(k-e-g)$ lines with $r_{F}(n-1)$ surjective. By 3.4(c) we may find a curve W contained in a hyperplane H, W rational and connected, $\operatorname{deg} W=d^{\prime \prime}$, with $r_{W, H}(n)$ surjective, W intersecting every connected component of F and intersecting T exactly at $1+g$ points. We conclude as in case (A).

Case $(D): k \leqslant e, d-f \leqslant g-p$. Since $d-f \geqslant 2(g-p)-N-2$, we have $d-f \leqslant g-p \leqslant N+2$. If $g^{\prime \prime} \neq 0$, we have $d^{\prime} \leqslant 2 g^{\prime}$ and $d-f \geqslant d^{\prime \prime} \geqslant 2 g^{\prime \prime}$ -1 , hence $g^{\prime \prime} \leqslant(N+3) / 2$. First assume $g^{\prime \prime} \geqslant 2$. We take $E \in$ $Z\left(d^{\prime}, g^{\prime} ; N\right), E$ intersecting transversally a hyperplane H, and a connected elliptic curve $W \subset H$, with deg $W=d^{\prime \prime}$ and $\operatorname{card}(E \cap W)=g^{\prime \prime}$. This is possible because $d^{\prime \prime} \geqslant 2 g^{\prime \prime}-1 \geqslant 3$. It is sufficient to prove that we may find E and W as above with $r_{\mathrm{W} \cup(\mathrm{E} \cap \mathrm{H}), \mathrm{H}}(n)$ surjective. Set $u=\min \left(N, g^{\prime}\right)$. By [1] (as used in 1.1) we may find $C \in Z(u+N, u ; N)$ with $r_{C}(2)$ surjective. We may assue that C intersects transversally H. From the linear normality of C and the exact sequence

$$
0 \rightarrow \mathscr{g}_{C}(1) \rightarrow \mathscr{J}_{C}(2) \rightarrow J_{C \cap H, H}(2) \rightarrow 0
$$

we obtain that $r_{C \cap H, H}(2)$ is surjective. Now we take a hyperplane A of H containing exactly $g^{\prime \prime}$ points of $C \cap H$; this is possible because $g^{\prime \prime} \leqslant N-1$ for $N \geqslant 5$. In A we add an elliptic curve $W, \operatorname{deg}(W)=d^{\prime \prime}, W$ containing $g^{\prime \prime}$ points of $C \cap H$. We may assume $r_{W, A}(3)$ surjective (even if $d^{\prime \prime} \geqslant N$) by the inductive assumption. As in case A) we find that
$r_{W \cup(C \cap H), H}(3)$ is surjective. By 2.1 we may find $E \supset C$ with the properties we are looking for.

If $g^{\prime \prime} \leqslant 1$ we take as A a hyperplane of H containing $1+g^{\prime \prime}$ points of $C \cap H$ and we take in A a connected rational curve of degree $d^{\prime \prime}$ containing $1+g^{\prime \prime}$ points of C.

Case (E): $d-f \leqslant 5$. By case (D) we may assume $d-f \geqslant g-p+1$. We take a suitable $Y \in Z(f, p ; N)$ and we add in a hyperplane H a connected, rational curve of degree $d-f$ containing $g-p+1$ points of Y.
The proof of Lemma 3.1 is over.
Proof of Lemma 3.2: Since 1.1 works even in the injective range we may assume $n \geqslant 4$. Let s, s^{\prime} be the maximal integers with $0 \leqslant s \leqslant g, 0 \leqslant s^{\prime} \leqslant g$ and

$$
\begin{aligned}
& (n-2)(2 s+N)+1-s \leqslant\binom{ N+n-2}{N}+n-3 \\
& (n-2)\left(\max \left(s^{\prime}+N, 2 s^{\prime}-1\right)\right) \leqslant\binom{ N+n-2}{N}+n-3
\end{aligned}
$$

Let r, r^{\prime} be the only integers with $r \geqslant 2 s+N, r^{\prime} \geqslant \max \left(s^{\prime}+N, 2 s^{\prime}-1\right)$ and satisfying

$$
\begin{align*}
& \binom{N+n-2}{N} \leqslant(n-2) r+1-s \leqslant\binom{ N+n-2}{N}+n-3 \tag{5}\\
& \binom{N+n-2}{N} \leqslant(n-2) r^{\prime}+1-s^{\prime} \leqslant\binom{ N+n-2}{N}+n-3 \tag{6}
\end{align*}
$$

We have $s \leqslant s^{\prime}, r \leqslant r^{\prime}<d$ because (d, g) has critical value n. If $s<g$ we have $r \leqslant 2 s+N+1$ by the maximality of s. Hence $d-r \geqslant 2(g-s)$ $-N-2$. Set $x^{\prime}=\min (g-s,[(d-r+1) / 2])$ and $j^{\prime}=g-s-x$; we have $j^{\prime} \leqslant(N+3) / 2$. From the definitions of h and i we find

$$
\begin{equation*}
(n-1)(d-r)+1-(g-s)+r-1+h-i=\binom{N+n-2}{N-1} \tag{7}
\end{equation*}
$$

We need the following numerical lemmas.
Sublemma 3.5: If $N \geqslant 5$ and $n \geqslant 4$ we have $r \geqslant 2 n+N-5$.
Proof: We have

$$
(n-2)(2 n+N-5) \leqslant\binom{ N+n-2}{N}
$$

Sublemma 3.6: Fix $N \geqslant 5, n \geqslant 4$. We have $d-r \geqslant g-s+n-3$ and $d-r \geqslant 6$.

Proof: Assume $d-r \leqslant g-s+n-4$. Then (7) gives a contradiction if $(N, n) \neq(5,4)$. If $N=5, n=4$, by definition we find $s \leqslant 3$ and $r \leqslant 12$. Hence (7) gives $11 \geqslant d-r \geqslant g-s$. We obtain $d>2 g-1$, contradiction. The last part is similar.

Let H be a hyperplane of \mathbb{P}^{N}. As in the proof of 3.1 we distinguish a few cases.

Case (A): $h \leqslant i$. We take $X \in Z(r, s ; N)$ with $r_{X}(n-2)$ injective. As in the corresponding case of 3.1 we may find $W \in Z\left(d-r, x^{\prime} ; N-1\right)$, $W \subset H$, with $r_{W, H}(n)$ of maximal rank and $\operatorname{card}(W \cap X)=1+j^{\prime}$ (use 3.5, 3.6). Since $h \leqslant i$ we may deform $W \cup X$ to $W^{\prime} \cup X^{\prime}$ with $r_{W^{\prime} \cup X^{\prime}}(n$ $-1)$ injective.

Case (B): $h>i, s \geqslant n-2-n+i$. Set $m=r-1, m^{\prime}=s-(n-2-h+i)$. Take $Y \in Z\left(m, m^{\prime} ; N\right)$ with $r_{Y}(n-2)$ injective. By 3.6 we may find $W \in Z\left(d-m, x^{\prime} ; N-1\right), W \subset H$, with $r_{W, H}(n-1)$ of maximal rank. We may apply to $Y \cup W$ the smoothing theorems for k-secants, $k=1,2$, because $m-m^{\prime} \geqslant N+1+(n-2-h+i)$.

Case (C): $h>i, s<n-2-h+i$. If $s<g$, then $r \leqslant 2 s+N+1$. By 3.5 we have $s=g$. By [4] we may find a curve Y, $\operatorname{deg} Y=r-1, Y$ disjoint union of a rational curve T, $\operatorname{deg} T=r-1-(n-2-s-h+i)$, and $n-2-s$ $-h+i$ disjoint lines, with $r_{Y}(n-2)$ injective. By 3.6 we may find $W \in Z(d-r+1,0 ; N-1), W \subset H$, with $r_{W, H}(n-1)$ of maximal rank, W intersecting every connected component of Y and intersecting T in exactly $1+g$ points.
The proofs of 3.2 and Theorem 1 are over.

§4. Proof of theorem 2

As a byproduct of the proof of Theorem 1, we will obtain a proof of Theorem 2. From this proof it would be possible to obtain an explicit bound for the functions e_{N}; however this bound is too weak in any explicit situation. Since if $d<2 g-1, d \geqslant g+N$, the genus of a triple $(d, g ; N)$ with critical value n goes to infinity as n goes to infinity, we may fix $(d, g ; N)$ with $N \geqslant 5, d \leqslant 2 g-2, d \geqslant g+N, d \leqslant 2 g-n+N+1$ and critical value $n \geqslant g-N$; it is sufficient to prove that a general element in $Z(d, g ; N)$ has maximal rank.

We use the notations of Section 3, but with these new bounds on d. First consider the surjective part as in 3.1. The definitions of $f, p, d^{\prime}, g^{\prime}$ make sense even now. Certainly we have $s \leqslant g^{\prime}<g$ because $d<2 g-1$.

Hence $f \leqslant 2 p+n+1$. Again we define $k, k^{\prime}, e, x, j, d^{\prime \prime}, g^{\prime \prime}$ with the same formulas. Now we have $d-f \geqslant 2(g-p)-n$ and $2 j \leqslant(n-3)$.

First assume $d-f \geqslant 4 n+1$. In case (A) we do not need the assumptions " $d-f \geqslant 6$ " and " $d-f \geqslant g-p+1$ "; hence we do not need cases (D) and (E). Indeed by the assumptions on $d-f$ and n, we may take $W \in Z(d-f, x ; N-1), W$ spanning a hyperplane H and containing $n+1 \geqslant 1+j$ general points of H. In case (B) we may take $W \in Z(d-$ $f, x ; N-1)$ intersecting Y at $1+(n-2-h+i)-s+g-x \leqslant 2 n+1$ points, because $d-f-x \geqslant 2 n$. Case (C) cannot occur now because $p<g$.

Now assume $d-f \leqslant 4 n$. Set $D=f-4 n-2, G=p-2 n-1$. We need two numerical lemmas.

Lemma 4.1: Assume $N \geqslant 5$ and $n \geqslant 11$. We have $p \geqslant 3 n+2$, hence $D \geqslant 2 n+2+N$.

Proof. If $p \leqslant 3 n$, we have $f \leqslant 6 n+N+1$ and (2) gives a contradiction.

Lemma 4.2: Assume $N \geqslant 5, n \geqslant 11$ and $d-f \leqslant 4 n$. Then $e \geqslant(4 n+2)(n-$ $1)+n-2$.

Proof: Use (2) and (4).
We repeat the construction of 3.1 substituting (f, g) with (D, G). By Lemma 4.2 we have $k+(4 n+2)(n-1) \leqslant e$ if $n \geqslant 11$, hence it is sufficient to consider case (A). Now we show what to change in the proof of 3.2 to obtain the injectivity part of Theorem 2 . We may define r and s using the same formulas. Now we have $s<g$ because $(2 g-1, g)$ has critical value at least n; now we have $d-r \geqslant 2(g-\dot{s})-n$.

If $d-r \geqslant 4 n+1$, we may copy the proof of 3.2 with the same modifications just given. We conclude using the following lemma.

Lemma 4.3: If $N \geqslant 5$ and $n \geqslant 11$, we have $d-r \geqslant 4 n+1$.
Proof: Assuming $d-r \leqslant 4 n$. Since

$$
r \leqslant\binom{ N+n-2}{N} /(n-3)
$$

the lemma follows from (6).

References

[1] E. Ballico and Ph. Ellia: On projective curves embedded by complete linear systems. Arch. Math. 43 (1984) 244-249.
[2] E. Ballico and Ph. Ellia: On postulation of curves in \mathbb{P}^{4}. Math. Z. (1985) 215-223.
[3] E. Ballico and Ph. Ellia: The maximal rank conjecture for non-special curves in \mathbb{P}^{3}. Invent. Math. (to appear).
[4] E. Ballico and Ph. Ellia: On the postulation of many disjoint rational curves in \mathbb{P}_{N}, $N \geqslant 4$. Boll. U.M.I. (to appear).
[5] R. Hartshorne and A. Hirschowitz: Droites and position général dans l'espace projectif. In Algebraic Geometry, Proceedings La Rabida, 1981. Lecture Notes in Math. (61, Springer-Verlag: 169-189 (1982).
[6] R. Hartshorne and A. Hirschowitz: Smoothing algebraic space curves, preprint Nice (1984).
[7] A. Hirschowitz: Sur la postulation générique des courbes rationelles. Acta Mat. 146 (1981) 209-230.
[8] D. Mumford: Lectures on curves on an algebraic surface. Ann. of Math. Studies 59, Princeton Univ. Press N.J. (1966).
[9] E. Sernesi: On the existence of certain families of curves. Inven. Mat. 75 (1984) 25-57.
(Oblatum 20-V-1985)
E. Ballico

Scuola Normale Superiore
I-56100 Pisa
Italy
Ph. Ellia
CNRS LA 168
Département de Mathématiques
Université de Nice
Parc Valrose
F-06034 Nice Cedex
France

