Compositio Mathematica

M. G. M. Van Doorn
 Classification of \mathbb{D}-modules with regular singularities along normal crossings

Compositio Mathematica, tome 60, $\mathrm{n}^{\circ} 1$ (1986), p. 19-32
http://www.numdam.org/item?id=CM_1986__60_1_19_0
© Foundation Compositio Mathematica, 1986, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

CLASSIFICATION OF \mathscr{D}-MODULES WITH REGULAR SINGULARITIES ALONG NORMAL CROSSINGS

M.G.M. van Doorn

To classify regular holonomic \mathscr{D}_{1}-modules Boutet de Monvel [1] uses pairs of finite dimensional \mathbb{C}-vector spaces related by certain \mathbb{C}-linear maps.

Galligo, Granger and Maisonobe [2] obtain, using the Riemann-Hilbert correspondene, a classification of holonomic \mathscr{D}_{n}-modules with regular singularities along $x_{1} \ldots x_{n}$ by means of 2^{n}-tuples of \mathbb{C}-vector spaces provided with a set of linear maps. We mention that also Deligne (not published) gets a classification of regular holonomic \mathscr{D}_{1}-modules.

The aim of this paper is to get such a classification in a direct way. The idea is roughly as follows. Denote by $\tilde{\mathscr{C}}_{1}$ the category whose objects are diagrams $E \stackrel{u}{\rightleftarrows} F$ of finite dimensional \mathbb{C}-vector spaces such that $\left\{\lambda \mid \lambda\right.$ eigenvalue ${ }^{v}$ of $\left.v u\right\} \subseteq\{\alpha \in \mathbb{C} \mid 0 \leqslant \operatorname{Re} \alpha<1\}$. We construct \mathscr{D}_{1} modules \mathscr{F} ' ("Nilsson class functions"), \mathscr{F} " ("micro Nilsson class functions") and \mathscr{D}_{1}-linear maps $\mathscr{U}: \mathscr{F}^{\prime} \rightarrow \mathscr{F} "$ ("canonical map"), \mathscr{V} : $\mathscr{F} " \rightarrow \mathscr{F}^{\prime} \quad$ ("variation"). For $M \in \operatorname{Mod}_{l}\left(\mathscr{D}_{1}\right)_{h r}$, i.e. M is a regular holonomic left \mathscr{D}_{1}-module, we consider the solutions of M with values in $\mathscr{F}^{\prime}\left(\right.$ resp. $\left.\mathscr{F}^{\prime \prime}\right)$, i.e. $\operatorname{Hom}_{\mathscr{C}_{1}}\left(M, \mathscr{F}^{\prime}\right)$ (resp. $\operatorname{Hom}_{\mathscr{D}_{1}}\left(M, \mathscr{F}^{\prime \prime}\right)$). In this way we get an object in $\tilde{\mathscr{C}}_{1}$, i.e. a functor $S: \operatorname{Mod}_{\ell}\left(\mathscr{D}_{1}\right)_{h r} \rightarrow \tilde{\mathscr{C}}_{1}$. In order to prove that S defines an equivalence of categories we exhibit an inverse functor T of S. As a matter of fact $T(E \rightleftarrows F)=\operatorname{Hom}\left(E \rightleftarrows F, \mathscr{F}^{\prime} \rightleftarrows \mathscr{F}^{\prime \prime}\right)$. The proof that S and T are inverse to each other reduces to a study of what happens to simple objects of both categories.

The generalization to several variables is more or less straightforward, but the proofs get more involved. In proving statements we use induction on n to step down to the case $n=1$ (or $n=0$ if you wish). This causes some technical problems (cf. Lemma 4). At the end the proof of the equivalence (Proposition 3) becomes a formal exercise.

Notations: Let $n \in \mathbb{N}$. Write $\partial_{i}=\frac{\partial}{\partial x_{i}}, i \in\{1, \ldots, n\}$. $\mathcal{O}=\mathcal{O}_{n}=$ $\mathbb{C}\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ (resp. $\left.\mathbb{C}\left\{x_{1}, \ldots, x_{n}\right\}\right) ; \mathscr{D}_{n}=\mathscr{O}_{n}\left[\partial_{1}, \ldots, \partial_{n}\right] . \mathscr{O}_{(n)}=\mathbb{C}\left[\left[x_{n}\right]\right]$ (resp. $\mathbb{C}\left\{x_{n}\right\}$); $\mathscr{D}_{(n)}=\mathcal{O}_{(n)}\left[\partial_{n}\right]$.
Let \mathscr{D} be \mathscr{D}_{n} or $\mathscr{D}_{(n)} . \operatorname{Mod}_{\ell}(\mathscr{D})$ denotes the category of left \mathscr{D}-modules.

If $P \in \mathscr{D}$ the left \mathscr{D}-module $\mathscr{D} / \mathscr{D} P$ is denoted by $\mathscr{D} /(P)$. If $\mathrm{M} \in$ $\operatorname{Mod}_{P_{1}}(\mathscr{D})$ and $P \in \mathscr{D}$, left multiplication with P on M is denoted by $M \xrightarrow{P .} M$.
$J=\{\alpha \in \mathbb{C} \mid 0 \leqslant \operatorname{Re} \alpha<1\}$.
Throughout the paper we assume that the reader has some familiarity with the language of \mathscr{D}-modules. He may consult for example [6], [7].

Let $M, N \in \operatorname{Mod}_{\ell}\left(\mathscr{D}_{n}\right)$. Then the tensorproduct $M \otimes N$ has in natural way a left \mathscr{D}_{n}-module structure, namely given by $\partial_{i}(m \otimes n)=$ $\partial_{i}(m) \otimes n+m \otimes \partial_{l}(n)$, all i. Let $M \in \operatorname{Mod}_{\ell}\left(\mathscr{D}_{n-1}\right) \cdot \mathcal{O} \otimes M$ has a left \mathscr{D}_{n}-module structure given by $\partial_{l}(a \otimes m)=\partial_{i}(a) \otimes m+a \otimes \partial_{l}(m)$, all $i \in$ $\{1, \ldots, n-1\}, \partial_{n}(a \otimes m)=\partial_{n}(a) \otimes m$ (cf [6], Ch. 2, 12.2).
In a similar way $\mathcal{O} \otimes N$ has a left \mathscr{D}_{n}-module structure if $N \in$ $\operatorname{Mod}_{\ell}\left(\mathscr{D}_{(n)}\right)$. If $Q_{i} \in \mathscr{D}_{(i)}^{\mathcal{O}_{(n)}}$, the following is easily verified

$$
\begin{aligned}
& \left(\underset{\mathcal{O}_{n-1}}{\mathcal{\otimes}} \mathscr{D}_{n-1} /\left(Q_{1}, \ldots, Q_{n-1}\right)\right) \underset{\mathcal{O}}{\otimes}\left(\underset{\mathcal{O}_{(n)}}{\otimes} \mathscr{D}_{(n)} /\left(Q_{n}\right)\right) \\
& \quad \cong \mathscr{D} /\left(Q_{1}, \ldots, Q_{n}\right) .
\end{aligned}
$$

§1. The operation \mathscr{C}

In order to state the results in a neat way we introduce some general notions. Let \mathscr{A} be a category. $\mathscr{C}(\mathscr{A})$ is the category whose objects are quadruples (E, F, u, v), where E, F are objects of $\mathscr{A}, u \in \operatorname{Hom}_{\mathscr{A}}(E, F)$ and $v \in \operatorname{Hom}_{\mathscr{A}}(F, E)$. If (E, F, u, v) and $\left(E^{\prime}, F^{\prime}, u^{\prime}, v^{\prime}\right)$ belong to $\mathscr{C}(\mathscr{A})$, then

$$
\begin{aligned}
& \operatorname{Hom}_{\mathscr{C}(\mathscr{A})}\left((E, F, u, v),\left(E^{\prime}, F^{\prime}, u^{\prime}, v^{\prime}\right)\right) \\
& =\left\{(f, g) \in \operatorname{Hom}_{\mathscr{A}}\left(E, E^{\prime}\right)\right. \\
& \left.\quad \times \operatorname{Hom}_{\mathscr{A}}\left(F, F^{\prime}\right) \mid u^{\prime} f=g u, f v=v^{\prime} g\right\} .
\end{aligned}
$$

Hence $\mathscr{C}(\mathscr{A})$ is the category of diagrams in \mathscr{A} over the scheme " $\cdot \rightleftarrows \cdot "$. Cf. Grothendieck [3] and Mitchell [4], Ch. II §1. $\mathscr{C}(\mathscr{A})$ may be seen as a functor category and as such it inherits the properties of \mathscr{A}. In particular $\mathscr{C}(\mathscr{A})$ is an abelian category if \mathscr{A} is abelian. We have two evaluation functors e_{0} and e_{1} from $\mathscr{C}(\mathscr{A})$ to \mathscr{A}. If $X=(E, F, u, v) \in \mathscr{C}(\mathscr{A})$ then $e_{0}(X)=E, e_{1}(X)=F$. If \mathscr{A} is an abelian category these functors are exact and collectively faithful. Hence in particular: $X^{\prime} \rightarrow X \rightarrow X^{\prime \prime}$ is
exact in $\mathscr{C}(\mathscr{A})$ if and only if $e_{l}\left(X^{\prime}\right) \rightarrow e_{i}(X) \rightarrow e_{i}\left(X^{\prime \prime}\right)$ is exact in \mathscr{A}, all $i \in\{0,1\}$. Notice that we have natural transformations $u: e_{0} \rightarrow e_{1}, v$: $e_{1} \rightarrow e_{0}$. If $F: \mathscr{A} \rightarrow \mathscr{B}$ is a functor between categories \mathscr{A} and \mathscr{B}, there is obviously an induced functor $\mathscr{C}(F): \mathscr{C}(\mathscr{A}) \rightarrow \mathscr{C}(\mathscr{B})$. Clearly if \mathscr{A} and \mathscr{B} are additive and F is an additive functor, then $\mathscr{C}(F)$ is additive. Exactness properties of F are transferred to $\mathscr{C}(F)$. Furthermore, if G : $\mathscr{A} \rightarrow \mathscr{B}$ is another functor and $\eta: F \rightarrow G$ a natural transformation (resp. equivalence), there is a natural transformation (resp. equivalence) $\mathscr{C}(\eta)$: $\mathscr{C}(F) \rightarrow \mathscr{C}(G)$.

Let \mathscr{A} be a category. For all $n \in \mathbb{N}$ we define inductively

$$
\begin{aligned}
& \mathscr{C}_{0}(\mathscr{A}):=\mathscr{A} \\
& \mathscr{C}_{n+1}(\mathscr{A}):=\mathscr{C}\left(\mathscr{C}_{n}(\mathscr{A})\right) .
\end{aligned}
$$

For each $n \in \mathbb{N}$ we have 2^{n} evaluation functors defined inductively as follows: for all $i_{1}, \ldots, i_{n+1} \in\{0,1\}$

$$
e_{i_{1} \ldots l_{n+1}}=e_{t_{1} \ldots t_{n}} \circ e_{t_{n+1}} .
$$

If $E \in \mathscr{C}_{n}(\mathscr{A})$ and $i_{1}, \ldots, i_{n} \in\{0,1\}$ we mostly write $E\left(i_{1} \ldots i_{n}\right)$ or $E_{i_{1} \ldots i_{n}}$ instead of $e_{i_{1} \ldots i_{n}}(E)$.
For every $j \in\{1, \ldots, n\}$ and all $i_{1}, \ldots, i_{j-1}, i_{j+1}, \ldots, i_{n} \in\{0,1\}$ we get \mathscr{A}-morphisms

$$
\begin{aligned}
& E\left(i_{1} \ldots i_{j-1} 0 i_{j+1} \ldots i_{n}\right) \rightarrow E\left(i_{1} \ldots i_{j-1} 1 i_{\jmath+1} \ldots i_{n}\right) \\
& E\left(i_{1} \ldots i_{\jmath-1} 1 i_{\jmath+1} \ldots i_{n}\right) \rightarrow E\left(i_{1} \ldots i_{\jmath-1} 0 i_{\jmath+1} \ldots i_{n}\right)
\end{aligned}
$$

It is easily seen that the category $\mathscr{C}_{n}(\mathscr{A})$ can be identified with the category whose objects are 2^{n}-tuples $\left(E\left(i_{1} \ldots i_{n}\right) ; i_{1}, \ldots, i_{n} \in\{0,1\}\right)$ of objects of \mathscr{A}, connected by \mathscr{A}-morphisms, for all $j \in\{1, \ldots, n\}$, all $i_{1}, \ldots i_{n} \in\{0,1\}$,

$$
u: E(-0-) \rightarrow E(-1-), \quad v: E(-1-) \rightarrow E(-0-),
$$

where $E\left(-r_{-}\right)$stands for $E\left(i_{1} \ldots i_{J-1} r i_{j+1} \ldots i_{n}\right)$. The following diagrams have to commute

$E_{00} \xrightarrow{u} E_{01}$	$E_{00} \stackrel{v}{\leftarrow} E_{01}$	$E_{00} \xrightarrow{u} E_{01}$	$E_{00} \stackrel{v}{\leftarrow} E_{01}$
$\downarrow u \quad u \downarrow$	$\uparrow v v \uparrow$	$\uparrow v u \uparrow$	$\downarrow u \quad u \downarrow$
$E_{10} \xrightarrow{u} E_{11}$	$E_{10} \stackrel{v}{\leftarrow} E_{11}$	$E_{10} \xrightarrow{u} E_{11}$	$E_{10} \stackrel{v}{\leftarrow} E_{11}$

where for simplicity we have written $E_{r s}$ instead of

$$
E\left(i_{1} \ldots i_{j-1} r i_{j+1} \ldots i_{k-1} s i_{k+1} \ldots i_{n}\right), \quad \text { all } r, s \in\{0,1\}
$$

Remark: Let A be a ring and let $\operatorname{Mod}_{\ell}(A)$ be the category of left A-modules. We write $\mathscr{C}_{n}(A)$ instead of $\mathscr{C}_{n}\left(\operatorname{Mod}_{\ell}(A)\right)$. Furthermore we set $\mathscr{C}_{n}=\mathscr{C}_{n}(\mathbb{C})$.

§2. Definition and properties of \mathscr{F}_{n}

Our next goal is to construct a particular object \mathscr{F}_{n} of $\mathscr{C}_{n}\left(\mathscr{D}_{n}\right)$. Let therefore $n \in \mathbb{N}, n \neq 0$. For $\alpha \in J, i \in \mathbb{N}-\{0\}$ define

$$
\mathscr{F}_{(n), \alpha, i}^{\prime}:=\mathscr{D}_{(n)} /\left(\left(\partial_{n} x_{n}-\alpha\right)^{i}\right), \quad F_{(n), \alpha, t}^{\prime \prime}:=\mathscr{D}_{(n)} /\left(\left(x_{n} \partial_{n}-\alpha\right)^{l}\right) .
$$

For each $\alpha \in J$, the $\mathscr{D}_{(n)}$-linear maps

$$
\mathscr{F}_{(n), \alpha, i}^{\prime} \rightarrow \mathscr{F}_{(n), \alpha, l+1}^{\prime}, \quad \text { induced by } P \mapsto P\left(\partial_{n} x_{n}-\alpha\right)
$$

and

$$
\mathscr{F}_{(n), \alpha, t}^{\prime \prime} \rightarrow \mathscr{F}_{(n), \alpha, l+1}^{\prime \prime}, \quad \text { induced by } P \mapsto P\left(x_{n} \partial_{n}-\alpha\right)
$$

yield inductive systems $\left(\mathscr{F}_{(n), \alpha, l}^{\prime}\right)_{l}$ and $\left(\mathscr{F}_{(n), \alpha, i}^{\prime \prime}\right)_{i}$.
Define

$$
\mathscr{F}_{(n)}^{\prime}:=\underset{\alpha \in J}{\oplus} \xrightarrow[i]{\lim } \mathscr{F}_{(n), \alpha, i}^{\prime}, \mathscr{F}_{(n)}^{\prime \prime}:=\underset{\alpha \in J}{\oplus} \xrightarrow[i]{\lim } \mathscr{F}_{(n), \alpha, i}^{\prime \prime} .
$$

Furthermore, the $\mathscr{D}_{(n)}$-linear maps

$$
\begin{array}{ll}
\mathscr{F}_{(n), \alpha, i}^{\prime} \rightarrow \mathscr{F}_{(n), \alpha, l}^{\prime \prime}, & \text { induced by } P \mapsto P \partial_{n}, \\
\mathscr{F}_{(n), \alpha, l}^{\prime \prime} \rightarrow \mathscr{F}_{(n), \alpha, l}^{\prime}, & \text { induced by } P \mapsto P x_{n},
\end{array}
$$

give rise to $\mathscr{D}_{(n)}$-linear maps

$$
\mathscr{U}_{(n)}: \mathscr{F}_{(n)}^{\prime} \rightarrow \mathscr{F}_{(n)}^{\prime \prime}, \mathscr{V}_{(n)}: \mathscr{F}_{(n)}^{\prime \prime} \rightarrow \mathscr{F}_{(n)}^{\prime} .
$$

Hence we have constructed an object

$$
\mathscr{F}_{(n)}:=\left(\mathscr{F}_{(n)}^{\prime}, \mathscr{F}_{(n)}^{\prime \prime}, \mathscr{U}_{(n)}, \mathscr{V}_{(n)}\right) \in \mathscr{C}_{1}\left(\mathscr{D}_{(n)}\right) .
$$

By extending coefficients we get $\mathcal{O} \underset{\mathcal{O}_{(n)}}{\otimes} \mathscr{F}_{(n)} \in \mathscr{C}_{1}\left(\mathscr{D}_{n}\right)$.

Remark: Instead of the clumsy notation $\mathscr{C}_{1}\left(\mathcal{O} \underset{\mathcal{O}_{(n)}}{\otimes}\right)\left(\mathscr{F}_{(n)}\right)$ we prefer to write $\mathcal{O} \underset{\mathcal{O}_{(n)}}{\otimes} \mathscr{F}_{(n)}$.

The preceding constructions lead immediately to
Lemma 1: There exists short exact sequences of $\mathscr{D}_{(n)}$-modules

$$
\begin{aligned}
& \mathscr{O}_{(n)}=\mathscr{D}_{(n)} /\left(\partial_{n}\right) \hookrightarrow \mathscr{F}_{(n)}^{\prime} \xrightarrow{\mathscr{U}_{(n)}} \mathscr{F}_{(n)}^{\prime \prime} \\
& \mathscr{D}_{(n)} /\left(x_{n}\right) \hookrightarrow \mathscr{F}_{(n)}^{\prime \prime} \rightarrow \mathscr{F}_{(n)}^{\prime} \\
& \mathscr{D}_{(n)}^{\prime} /\left(\partial_{n} x_{n}-\alpha\right) \hookrightarrow \mathscr{F}_{(n)}^{\prime} \stackrel{\mathscr{V}_{(n)} \mathscr{U}_{(n)}-\alpha 1}{\rightarrow} \mathscr{F}_{(n)}^{\prime}, \alpha \in J-\{0\} .
\end{aligned}
$$

Proof: Let $\alpha \in J-\{0\}$. The $\mathscr{D}_{(n)}$-linear map $\mathscr{D}_{(n)} /\left(\partial_{n} x_{n}-\alpha\right) \rightarrow$ $\mathscr{D}_{(n)} /\left(x_{n} \partial_{n}-\alpha\right)$, induced by $P \mapsto P \partial_{n}$ is an isomorphism (left to the reader).
We have the commutative diagram with exact rows

$$
\begin{gathered}
\mathscr{F}_{(n), \alpha, l}^{\prime} \underset{1 \mapsto \partial_{n} x_{n}-\alpha}{\longrightarrow} \mathscr{F}_{(n), \alpha, i+1}^{\prime} \underset{1 \rightarrow 1}{\rightarrow} \mathscr{D}_{(n)} /\left(\partial_{n} x_{n}-\alpha\right) \\
\downarrow \quad \downarrow \\
\mathscr{F}_{(n), \alpha, l}^{\prime \prime} \stackrel{1 \rightarrow x_{n} \partial_{n}-\alpha}{\hookrightarrow} \stackrel{1 \mapsto 1}{\longrightarrow} \mathscr{F}_{(n), \alpha, l+1}^{\prime \prime} \xrightarrow{\rightarrow} \mathscr{D}_{(n)} /\left(x_{n} \partial_{n}-\alpha\right)
\end{gathered}
$$

where the vertical maps are induced by $P \mapsto P \partial_{n}$.
Hence, by induction on i, it follows that $\mathscr{F}_{(n), \alpha, l}^{\prime} \rightarrow \mathscr{F}_{(n), \alpha, l}^{\prime \prime}, 1 \mapsto \partial_{n}$, is an isomorphism for all $i \in \mathbb{N}-\{0\}$.

It is easily verified that we have a commutative diagram with exact rows

$$
\begin{aligned}
& \mathscr{D}_{(n)} /\left(\partial_{n}\right) \xrightarrow{1 \mapsto x_{n}\left(\partial_{n} x_{n}\right)^{t-1}} \mathscr{F}_{(n), 0, i}^{\prime} \xrightarrow{1 \mapsto \partial_{n}} \quad \mathscr{F}_{(n), 0, i}^{\prime \prime} \xrightarrow{1 \mapsto 1} \quad \mathscr{D}_{(n)} /\left(\partial_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathscr{D}_{(n)} /\left(\partial_{n}\right) \xrightarrow{1 \rightarrow x_{n}\left(\partial_{n} x_{n}\right)^{t}} \underset{\mathscr{F}_{(n), 0, i+1}^{\prime}}{ } \xrightarrow{1 \rightarrow \partial_{n}} \quad \mathscr{F}_{(n), 0, i+1}^{\prime \prime} \xrightarrow{1 \rightarrow 1} \quad \mathscr{D}_{(n)} /\left(\partial_{n}\right)
\end{aligned}
$$

Taking the direct limit and summing over $\alpha \in J$ we obtain the exact sequence of $\mathscr{D}_{(n)}$-modules

$$
\mathscr{D}_{(n)} /\left(\partial_{n}\right) \hookrightarrow \mathscr{F}_{(n)}^{\prime} \xrightarrow{\mathscr{U}_{(n)}} \mathscr{F}_{(n)}^{\prime \prime} .
$$

The other two sequences are obtained in a similar way.
Consider the bifunctor ${\underset{O}{O}}_{\underset{O}{0}}: \operatorname{Mod}_{\ell}\left(\mathscr{D}_{n}\right) \times \operatorname{Mod}_{\ell}\left(\mathscr{D}_{n}\right) \rightarrow \operatorname{Mod}_{\ell}\left(\mathscr{D}_{n}\right)$, $(M, N) \mapsto M \underset{\mathcal{O}}{\otimes} N$. It induces a bifunctor from $\mathscr{C}_{n-1}\left(\mathscr{D}_{n}\right) \times \mathscr{C}_{1}\left(\mathscr{D}_{n}\right)$ to $\mathscr{C}_{n}\left(\mathscr{D}_{n}\right)$, also denoted by \otimes. Keeping this in mind we define inductively on $n \in \mathbb{N}$

$$
\begin{aligned}
& \mathscr{F}_{0}:=\mathbb{C} \\
& \mathscr{F}_{n}:=\left(\underset{\mathcal{O}}{\mathcal{O} \otimes_{n-1}} \mathscr{F}_{n-1}\right) \otimes_{\mathcal{O}}^{\otimes}\left(\underset{\mathcal{O}_{(n)}}{\otimes} \mathscr{F}_{(n)}\right) \in \mathscr{C}_{n}\left(\mathscr{D}_{n}\right) .
\end{aligned}
$$

Hence $\mathscr{F}_{n}\left(i_{1} \ldots i_{n}\right)=\left(\mathcal{O} \otimes_{\mathcal{O}_{(1)}}^{\mathscr{F}_{(1)}}\left(i_{1}\right)\right) \otimes_{\mathcal{O}} \ldots \otimes_{\mathcal{O}}\left(\mathcal{O} \bigotimes_{\mathcal{O}_{(n)}}^{\mathscr{F}_{(n)}}\left(i_{n}\right)\right)$, all $i_{1}, \ldots, i_{n} \in\{0,1\}$. The \mathscr{D}_{n}-linear maps are identified as

$$
\mathscr{F}_{n}\left(i_{1} \ldots i_{j-1} 0 i_{j+1} \ldots i_{n}\right) \underset{1 \otimes \mathscr{V}_{(j)} \otimes 1}{\stackrel{1 \otimes \mathscr{U}_{(j)} \otimes 1}{\rightleftarrows}} \mathscr{F}_{n}\left(i_{1} \ldots i_{j-1} 1 i_{j+1} \ldots i_{n}\right) .
$$

We are ready now to define the functor S_{n}. Therefore consider the bifunctor $H_{n}: \operatorname{Mod}_{\ell}\left(\mathscr{D}_{n}\right) \times \operatorname{Mod}_{\ell}\left(\mathscr{D}_{n}\right) \rightarrow \mathscr{C}_{0},(M, N) \mapsto \operatorname{Hom}_{\mathscr{D}_{n}}(M, N)$. It induces a bifunctor $\mathscr{C}_{n}\left(H_{n}\right): \operatorname{Mod}_{\ell}\left(\mathscr{D}_{n}\right) \times \mathscr{C}_{n}\left(\mathscr{D}_{n}\right) \rightarrow \mathscr{C}_{n}$. So there arises a contravariant functor

$$
S_{n}: \operatorname{Mod}_{\ell}\left(\mathscr{D}_{n}\right) \rightarrow \mathscr{C}_{n}, \quad S_{n}(M):=\mathscr{C}_{n}\left(H_{n}\right)\left(M, \mathscr{F}_{n}\right) .
$$

Notice that S_{n} is characterized by

$$
\begin{aligned}
& S_{n}(M)\left(i_{1} \ldots i_{n}\right)=\operatorname{Hom}_{\mathscr{D}_{n}}\left(M, \mathscr{F}_{n}\left(i_{1} \ldots i_{n}\right)\right), \\
& \quad \text { all } i_{1}, \ldots, i_{n} \in\{0,1\} .
\end{aligned}
$$

§3. Study of the functor $\boldsymbol{S}_{\boldsymbol{n}}$

We restrict our attention to the category $\operatorname{Mod}_{\ell}\left(\mathscr{D}_{n}\right)_{h r}^{x_{1} \ldots x_{n}}$ the full subcategory of $\operatorname{Mod}_{\ell}\left(\mathscr{D}_{n}\right)$ consisting of holonomic \mathscr{D}_{n}-modules with regular singularities along $x_{1} \ldots x_{n}$. For a definition we refer to van den

Essen [5], Ch. I, Def. 1.16. He gives also a description of the simple objects in $\operatorname{Mod}_{\ell}\left(\mathscr{D}_{n}\right)_{h r}^{x_{1} \ldots x_{n}}$ (Ch. I, Th. 2.7). They are of the form $\mathscr{D} /\left(q_{1}, \ldots, q_{n}\right)$ with $q_{t} \in\left\{x_{i}, \partial_{i}\right\} \cup\left\{\partial_{i} x_{t}-\alpha_{\imath} \mid \alpha_{i} \in \mathbb{C}, 0<\operatorname{Re} \alpha_{t}<1\right\}$, all $i \in\{1, \ldots, n\}$.
It is suitable for us to write this as

$$
\binom{\mathcal{O} \otimes N}{\mathscr{O}_{n-1}} \otimes_{\mathcal{O}}^{\otimes}\left(\underset{\mathcal{O}}{\mathbb{O}_{(n)}} \mathscr{D}_{(n)} /\left(q_{n}\right)\right)
$$

where $N=\mathscr{D}_{n-1} /\left(q_{1}, \ldots, q_{n-1}\right)$ is a simple object from $\operatorname{Mod}_{\ell}$ $\left(\mathscr{D}_{n-1}\right)_{h r}^{x_{1} \ldots x_{n-1}}$. To simplify notations we introduce:
For $\alpha \in J \cup\{1\}$ define $q_{n}(\alpha) \in \mathscr{D}_{(n)}$ as:

$$
q_{n}(0) ■ \partial_{n} ; q_{n}(1) \rrbracket x_{n} ; q_{n}(\alpha) \llbracket \partial_{n} x_{n}-\alpha, \quad \alpha \in J-\{0\} .
$$

For $N \in \operatorname{Mod}_{\ell}\left(\mathscr{D}_{n-1}\right)$ define $P_{\alpha}(N) \llbracket\left(\mathcal{O}{\underset{\mathscr{O}}{n-1}}_{\otimes}^{\otimes}\right) \underset{\mathcal{O}}{\otimes}\left(\mathcal{O} \underset{\mathcal{O}_{(n)}}{\otimes} \mathscr{D}_{(n)} /\right.$ $\left.\left(q_{n}(\alpha)\right)\right)$.
For $M \in \operatorname{Mod}_{\ell}\left(\mathscr{D}_{n}\right)$ define $Q_{\alpha}(M) \rrbracket \operatorname{Ker}\left(M \xrightarrow{q_{n}(\alpha) .} M\right)$.
So for each $\alpha \in J \cup\{1\}$ we have a pair of functors $\left(P_{\alpha}, Q_{\alpha}\right) P_{\alpha}$: $\operatorname{Mod}_{\ell}\left(\mathscr{D}_{n-1}\right) \rightarrow \operatorname{Mod}_{\ell}\left(\mathscr{D}_{n}\right), Q_{\alpha}: \operatorname{Mod}_{\ell}\left(\mathscr{D}_{n}\right) \rightarrow \operatorname{Mod}_{\ell}\left(\mathscr{D}_{n-1}\right)$. Obviously:

- Q_{α} is left exact.
- P_{α} is exact, because $\mathcal{O} \bigotimes_{\mathcal{O}_{(n)}}^{\mathscr{D}_{(n)}} /\left(q_{n}(\alpha)\right)$ is a flat \mathscr{O}_{n-1}-module.
- P_{α} is a left adjoint of Q_{α}.

By a direct calculation, using the definitions of \mathscr{F}_{n}^{\prime} and $\mathscr{F}_{n}^{\prime \prime}$, one establishes

Lemma 2: There exist short exact sequences of \mathscr{D}_{n-1}-modules

$$
\begin{aligned}
& \mathcal{O} \underset{\mathcal{O}_{(n)}}{\otimes} \mathscr{F}_{(n)}^{\prime} \xrightarrow{x_{n}} \xrightarrow{\mathcal{O}} \underset{\mathcal{O}_{(n)}}{\otimes} \mathscr{F}_{(n)}^{\prime} \quad \mathcal{O}_{n-1} \hookrightarrow \underset{\mathcal{O}_{(n)}}{\otimes} \mathscr{F}_{(n)}^{\prime \prime} \xrightarrow{x_{n}} \underset{\mathcal{O}_{(n)}}{\otimes} \mathscr{F}_{(n)}^{\prime \prime}
\end{aligned}
$$

for all $\alpha \in J-\{0\}$.

Proof: During the proof we write \otimes in stead of \otimes. Let $\alpha \in J$. It is straightforward to verify that $\mathcal{O}_{n-1} \cong Q_{\alpha}\left(\mathcal{O} \otimes \mathscr{F}_{(n), \alpha, i}^{\prime}\right)$. One may use e.g.

$$
\mathcal{O} \otimes \mathscr{F}_{(n), \alpha, i}^{\prime}=\mathcal{O}\left[\frac{1}{x_{n}}\right] x_{n}^{\alpha-1}\left(\log x_{n}\right)^{t-1}+\ldots+\mathcal{O}\left[\frac{1}{x_{n}}\right] x_{n}^{\alpha-1}
$$

or the lemma on page 39 in [6].
Furthermore

$$
\mathcal{O}_{n-1} \cong \operatorname{Coker}\left(\mathcal{O} \otimes \mathscr{D}_{(n)} /\left(\partial_{n} x_{n}-\alpha\right) \xrightarrow{\left(\partial_{n} x_{n}-\alpha\right)} \mathcal{O} \otimes \mathscr{D}_{(n)} /\left(\partial_{n} x_{n}-\alpha\right)\right)
$$

Consider the short exact sequence of \mathscr{D}-modules

$$
\mathscr{O} \otimes \mathscr{F}_{(n), \alpha, i}^{\prime} \hookrightarrow \mathscr{O} \otimes \mathscr{F}_{(n), \alpha, i+1}^{\prime} \rightarrow \mathcal{O} \otimes \mathscr{D}_{(n)} /\left(\partial_{n} x_{n}-\alpha\right) .
$$

Writing ϕ_{J} for the map: left multiplication with $\partial_{n} x_{n}-\alpha$ on $\mathscr{O} \otimes \mathscr{F}_{(n), \alpha, J}^{\prime}$, all $j \in \mathbb{N}-\{0\}$, we obtain a long exact sequence

$$
\begin{aligned}
\mathcal{O}_{n-1} & =\operatorname{Ker} \phi_{l} \hookrightarrow \operatorname{Ker} \phi_{t+1}=\mathcal{O}_{n-1} \rightarrow \operatorname{Ker} \phi_{0} \\
& =\mathcal{O}_{n-1} \xrightarrow{\delta} \text { Coker } \phi_{t} \xrightarrow{\epsilon} \text { Coker } \phi_{t+1} \rightarrow \text { Coker } \phi_{0}=\mathcal{O}_{n-1}
\end{aligned}
$$

where the maps are \mathscr{D}_{n-1}-linear.
By induction on i we have Coker $\phi_{i}=\mathcal{O}_{n-1}$. Now \mathcal{O}_{n-1} is a simple \mathscr{D}_{n-1}-module, hence δ is an isomorphism. Moreover $\epsilon=0$ and Coker $\phi_{i+1}=\mathcal{O}_{n-1}$. So we have for all $i \in \mathbb{N}-\{0\}$, a commutative diagram with exact rows

$$
\begin{array}{llll}
\mathcal{O}_{n-1} \hookrightarrow \mathcal{O} \otimes \mathscr{F}_{(n), \alpha, t}^{\prime} \xrightarrow{\left(\partial_{n} x_{n}-\alpha\right)} & \mathscr{O} \otimes \mathscr{F}_{(n), \alpha, i}^{\prime} & \rightarrow \mathcal{O}_{n-1} \\
1 \downarrow & \downarrow & \downarrow & \downarrow 0 \\
\mathcal{O}_{n-1} \hookrightarrow \mathcal{O} \otimes \mathscr{F}_{(n), \alpha, t+1}^{\prime} \xrightarrow{\left(\partial_{n} x_{n}-\alpha\right) .} & \mathcal{O} \otimes \mathscr{F}_{(n), \alpha, i+1}^{\prime} & \rightarrow \mathcal{O}_{n-1}
\end{array}
$$

Another calculation learns that left multiplication with $\partial_{n} x_{n}-\alpha$ on $\mathcal{O} \otimes \mathscr{F}_{(n), \beta, i}^{\prime}$ is a bijection, for all $i \in \mathbb{N}-\{0\}$, all $\beta \in J, \beta \neq \alpha$ (use induction on i. After taking the direct limit and summing over $\beta \in J$ we arrive at the short exact sequence

$$
\mathcal{O}_{n-1} \hookrightarrow \mathcal{O} \otimes \mathscr{F}_{(n)}^{\prime} \xrightarrow{\left(\partial_{n} x_{n}-\alpha\right)} \boldsymbol{O} \otimes \mathscr{F}_{(n)}^{\prime} .
$$

Using that left multiplication with $\partial_{n} x_{n}-\alpha$ on \mathcal{O} is bijective and the commutativity of the next diagram with exact rows (Lemma 1)

$$
\begin{aligned}
& \mathcal{O} \quad \hookrightarrow \quad \mathcal{O} \otimes \mathscr{F}_{(n)}^{\prime} \quad \rightarrow \mathcal{O} \otimes \mathscr{F}_{(n)}^{\prime \prime} \\
& \downarrow\left(\partial_{n} x_{n}-\alpha\right) \cdot \downarrow\left(\partial_{n} x_{n}-\alpha\right) \cdot \downarrow\left(\partial_{n} x_{n}-\alpha\right) . \\
& \mathcal{O} \stackrel{\mathcal{O}}{\longrightarrow} \quad \underset{\mathscr{F}_{(n)}^{\prime}}{\rightarrow} \rightarrow \mathcal{O} \otimes \mathscr{F}_{(n)}^{\prime \prime}
\end{aligned}
$$

one estblishes the exactness of

$$
\mathcal{O}_{n-1} \hookrightarrow \mathcal{O} \otimes \mathscr{F}_{(n)}^{\prime \prime} \xrightarrow{\left(\partial_{n} x_{n}-\alpha\right) .} \mathcal{O} \otimes \mathscr{F}_{(n)}^{\prime \prime} .
$$

It is immediately verified that left multiplication with x_{n} on $\mathcal{O} \otimes \mathscr{F}_{(n)}^{\prime}$ is bijective. Furthermore left multiplication with x_{n} on $\mathcal{O} \otimes \mathscr{D}_{(n)} /\left(x_{n}\right)$ is surjective and has $\operatorname{Ker} \cong \mathcal{O}_{n-1}$. Consider the second sequence in Lemma 1 , argue as above and obtain the exactness of $\mathcal{O}_{n-1} \hookrightarrow \mathcal{O} \otimes \mathscr{F}_{(n)}^{\prime \prime} \rightarrow \mathcal{O} \otimes \mathscr{F}_{(n)}^{\prime \prime}$. Combining results on left multiplication with $\partial_{n} x_{n}$ and left multiplication with x_{n} yields the exactness of the upper sequences in the lemma.

At this point we introduce a category $\tilde{\mathscr{C}}$ as follows:
$\tilde{\mathscr{C}}_{0}$ is the category of finite dimensional \mathbb{C}-vector spaces,
$\tilde{\mathscr{C}}_{n+1}$ is the full subcategory of \mathscr{C}_{n+1} consisting of the objects $(E, F, u, v) \in \mathscr{C}_{n+1}$ such that
(i) $E, F \in \tilde{\mathscr{C}}_{n}$
(ii) $\left\{\lambda \mid \lambda\right.$ eigenvalue of $\left.e_{i_{1} \ldots t_{n}}(v u)\right\} \subset J$ for all $i_{1}, \ldots, i_{n} \in\{0,1\}$.

Notice that $\tilde{\mathscr{C}}_{n}$ is a thick abelian subcategory of \mathscr{C}_{n}. For each $\alpha \in J \cup\{1\}$ we introduce a functor $L_{\alpha}: \mathscr{C}_{n-1} \rightarrow \mathscr{C}_{n}$ by setting for all $E \in \mathscr{C}_{n-1}$:

$$
\begin{aligned}
& L_{0}(E):=(E, 0,0,0), \\
& L_{1}(E):=(0, E, 0,0), \\
& L_{\alpha}(E):=(E, E, 1, \alpha 1), \alpha \in J-\{0\} .
\end{aligned}
$$

These are all exact functors. Clearly for each $\alpha \in J \cup\{1\} L_{\alpha}$ restricts to a functor from $\tilde{\mathscr{C}}_{n-1}$ to $\tilde{\mathscr{C}}_{n}$, denoted also L_{α}.
Putting $n=1$ in Lemma 2 we may reformulate it as

$$
\begin{aligned}
& S_{1}\left(\mathscr{D}_{1} /\left(q_{1}(\alpha)\right)\right)=L_{\alpha}(\mathbb{C}) \in \tilde{\mathscr{C}}_{1}, \\
& \operatorname{Ext}_{\mathscr{D} 1}^{1}\left(\mathscr{D}_{1} /\left(q_{1}(\alpha)\right), \mathscr{F}_{1}(i)\right)=0, \quad \text { all } \alpha \in J \cup\{1\}, \quad \text { all } i \in\{0,1\} .
\end{aligned}
$$

However elements of $\operatorname{Mod}\left(\mathscr{D}_{1}\right)_{h r}$ have finite length. Hence S_{1} induces
a contravariant exact functor, denoted S_{1}, from $\operatorname{Mod}{ }_{\ell}\left(\mathscr{D}_{1}\right)_{h r}$ to $\tilde{\mathscr{C}}_{1}$. This result generalizes to

Proposition 1: S_{n} induces a contravariant exact functor $S_{n}: \operatorname{Mod}_{\ell}\left(\mathscr{D}_{n}\right)_{h r}^{x_{1} \ldots x_{n}} \rightarrow \tilde{\mathscr{C}}_{n}$.

Proof: By induction on n. We need only to consider a simple module $M \in \operatorname{Mod}_{\ell}\left(\mathscr{D}_{n}\right)_{h r}^{x_{1} \ldots x_{n}}$. Hence let $\alpha \in J \cup\{1\}, N \in \operatorname{Mod}_{\ell}\left(\mathscr{D}_{n-1}\right)_{h r}^{x_{1} \ldots x_{n-1}}$ such that $M=P_{\alpha} N$. Let $i_{1}, \ldots i_{n} \in\{0,1\}$. Write $q=q_{n}(\alpha), P=P_{\alpha}, Q=$ $Q_{\alpha}, L=L_{\alpha}$. Lemma 2 says that left multiplication with q is surjective on $\mathcal{O} \otimes \mathscr{F}_{(n)}\left(i_{n}\right)$. Furthermore $\mathcal{O} \otimes \mathscr{F}_{(n)}\left(i_{n}\right)$ is a flat \mathscr{O}_{n-1}-module and $q \in \mathscr{O}_{(n)}\left(\mathscr{D}_{(n)}\right.$, hence

$$
Q\left(\mathscr{F}_{n}\left(i_{1} \ldots i_{n}\right)\right)=\mathscr{F}_{n-1}\left(i_{1} \ldots i_{n-1}\right) \bigotimes_{O_{n-1}}^{\otimes} Q\left(\underset{\mathcal{O}}{\mathcal{O}_{(n)}} \boldsymbol{\otimes} \mathscr{F}_{(n)}\left(i_{n}\right)\right)
$$

Again using Lemma 2 we get $\mathscr{C}_{1}(Q)\left(\mathcal{O} \underset{\mathcal{O}_{(n)}}{\otimes} \mathscr{F}_{(n)}\right)=L\left(\mathcal{O}_{n-1}\right)$. It follows that

$$
\begin{aligned}
S_{n}(P N) & =\mathscr{C}_{n}\left(H_{n}\right)\left(P N, \mathscr{F}_{n}\right)=\mathscr{C}_{n}\left(H_{n-1}\right)\left(N, \mathscr{C}_{n}(Q)\left(\mathscr{F}_{n}\right)\right) \\
& =\mathscr{C}_{n}\left(H_{n-1}\right)\left(N, \mathscr{F}_{n-1} \underset{O_{n-1}}{\otimes} \mathscr{C}_{1}(Q)\left(\underset{\mathcal{O}_{(n)}}{\otimes} \mathscr{F}_{(n)}\right)\right) \\
& =\mathscr{C}_{n}\left(H_{n-1}\right)\left(N, \mathscr{F}_{n-1} \underset{\mathbb{C}}{\otimes} L(\mathbb{C})\right) \\
& =\left(\mathscr{C}_{n-1}\left(H_{n-1}\right)\left(N, \mathscr{F}_{n-1}\right)\right) \underset{\mathbb{C}}{\otimes} L(\mathbb{C})=L S_{n-1} N
\end{aligned}
$$

The exactness of S_{n} follows, by induction, from the next general result.
Lemma 3: Let \mathscr{A}, \mathscr{B} be abelian categories with enough injectives. Let G : $\mathscr{B} \rightarrow \mathscr{A}$ be a left adjoint of $F: \mathscr{A} \rightarrow \mathscr{B}$ and assume that G is exact. Furthermore, let $A \in \mathscr{A}$ be such that $R^{1} F(A)=0$.
Then $\operatorname{Ext}_{\mathscr{A}}^{1}(G(B), A) \cong \operatorname{Ext}_{\mathscr{B}}^{1}(B, F(A))$, all $B \in \mathscr{B}$.
REMARK: $R^{1} Q\left(\mathscr{F}_{n}\left(i_{1} \ldots i_{n}\right)\right)=0$ because left multiplication with q is surjective.

Proof: Notice that for an injective object $I \in \mathscr{A} F(I)$ is injective in \mathscr{B}, because one has $\operatorname{Hom}_{\mathscr{A}}(\cdot, F(I)) \cong \operatorname{Hom}_{\mathscr{A}}(G(\cdot), I)$ and this last functor is exact. Consider a short exact sequence $A \hookrightarrow I \rightarrow R$ in \mathscr{A} with I
injective object in \mathscr{A}. Because $R^{1} F(A)=0$ we get an exact sequence in \mathscr{B}

$$
F(A) \hookrightarrow F(I) \rightarrow F(R)
$$

(Obvious F is left exact.) Let $B \in \mathscr{B}$. There results a commutative diagram of abelian groups with exact rows
$\operatorname{Hom}_{\mathscr{A}}(G(B), A) \hookrightarrow \operatorname{Hom}_{\mathscr{A}}(G(B), I)$
$\| l$
$\operatorname{Hom}_{\mathscr{A}}(B, F(A)) \hookrightarrow \operatorname{Hom}_{\mathscr{A}}(B, F(I))$
$\quad \rightarrow \operatorname{Hom}_{\mathscr{A}}(G(B), R) \rightarrow \operatorname{Ext}_{\mathscr{A}}^{1}(G(B), A)$
$\quad \rightarrow \operatorname{Hom}_{\mathscr{A}}(B, F(R)) \rightarrow \operatorname{Ext}_{\mathscr{A}}^{1}(B, F(A))$.

Hence the lemma follows.

§4. The inverse functor

In order to prove that S_{n} defines an equivalence of categories we come up with an inverse functor. First some generalities. Let \mathscr{A} be an additive category and let R be a ring. A left R-object in \mathscr{A} is an object $A \in \mathscr{A}$ together with a homomorphism of rings $\rho: R \rightarrow \operatorname{Hom}_{\mathscr{A}}(A, A)$. (Cf. Mitchell [4], Ch. II, §13). For example the objects of $\mathscr{C}_{n}(R)$ are R-objects. Further if $A \in \mathscr{A}$ is any left R-object, then the abelian group $\operatorname{Hom}_{\mathscr{A}}(B, A)$ gets in a canocial way a left R-module structure. If $\alpha \in \operatorname{Hom}_{\mathscr{A}}\left(B, B^{\prime}\right)$ then $\operatorname{Hom}_{\mathscr{A}}(\alpha, A)$ is a morphism of left R-modules. In particular we have a left exact contravariant functor

$$
T_{n}: \mathscr{C}_{n} \rightarrow \operatorname{Mod}_{\ell}\left(\mathscr{D}_{n}\right), E \mapsto \operatorname{Hom}_{\mathscr{C}_{n}}\left(E, \mathscr{F}_{n}\right)
$$

In order to study this functor T_{n} we first consider the operation \mathscr{C}. We recall that for any additive category \mathscr{A}, we defined $\operatorname{Hom}_{\mathscr{C}_{(\mathscr{A})}}(E, F)$ for all $E, F \in \mathscr{A}$ in such a way that the following sequence of abelian groups is exact

$$
\begin{aligned}
& \operatorname{Hom}_{\mathscr{G}(\mathscr{A})}(E, F) \hookrightarrow \operatorname{Hom}_{\mathscr{A}}\left(E_{0}, F_{0}\right) \times \operatorname{Hom}_{\mathscr{A}}\left(E_{1}, F_{1}\right) \\
& \rightarrow \operatorname{Hom}_{\mathscr{A}}\left(E_{0}, F_{1}\right) \times \operatorname{Hom}_{\mathscr{A}}\left(E_{1}, F_{0}\right) \\
&(f, g) \mapsto\left(u_{F} f-g u_{E}, f v_{E}-v_{F} g\right) .
\end{aligned}
$$

This observation enables us to prove the following.

Lemma 4: Let A be $a \mathbb{C}$-algebra, B an A-algebra. Let \mathscr{A} be an abelian subcategory of \mathscr{C}_{0}. Suppose $\mathscr{G}: \operatorname{Mod}_{\ell}(B) \rightarrow \operatorname{Mod}_{\ell}(A)$ is a left exact functor. Let $\theta_{0}: G\left(\operatorname{Hom}_{\mathbb{C}}(\cdot, \cdot)\right) \rightarrow \operatorname{Hom}_{\mathbb{C}}(\cdot, G(\cdot))$ be a natural transformation (resp. equivalence) of bifunctors from $\mathscr{A} \times \operatorname{Mod}_{l}(B)$ to $\operatorname{Mod}_{\ell}(A)$. Then there is a natural transformation (resp. equivalence)

$$
\theta_{n}: G\left(\operatorname{Hom}_{\mathscr{C}_{n}}(\cdot, \cdot)\right) \rightarrow \operatorname{Hom}_{\mathscr{C}_{n}}\left(\cdot, \mathscr{C}_{n}(G)(\cdot)\right)
$$

of bifunctors from $\mathscr{C}_{n}(\mathscr{A}) \times \mathscr{C}_{n}(B)$ to $\operatorname{Mod}_{\ell}(A)$.
Finally let us define for each $\alpha \in J \cup\{1\}$ a functor $\mathrm{K}_{\alpha}: \mathscr{C}_{\mathrm{n}} \rightarrow \mathscr{C}_{\mathrm{n}-1}$ as follows:

$$
\begin{aligned}
& K_{0}(E, F, u, v):=\operatorname{Ker} u \\
& K_{1}(E, F, u, v):=\operatorname{Ker} v \\
& K_{\alpha}(E, F, u, v):=\operatorname{Ker}(v u-\alpha 1), \alpha \in J-\{0\} .
\end{aligned}
$$

Clearly K_{α} is left exact for all $\alpha \in J \cup\{1\}$. Furthermore, as one easily verifies, L_{α} is a left adjoint of K_{α}.

Before we return to the functor T_{n} we need a description of the simple objects of $\tilde{\mathscr{C}}_{n}$. We leave it to the reader to verify:

Lemma 5: (i) Every $F \in \tilde{\mathscr{C}}_{n}, F \neq 0$, has a subobject of the form $L_{\alpha} E$, for some $\alpha \in J \cup\{1\}$ and some simple object $E \in \tilde{\mathscr{C}}_{n-1}$.
(ii) The simple objects in $\tilde{\mathscr{C}}_{n}$ are those of the form $L_{\alpha} E$ for some $\alpha \in J \cup\{1\}$ and some simple object $E \in \tilde{\mathscr{C}}_{n-1}$.
(iii) Every object in $\tilde{\mathscr{C}}_{n}$ has a finite length.

Now we are ready to prove.
Proposition 2: T_{n} restricts to a contravariant exact functor, $\tilde{\mathscr{C}}_{n} \rightarrow$ $\operatorname{Mod}_{\ell}\left(\mathscr{D}_{n}\right)_{h r}^{x_{1} \ldots x_{n}}$, which takes simple objects to simple objects (and is still denoted T_{n}).

Proof: By induction on n. We may assume $F \in \tilde{\mathscr{C}}_{n}$ to be simple. Let us say $F=L_{\alpha} E, \alpha \in J \cup\{1\}, E \in \tilde{\mathscr{C}}_{n-1}$ simple. Write $L=L_{\alpha}, K=K_{\alpha}$, $P=P_{\alpha}$. For each $i \in\{0,1\} \underset{\mathcal{O}_{(n)}}{\otimes} \mathscr{F}_{(n)}(i)$ is a flat \mathscr{O}_{n-1}-module. Hence in virtue of Lemma 1 we get $K\left(\mathscr{F}_{n}\right)=\mathscr{F}_{n-1} \bigotimes_{\mathcal{O}_{n-1}}^{\otimes\left(\mathcal{O} \underset{\mathcal{O}_{(n)}}{\otimes} \mathscr{D}_{(n)} /\left(q_{n}(\alpha)\right)\right)=, ~=~}$ $\mathscr{C}_{n-1}(P)\left(\mathscr{F}_{n-1}\right)$.

Lemma 4 applied to the equivalence $\operatorname{Hom}_{\mathbb{C}}(F, M) \otimes_{\mathcal{O}} N \cong \operatorname{Hom}_{\mathbb{C}}(F, M$
$\otimes_{\mathcal{O}} N$), where F is a finite dimensional \mathbb{C}-vector space, $M \in \operatorname{Mod}(\mathcal{O}), N$ a flat \mathcal{O}-module, gives

$$
\begin{aligned}
T_{n}(L E) & \cong \operatorname{Hom}_{\mathscr{C}_{n-1}}\left(E, K\left(\mathscr{F}_{n}\right)\right) \cong \operatorname{Hom}_{\mathscr{C}_{n-1}}\left(E, \mathscr{C}_{n-1}(P)\left(\mathscr{F}_{n-1}\right)\right) \\
& \cong P T_{n-1} E
\end{aligned}
$$

In fact these isomorphisms are \mathscr{D}_{n}-linear.
To exhibit the exactness of T_{n} we use
Lemma 6: Let $R: \operatorname{Mod}_{\ell}\left(\mathscr{D}_{n}\right) \rightarrow \mathscr{C}_{0}$ be an exact functor.
Then $\operatorname{Ext}_{\mathscr{C}_{n}}^{1}\left(E, \mathscr{C}_{n}(R)\left(\mathscr{F}_{n}\right)\right)=0$, all $E \in \tilde{\mathscr{C}}_{n}$.
Proof: According to lemma $1 \mathscr{U}_{(n)}, \mathscr{V}_{n)}$ and $\mathscr{V}_{(n)} \mathscr{U}_{(n)}-\alpha 1$ are surjective, hence $R^{1} K\left(\mathscr{F}_{n}\right)=0$. Because R is exact it commutes with K and $R^{1} K\left(\mathscr{C}_{n}(R)\left(\mathscr{F}_{n}\right)\right)=0$. Hence according to Lemma 3 it follows that

$$
\operatorname{Ext}_{\mathscr{C}_{n}}^{1}\left(L E, \mathscr{C}_{n}(R)\left(\mathscr{F}_{n}\right)\right) \cong \operatorname{Ext}_{\mathscr{C}_{n-1}}^{1}\left(E, \mathscr{C}_{n-1}(R P)\left(\mathscr{F}_{n-1}\right)\right)=0
$$

Remark: According to Mitchell [4], Ch. VI, Corollary 4.2, (with $R=\mathbb{C}$) \mathscr{C}_{n} is equivalent to a category of right modules over a certain ring of endomorphisms. (Recall, cf. §1, that \mathscr{C}_{n} is a functor category of the kind mentioned in this Corollary.) Hence \mathscr{C}_{n} has enough injectives.

§5. The equivalence of categories

In the preceding pages we have shown the existence of two contravariant exact functors

$$
S_{n}: \operatorname{Mod}_{\ell}\left(\mathscr{D}_{n}\right)_{h r}^{x_{1} \ldots x_{n}} \rightarrow \tilde{\mathscr{C}}_{n}, T_{n}: \tilde{\mathscr{C}}_{n} \rightarrow \operatorname{Mod}_{\ell}\left(\mathscr{D}_{n}\right)_{h r}^{x_{1} \ldots x_{n}}
$$

By some formal considerations it follows now that S_{n} defines an equivalence of categories with inverse T_{n}.

Proposition 3: S_{n} and T_{n} are inverse to each other.
Proof: First we mention the natural equivalence of \mathbb{C}-vector spaces $\operatorname{Hom}_{\mathbb{C}}\left(E, \operatorname{Hom}_{\mathscr{D}_{n}}(M, N)\right) \cong \operatorname{Hom}_{\mathscr{D}_{n}}\left(M, \operatorname{Hom}_{\mathbb{C}}(E, N)\right)$, where $E \in \mathscr{C}_{0}$, $M, N \in \operatorname{Mod}_{\ell}\left(\mathscr{D}_{n}\right)$. By Lemma 4 there results a natural equivalence

$$
\operatorname{Hom}_{\mathscr{C}_{n}}\left(E, \mathscr{C}_{n}\left(H_{n}\right)(M, F)\right) \cong \operatorname{Hom}_{\mathscr{D}_{n}}\left(M, \operatorname{Hom}_{\mathscr{C}_{n}}(E, F)\right),
$$

where $E \in \mathscr{C}_{n}, M \in \operatorname{Mod}_{l}\left(\mathscr{D}_{n}\right), F \in \mathscr{C}_{n}\left(\mathscr{D}_{n}\right)$. So in particular we get a natural equivalence

$$
\operatorname{Hom}_{\mathscr{C}_{n}}\left(E, S_{n}(M)\right) \cong \operatorname{Hom}_{\mathscr{D}_{n}}\left(M, T_{n}(E)\right)
$$

where $E \in \tilde{\mathscr{C}}_{n}, M \in \operatorname{Mod}_{\ell}\left(\mathscr{D}_{n}\right)_{h r}^{x_{1} \ldots x_{n}}$.

Or, working in the dual category \mathscr{C}_{n}^{0},

$$
\operatorname{Hom}_{\mathscr{C}_{n}^{0}}\left(S_{n}^{0}(M), E\right) \cong \operatorname{Hom}_{\mathscr{D}_{n}}\left(M, T_{n}^{0}(E)\right)
$$

Hence S_{n}^{0} is a left adjoint of T_{n}^{0}. This gives rise to natural transformations $\psi: 1 \rightarrow T_{n}^{0} S_{n}^{0}=T_{n} S_{n}, \phi: S_{n}^{0} T_{n}^{0} \rightarrow 1$ and dual $\phi^{0}: 1 \rightarrow S_{n} T_{n}$.

Both S_{n}^{0} and T_{n}^{0} are exact and take simple objects to simple objects. Hence in particular both functors are faithful. Hence $\psi(M)$ and $\phi^{0}(E)$ are monomorphisms if $M \in \operatorname{Mod}_{l}\left(\mathscr{D}_{n}\right)_{h r}^{x_{1} \ldots x_{n}}, E \in \tilde{\mathscr{C}}_{n}$. Hence both are isomorphisms in case the object is simple. So, by induction on the length, ψ and ϕ^{0} are equivalences.

References

[1] Mathématique et Physique: Séminaire de l'Ecole Normale Supérieure 1979-1982. Progress in Math. Vol. 37, Birkhäuser (1983).
[2] A. Galligo, M. Granger et Ph. Maisonobe: \mathscr{D}-modules et faisceaux pervers dont le support singulier est un croisement normal. I. Annales de l'Institut Fourier (1985).
A. Galligo, M. Granger, Ph. Maisonobe: \mathscr{D}-modules et faisceaux pervers dont le support singulier est un croisement normal. II. Luminy 1983. To appear in Astérisque.
[3] A. Grothendieck: Sur quelques points d'Algèbre homologique. Tôhoku Math. J. 9 (1957) 119-221.
[4] B. Mitchell: Theory of categories. Academic Press, New York and London (1965).
[5] A. van den Essen: Fuchsian modules (thesis). University of Nijmegen (1979).
[6] F. Pham: Singularités des systèmes différentiels de Gauss-Manin. Progress in Math. Vol. 2, Birkhäuser (1979).
[7] J.-E. BjOrk: Rings of differential operators. North-Holland Math. Library Series (1979).
(Oblatum 7-III-1985)
M.G.M. van Doorn

Institute of Mathematics
Catholic University Nijmegen
Toernooiveld
6525 ED Nijmegen
The Netherlands

