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If C is a smooth curve in PN a natural question to ask is the number of
hypersurfaces of degree k containing the curve C. This turns out to the
study of the natural map of restriction rC(k): H0(PN, OPN(k)) ~
H0(C, OC(k)). We say that C has maximal rank if for every k  1 rC(k)
has maximal rank as a map between vector spaces. In this paper we

prove the following theorem.

THEOREM 1: Fix integers N, d, g with N  3, g  0, d  max(2g - 1, g +
N). Then a general non degenerate embedding of degree d in P N of a
general curve of genus g has maximal rank.

The proof of Theorem 1 gives as a byproduct the following result.

THEOREM 2: Fix an integer N  3. There exists a function eN: N ~ N with
lim eN ( g ) = + 00 and with the following property: for all integers d, g

g- + 00

with g  0, d  2g - eN (g), a general embedding of degree d in P N of a
general curve of genus g has maximal rank.

Both theorems are particular cases of the maximal rank conjecture,
which states that a general embedding of a curve with general moduli has
maximal rank.

Previously we proved stronger results for N = 4 ([2]) and N = 3 ([3]).
We use in an essential way reducible curves and the general methods
introduced in [5] and [7]. The smoothing theorems we use were proved in
[9] and [6].

Notations

We work over an algebraically closed field. Fix a closed subscheme X of
a projective space K. Let rX,K(n): H0(K, OK(n)) ~ H0(X, OX(n)) be
the restriction map and let gX,K be the ideal sheaf of X in K. If

K = PN, we will write often rX(n) and gX instead of rX,K(n) and gX,K.
Fix integers d, g, N with N  3, g  0, d &#x3E; 0. Let Z( d, g; N) be the
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closure in the Hilbert scheme Hilb PN of the set of smooth, connected
curves C in PN with deg C = d, C of genus g, hl(C, (9c (1» = 0, and
spanning a linear space of dimension min(N, d - g). Obviously
Z( d, g; N ) is irreducible.

Fix a curve C and a line L in PN; L is a k-secant to C, k = 1, 2, if it
intersects C exactly at k points, all smooth points of C, and quasi-trans-
versally.

§1. Preliminaries

As in [7], [1], [2], [3] we use in an essential way the existence of suitable
reducible curves in Z(d, g; N). Fix a curve X ~ Z(d, g; N) with at
most ordinary nodes as singularities and h1(X, NX) = 0, where NX is the
normal bundle of X in PN and a line L which is k-secant to X with
k = 1 or 2. If d  g + N and k = 1, assume that L is not contained in the
linear space spanned by X. Then X U L is in Z(d + 1, g + k - 1; N)
([9] or [6]).

Fix integers d, g, N with g  0, N  3 and d  g + N. If d = N, we
say that ( N, 0; N ) has critical value 1. If d &#x3E; N, let n be the first integer
m  2 such that

in this case we say that (d, g; N ) (or ( d, g) for short) has critical value
n. Note that if (1) is satisfied, then

because (1) implies

and the inequality we have to check follows from the inequality:

We say that the surjective part of Theorem 1 holds in Pl for a datum
(d, g) with critical value n if for a general Y ~ Z(d, g; N ) the restric-
tion map rY(n) is surjective. We say that the injective part of Theorem 1
holds for the datum (d, g; N) with critical value n if for a general
X E Z(d, g; N) the map rX(n - 1) is injective. By Castelnuovo’s lemma
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([8], p. 99) Theorem 1 holds if for all data the injective and the surjective
parts of Theorem 1 are true. Theorem 1 is trivial for all data with critical
value 1. The injective part of Theorem 1 is trivial for all data with critical
value 2.

In 1.1 we show in particular that the surjective part of Theorem 1 is
true for all data with critical value 2. The next result can be considered
as a partial extension to non-complete linear systems of [1].

PROPOSITION 1.1: Fix integers d, g, N with N  3, g  0, d  g + N and
2d + 1 - g  (N + 1)( N + 2)/2. Then a general element of Z(d, g; N)
has maximal rank.

PROOF: If d = g + N, the result was proved in [1]. Assume d &#x3E; g + N and
the result true for (d - 1, g; N ). Fix X ~ Z(d - 1, g; N ) with maximal
rank, hence with rX(2) surjective. It is sufficient to prove that for a

general line L intersecting X, we have dim Ker rX~L(2) 
dim Ker rX(2) - 2. We may assume X irreducible. Fix a point P which
is not a base point of HO(PN, gX(2)). If L is a line containing P we
have dim Ker rX~ L(2)  dim Ker rX(2) - 1. Fix a quadric Q containing
X and P. If L e Q, then dim Ker rX~ L(2)  dim Ker rx u {P} (2): we
won. If P’ is a point of Q, P’ near P, then P’ is not a base point of
H0(PN, gX(2)). Hence we won if for a f ixed A E X and a general P’ in
Q, the line [AP’] is not contained in Q. If for all such P’, [AP’] is

contained in Q, then Q is a cone with vertex A. But since X is

non-degenerate, Q cannot be a cone with vertex containing X. D

§2. Intersection with a hyperplane

The following easy lemma is the heart of this paper.

LEMMA 2.1: Fix N  3, n  1. Let C ~ PN be a nondegenerate, irreducible
curve and H c P N a hyperplane. Fix a vector subspace V of HO(H, (9H(n».
For a curve A in PN, A intersecting transversally H, set h(A) := {f ~
V : f ( P ) = 0 for each P in A ~ H}. Then for a general reducible conic S
such that each of the irreducible components of S intersects C, we have
dimV(S) = max(0, dim V - 2).

PROOF: For a general line intersecting C, we have dim V(L) =
max(0, dim V - 1). Hence we may assume dim V  2. Suppose that the
lemma is false. Then for every line R intersecting C and L but not
contained in H, V(L) has R ~ H in the base locus. But if R is near to L,
R ~ H is not in the base locus of V, hence L ~ H is in the base locus of
V(R) and we have V(R) = V(L). For a general line B intersecting C
and R we have V(B) = V(R). In a finite number of steps we obtain that



88

V(L) has H in the base locus, because C is not degenerate: contradic-
tion. D

This lemma is the key difference between this paper and [2]. Now the
proofs are easier and shorter, but the result weaker. To show how we will
use this lemma we state an immediate Corollary of 2.1.

COROLLARY 2.2: Fix non negative integers n, d, g, x, n, j with N  3,
n  1, x  d. Fix a hyperplane H in PN and a curve W in H with rW,H(n)
surjective. Let j be the dimension of the linear space spanned by W; if
j  N - 2 assume x  j + 1 and set j’ = j; otherwise set j’ = j + 1. Assume
d  2 g + max(O, x - j’ - 1). Then there exists Y E Z(d, g; N), Y inter-
secting transversally H, with card (Y~ W) = x and rWU(YnH),H(n) of
maximal rank. 

PROOF: Note that Aut(H) acts transitively on the set of N + 1 ordered
points of H such that any N of them span H. Hence the case d = N is
trivial and we assume d &#x3E; N. For the same reason there is a curve
C E Z(N + 1, min(l, g); N) intersecting H transversally with card( C ~
W) = min(N + 1, x) and rWU(CnH),H(n) of maximal rank. Then we
take max(O, N + 1 - x) lines LI, each LI intersecting both C and W.
Then we apply 2.1. ~

§3. Proof of ’Theorem 1

In section 1 we proved Theorem 1 for curves with critical value at most
2. Since Theorem 1 is known to be true in P3 and p4 ([3],[2]), it is

sufficient to prove the following two lemmas.

LEMMA 3.1 : Fix N  5, n  3. Assume that theorem 1 hold in ps for all s
with 3  s  N - 1 and that theorem 1 holds in P N for all data with critical
value  n. Then the surjectivity part of theorem 1 holds in p N for all data
with critical value n.

LEMMA 3.2: Fix N  5, n  3. Assume that theorem 1 holds in ps for all s
with 3  s  N - 1 and that theorem 1 holds in p N for all data with critical
value  n. Then the injectivity part of theorem 1 holds in P 

N for all data
with critical value n.

In this section we prove 3.1 and 3.2, hence Theorem 1. Fix a datum

(d, g) with d  max(g + N, 2g - 1) and critical value n  3 in PN,
N  5.
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PROOF oF LEMMA 3.1: Fix natural numbers p, g’ with p  g, g’  g and
maximal with the following properties

The integers p, g’ exist because (N, 0; N) has critical value 1  n - 1.
Define integers f  2 p + N, d’  max(g’ + N, 2 g’ - 1) by the relations

Note that p  g’ and f  d’  d because (d, g) has critical value n. Set
d"=d-d’, g" = g - g’, x=min([(d-f+l)/2], g-p), j = g - p - x,

e = (N + n N ) - nd - 1 + g,

By (2) and (3) we have 0  k  n - 2 and 0  k’  n - 2. By the defini-
tion of k and e we obtain

By the maximality of p we have either p = g or f  2p + N + 1, hence
d - f  2(g - p) - N - 2. Hence we have j  (N + 3)/2. By the maxi-
mality of g’ we have either g’ = g or d’  2 g’ or g’ + N  2g’ - 1 and
d’  g’ + N + 1. Assume g’ + N  2 g’ - 1, hence g’  N + 1. Since k’ 
n - 2 we obtain

which is false for N  5, n  3. Hence we have d"  2g" - 1.

We need two numerical lemmas:

SUBLEMMA 3.3 : If N  5 and n j 3, we have f j 2 n - 4 + N.
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PROOF: Since

the lemma is trivial. D

SUBLEMMA 3.4: Assume k &#x3E; e. Then

(a) d - f  2n - 1 + N if N &#x3E; 5, n  4 or N  6, n  3.
(b) d - f  9 if N = 5, n = 3 and if d - f = 9, then g - p  4.
(c) d"  n - 1; d - f  2N - 2, hence d - f  x + N - 1.

PROOF: (a) By (2) we have

Then (4) gives the contradiction if N  5, n  6 or N  6, n = 5 or

N  7, n = 4 or N  12, n = 3. The remaining cases for (a) and (b) have
to be checked directly. For example assume N = 5, n = 3. By the
definitions of p and f we obtain p  3 and f  11. From (4) we get
d - f  9 and if d - f = 9, then g - p  4. Part (c) is easier. 0

We distinguish 5 cases.
Case (A): k  e, d - f  g - p + 1, d - f  6. Take a hyperplane H. We
claim the existence of W ~ H, W ~ Z(d - f, x; N - 1) with rW,H(n)
surjective. Indeed since d - f - x  3, we have Z( d - f, x; N - 1) =1= 0. If
a general W ~ Z(d - f, x; N - 1) spans H, the claim follows from the
inductive assumption, (4) and the inequality f - 1  j which holds by 3.3.
If a general W E Z(d - f, x; N - 1) does not span H, it spans a linear
space of dimension d - f - x  3 and we may use the inductive assump-
tion and the inequality

which is true if n  3, d - f  6.
We may assume that a curve W as in the claim contains j + 1 general

points of H because d - f - x  j + 1. By the inductive assumption, the
inequality f - p  N + j + 1 and Corollary 2.2 we may find X E

Z( f , p; N), X intersecting transversally H, with card(X ~ W) = j + 1
and rW~(X~H),H(n) surjective. Since W can be degenerate to a suitable
union of lines, X U W is a smooth point of Hilb PN and W U W E
Z(d, g ; N).

Take A c PNBH, B ~ H, with card( A ) = k, card( B ) = e - k, A and
B general. It is sufficient to prove that rX~W~A~B(n) is injective, hence
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bijective. Take f E H0(PN, gX~W~A~B(n)). The restriction of h to H
vanishes on W~(X~H)~B, hence vanishes identically. Thus h is

divided by the equation z of H. Since h/z vanishes on X U A, we have
h = 0.

Case (B): k &#x3E; e, p  k - e. Assume d - f  g - p + n - 2. Since d - f 
2( g - p ) - N - 2, we find d - f  2n - 2 + N, contradicting 3.4. We take
a general E ~ Z(f, p - k + e; N) with rE(n - 1) surjective, hence

h0(PN, /E(n - 1)) = e. Note that by 3.3 and a degeneration of E to a
union of lines, we may assume that E contains 1 + k - e + j general
points of a hyperplane H. We may take W E Z(d - f, x; N - 1), W c H,
with rW,H(n) surjective and card(W~E) = 1 + k - e + j because d - f
- x &#x3E; N - 1 and d - f - x  j + k - e + 1 by 3.4; in particular W spans
H. By 2.2 we may deform E to E’, W to W’ with rE, ( n - 1) surjective,
rW’~(E’~H),H(n) surjective and card(E’~ W’ ) = 1 + k - e + j. Note that
W’~E’ ~ Z(d, g; N). As in case A) we prove the surjectivity of

rE, u w, ( n ).

Case (C): k &#x3E; e, p  k - e. Note that we have p = g = g’ because by 2.3
we cannot have f  2p + N + 1  2n - 5 + N; hence f = d’. By a par-
ticular case of the main result of [4] there exists F c P N, F disjoint union
of a rational curve T of degree f - ( k - e - g) and (k - e - g) lines with
rF(n - 1) surjective. By 3.4(c) we may find a curve W contained in a
hyperplane H, W rational and connected, deg W = d", with rW,H(n)
surjective, W intersecting every connected component of F and inter-
secting T exactly at 1 + g points. We conclude as in case (A).

Case (D): k  e, d - f  g - p. Since d - f  2(g - p) - N - 2, we have
d - f  g - p  N + 2. If g" ~ 0, we have d’  2g’ and d - f  d"  2g"
- 1, hence g"  ( N + 3)/2. First assume g"  2. We take E E

Z(d’, g’; N), E intersecting transversally a hyperplane H, and a con-
nected elliptic curve W c H, with deg W = d" and card(E ~ W ) = g".
This is possible because d"  2g" - 1  3. It is sufficient to prove that
we may find E and W as above with rW~(E~H),H(n) surjective. Set
u = min( N, g’ ). By [1] (as used in 1.1) we may find C E Z( u + N, u; N )
with rc(2) surjective. We may assue that C intersects transversally H.
From the linear normality of C and the exact sequence

we obtain that r en H H(2) is surjective. Now we take a hyperplane A of
H containing exactly g" points of C ~ H; this is possible because
g"  N - 1 for N  5. In A we add an elliptic curve W, deg( W ) = d ", W
containing g" points of C ~ H. We may assume rW, A (3) surjective (even
if d"  N) by the inductive assumption. As in case A) we find that
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rW~(C~H),H(3) is surjective. By 2.1 we may find E ~ C with the proper-
ties we are looking for.

If g"  1 we take as A a hyperplane of H containing 1 + g" points of
C ~ H and we take in A a connected rational curve of degree d "

containing 1 + g" points of C.

Case (E): d - f  5. By case (D) we may assume d - f  g - p + 1. We
take a suitable Y ~ Z(f, p; N) and we add in a hyperplane H a
connected, rational curve of degree d - f containing g - p + 1 points of
Y.

The proof of Lemma 3.1 is over.

PROOF OF LEMMA 3.2: Since 1.1 works even in the injective range we may
assume n  4. Let s, s’ be the maximal integers with 0  s  g, 0  s’  g
and

Let r, r’ be the only integers with r  2 s + N, r’  max(s’ + N, 2 s’ - 1)
and satisfying

We have s  s’, r  r’  d because (d, g ) has critical value n. If s  g
we have r  2s + N + 1 by the maximality of s. Hence d - r  2(g - s)
- N - 2. Set x’ = min(g - s, [(d - r + 1)/2]) and j’ = g - s - x ; we have
j’  ( N + 3)/2. From the definitions of h and i we find

We need the following numerical lemmas.

SUBLEMMA 3.5: If N  5 and n à 4 we have r  2 n + N - 5.

PROOF: We have
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SUBLEMMA 3.6: Fix N  5, n  4. We have d - r  g - s + n - 3 and
d - r  6.

PROOF: Assume d - r  g - s + n - 4. Then (7) gives a contradiction if
( N, n) ~ (5, 4). If N = 5, n = 4, by definition we find s  3 and r  12.
Hence (7) gives 11  d - r  g - s. We obtain d &#x3E; 2g - 1, contradiction.
The last part is similar. D

Let H be a hyperplane of PN. As in the proof of 3.1 we distinguish a
few cases.

Case (A): h  i. We take X E Z(r, s; N ) with rX(n - 2) injective. As in
the corresponding case of 3.1 we may find W ~ Z(d - r, x’; N - 1),
W c H, with rW,H(n) of maximal rank and card(W n X) = 1 + j’ (use
3.5, 3.6). Since h  i we may deform W U X to W’ U X’ with rw’u x,(n
- 1) injective.

Case(B): h &#x3E; i, s  n - 2 - n + i. Set m = r - 1, m’=s-(n-2-h+i).
Take Y ~ Z(m, m’; N) with rY(n - 2) injective. By 3.6 we may find
W E Z( d - m, x’; N - 1), W c H, with rW, H (n - 1) of maximal rank.
We may apply to Y ~ W the smoothing theorems for k-secants, k = 1, 2,
because m - m’  N + 1 + (n - 2 - h + i).

Case (C): h &#x3E; 1, s  n - 2 - h + 1. If s  g, then r  2s + N + 1 . By 3.5 we
have s = g. By [4] we may find a curve Y, deg Y = r - 1, Y disjoint union
of a rational curve T, deg T = r - 1 - (n - 2 - s - h + i), and n - 2 - s
- h + i disjoint lines, with rY(n - 2) injective. By 3.6 we may find
W E Z( d - r + 1, 0; N - 1), W c H, with rW,H(n - 1) of maximal rank,
W intersecting every connected component of Y and intersecting T in
exactly 1 + g points.
The proofs of 3.2 and Theorem 1 are over.

§4. Proof of theorem 2

As a byproduct of the proof of Theorem 1, we will obtain a proof of
Theorem 2. From this proof it would be possible to obtain an explicit
bound for the functions eN ; however this bound is too weak in any
explicit situation. Since if d  2 g - 1, d  g + N, the genus of a triple
( d, g; N) with critical value n goes to infinity as n goes to infinity, we
mayfix(d, g; N) with N  5, d  2g - 2, d  g + N, d  2g - n + N + 1
and critical value n  g - N; it is sufficient to prove that a general
element in Z( d, g; N ) has maximal rank.
We use the notations of Section 3, but with these new bounds on d.

First consider the surjective part as in 3.1. The definitions of f, p, d’, g’
make sense even now. Certainly we have s  g’  g because d  2 g - 1.
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Hence f  2p + n + 1. Again we define k, k’, e, x, j, d", g" with the
same formulas. Now we have d - f  2(g - p) - n and 2j  ( n - 3).

First assume d - f  4n + 1. In case (A) we do not need the assump-
tions "d - f  6" and "d - f  g - p + 1"; hence we do not need cases
(D) and (E). Indeed by the assumptions on d - f and n, we may take
W ~ Z(d - f, x; N - 1), W spanning a hyperplane H and containing
n + 1  1 + j general points of H. In case (B) we may take W E Z( d -
f, x; N - 1) intersecting Y at 1 + ( n - 2 - h + i) - s + g - x  2n + 1
points, because d - f - x  2n. Case (C) cannot occur now because
p  g.

Now assume d - f  4n. Set D = f - 4n - 2, G = p - 2n - 1. We need
two numerical lemmas.

LEMMA 4.1: Assume N  5 and n  11. We have p  3n + 2, hence

D  2n + 2 + N.

PROOF. If p  3n, we have f  6n + N + 1 and (2) gives a contradiction.
n

LEMMA 4.2: Assume N  5, n  11 and d - f  4n. Then e  (4n + 2)(n -
1) + n - 2.

PROOF: Use (2) and (4). D

We repeat the construction of 3.1 substituting ( f , g) with (D, G). By
Lemma 4.2 we have k + (4n + 2)(n - 1)  e if n  11, hence it is suffi-
cient to consider case (A). Now we show what to change in the proof of
3.2 to obtain the injectivity part of Theorem 2. We may define r and s
using the same formulas. Now we have s  g because (2g - 1, g) has
critical value at least n; now we have d - r  2(g - s) - n.

If d - r  4n + 1, we may copy the proof of 3.2 with the same
modifications just given. We conclude using the following lemma.

LEMMA 4.3: If N  5 and n  11, we have d - r  4n + 1.

PROOF: Assuming d - r  4n. Since

the lemma follows from (6). D
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