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§0. Introduction

An abelian variety A over an algebraically closed field k of characteristic
p &#x3E; 0 is called supersingular if there exists an isogeny A - E n, where E is
a supersingular elliptic curve (cf. Oort [17], Section 4); we say a curve C
is supersingular if its Jacobian A = J(C) is supersingular. A supersingu-
lar abelian variety has no points of order p, and the converse holds if
dim A is at most 2. Let A2,1 be the coarse moduli scheme of principally
polarized abelian surfaces over k. We like to study the set of principally
polarized supersingular abelian surfaces

VC A2,1

for every characteristic. It is known that every component of V has
dimension one (cf. Koblitz [11], Theorem 7 on page 163), and that every
component of V is a rational curve (cf. Oort [17], p. 117). Our final
results (cf. Katsura and Oort [10]) will be

V is irreducible ~ p ~ 11.

Moreover, we can explicitly calculate the number of irreducible compo-
nents of V (cf. Remark 2.16). To this end, we first study all curves of
genus two; these appear as the polar part of a principal polarization on
an abelian surface. In the fundamental paper by Igusa (cf. [9]), we find a
complete list of all possible automorphism groups for a curve of genus
two. Of course, the prime numbers p with p  5 need special attention.

In Section 1 we recall these results, we use properties of the Hasse-Witt
matrix, and we describe which curves with "many automorphisms" (i.e.
| Aut(C)| &#x3E; 2) are supersingular.

In Section 2 we give the link between the geometry (polarizations) and
the number theory (class numbers) involved. We show that the class
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number of the principal genus in Bn with B, the definite quaternion
algebra over the rational number with discriminant p, is equal to the
number of isomorphism classes of principally polarized abelian varieties
(A, ~) with principal polarization e, such that A is isomorphic to a
product of n supersingular elliptic curves. This enables us to compute
explicitly the total number of supersingular curves of genus two whose
Jacobian varieties are isomorphic to a product of two supersingular
elliptic curves (cf. Corollary 2.10). We also examine the class number of
the non-principal genus in B 2 (cf. Theorem 2.15). It gives us the tool to
relate the number of irreducible components of V with the explicit
formula by Hashimoto and Ibukiyama (cf. [6] (II) and (III)); this
connection will be given in a subsequent paper (cf. Katsura and Oort
[10]).

In Section 3 we finish the study of the supersingularity of various
types. We will determine explicitly the number of supersingular curves of
genus two with fixed reduced group of automorphisms whose Jacobian
varieties are isomorphic to a product of two supersingular elliptic curves
(cf. Theorem 3.2).
We might remark that it seems interesting to study the stratification

by p-rank of moduli spaces of abelian varieties of dimension g in

characteristic p. This stratification is completely known in case g = 1.
The next case p-rank = 0 for g = 2 is the one studied in this and

subsequent paper. Our results seem rather complete, and the description
in this case already tums out to be more involved than in the case of
elliptic curves.

The second and the third author would like to thank Professor K.

Ueno for his stimulating conversation. The first and the second author
would like to thank Professor K. Hashimoto for valuable conversation.

They would also like to thank University of Utrecht for warm hospitality
during their stay in Utrecht.

§ 1. Jacobian varieties of curves of genus two

l.l. The Hasse-Witt matrix

Let k be an algebraically closed field of characteristic p &#x3E; 3, and let C
be a non-singular complete algebraic curve of genus two defined over k.
By a suitable choice of the coordinate system (x, y), the curve C is a
non-singular complete model of the curve defined by the equation

y2 = f(x), (1.1)

where f(x) is a polynomial of degree 5 or 6 which has only simple zeros.
We mean a curve C defined by an equation a non-singular complete
model of the affine curve defined by this equation. We denote by C the
Cartier operator on the k-vector space H0(C, 03A91C) of regular 1-forms on
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C. We fix the following basis of

We consider the following expansion

with N = 5(p-1)/2 if deg f ( x ) = 5, N = 3(p-1) if deg f ( x ) = 6, and
Cl E k, j = 0, 1,..., N, where deg f(x) denotes the degree of the poly-
nomial f ( x ). Using (1.2) and (1.3), we have the following representation
by a matrix of the Cartier operator C:

where M is the 2 X 2 matrix with elements in k given by

(cf. Manin [13], p. 78, Shioda [20], p. 159, and Yui [23], p. 381). The
matrix M(1/p) is called the Hasse-Witt matrix of the curve C defined by
(1.1). The following lemma is well-known.

LEMMA 1.1: :

(i ) The Jacobian variety J(C) of the curve C defined by (1.1) is

supersingular if and only if M(p)M = 0, where

(ii) The Jacobian variety J(C) is isomorphic to a product of two
supersingular elliptic curves if and only if M = 0.

(iii) The Jacobian variety J(C) is ordinary if and only if M has rank
two.

For the proofs, see Manin [13], p. 78, Nygaard [16], Theorem 4.1, Yui
[23], Theorem 3.1, Theorem 4.1.

1.2. Curves of genus two with many automorphisms (general theory)

In this section, we again assume char. k = p ~ 3. We recall results by
Igusa [9]. Every curve C defined by (1.1) is in a unique way a two-sheeted
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covering of the projective line pl. We denote by i the automorphism of C
which is the generator of the Galois group of this two-sheeted covering.
We denote by ~i~ the group generated by t. The group (L) is of order
two, and it is contained in the center of the group Aut(C) of automor-
phisms of C. We call the factor group Aut(C)/(L) the reduced group of
automorphisms of C, and denote it by RA(C). We can consider RA(C)
as a group of automorphisms of the projective line P’. We call an
element of RA(C) a reduced automorphism. If RA(C) has at least two
elements, then we say that the curve C has many automorphisms.
According to Igusa [9], a curve C with many automorphisms is isomor-
phic to one of the following curves:

(1) C: y2 = x(x - 1)(x - À)(jc - 03BC){x - À(l - 03BB)-1(1- it)l with

RA(C) ~ Z/2, unless by specialization this case reduces to one of
the cases below,

(2)C: y2= x(x-1)(x-03BB){x-(03BB-1)03BB-1} {x-(1-03BB)-1} with

RA(C) ~S3, unless by specialization this case reduces to one of
the cases below,

(3) C: y2 = x(x-1)(x+1)(x- 03BB){x-(1/03BB)} with RA(C) = Z/2 X
Z/2, unless by specialization this case reduces to one of the cases
below,

(4) (p ~ 3, 5) C: y2 = x(x-1)(x + 1)(x - 2)(x - (1/2)} with RA(C)
= D12 (the dihedral group of order 12),

(5) C: y2 = x(x2 -1)(x2 + 1) with RA(C) S4 if p ~ 5, and RA(C)
= PGL(2, 5) if p = 5,

(6) (p~5) C: y2= x(x-1)(x-1-03B6)(x-1-03B6-03B62)(x-1-03B6-
03B62 - 03B63) with RA(C) ~Z/5, where e is a primitive fifth root of
unity.

It should be noticed that each curve in Class (2) or (3) is a specializa-
tion of a curve in Class (1), and that each curve in Class (4) or (5) is a
specialization of a curve in Class (2) and also of a curve in Class (3) (cf.
Igusa [9]).

Now, we consider the following automorphism a of order two of the
curve in Class (1), (2), (3), (4) or (5):

where 03BB3/2(03BB- 03BC)3/2 is a root of the equation z2 = 03BB3(03BB - 03BC)3. We set

Then we see that T is also an automorphism of order two of C. We set
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By the Hurwitz formula, these are elliptic curves (cf. Igusa [9], Lemma 9).
The fixed points of a (resp. T ) are given by the equation

We set

Then, we see that t is invariant under the actions of Q and T. Considering
t as a coordinate of Pl, we can express Eo and ET as two-sheeted

coverings of this P1. Then, considering the ramification points of E,, and
ET on P1, we have the following defining equations for E,, and ET:

with a suitable variable s. For the coordinate (t, s), we set

Then, we conclude Eo and ET are respectively defined by the equations

We consider a polynomial in u:

Then, ( are different zeros of

DEFINITION 1.2 (Legendre polynomial).
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PROPOSITION 1.3: For the curve C of genus two in Class (1), (2), (3), (4)
or (5), the following conditions are equivalent.

(i) The Jacobian variety J(C) of C is a supersingular abelian surface.
(ii) The Jacobian variety J(C) of C is isomorphic to a product of two

supersingular elliptic curves.
(iii) Ea and ET are supersingular.
(iv) 03C8(u) divides 03A6(u).

PROOF: The equivalence of (iii) and (iv) is trivial (cf. Deuring [1], §8). By
Igusa [9], p. 648, we have the following mappings:

where 17 -j is the natural morphism defined by the natural projections,
and qr is an isogeny. Therefore, the equivalence of (i) and (iii) follows
from (1.15). Let H°(C, 03A91C) be the vector space of regular 1-forms on C.
By a direct calculation, we see that d x/y + 03C3*(dx/y) (resp. d x/y +
T*(dx/y)) generates the one-dimensional subspace consisting of in-

variant elements of H°(C, QX) under a* (resp. T*). Moreover, it is clear
that f dx/y + o*(dx/y), dx/y + 03C4*(dx/y)} is a basis of H°(C, 03A91C).
Since the natural projections C - Eo and C ~ ET are separable mor-
phisms of degree two we have isomorphisms

This means that qr is a separable isogeny. Hence, using the theory of Oort
[18], p. 36, we conclude that J(C) is isomorphic to a product of two
supersingular elliptic curves if both Eo and ET are supersingular elliptic
curves. This shows the equivalence of (ii) and (iii). Q.E.D.

REMARK 1.4: We write here the explicit equations of elliptic curves Eo
and ET for the classes (2), (3), (4) and (5).

1.3. Curves of genus two with many automorphisms (special cases)

In this section, we assu_me char. k = p ~ 3. We consider the following two
classes of curves of genus two defined by the equations
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where in the case of (a), we assume p~ 5. Since the curves defined by (a)
have automorphisms of order three, any curve of genus two in Class (a) is
isomorphic to a curve in Class (2), (4) or (5). Conversely, it is easy to
show that any curve of genus two with automorphisms of order three is
isomorphic to a curve in Class (a) with a suitable element « E k. Since
the reduced groups of automorphisms of the curves in Class ( b ) contain
the Klein four group Z/2 X Z/2, any curve in Class ( b ) is isomorphic to
a curve in Class (3), (4) or (5). To prove the converse, we consider an
automorphism of Pl defined by

where x is a global coordinate of an affine line in P1 which is used in the
equations in Classes (3), (4) and (5). Setting

and using the automorphism of P1 given by (1.16), we see that any curve
C in Class (3) (resp. Class (4), resp. Class (5)) is isomorphic to a curve in
Class (b) with 03B2 as given in (1.17). For these curves, we have the
following:

PROOF: Let C03B1 and Ca, be curves in Class (a). Assume that Ca is

isomorphic to C03B1, say, ~: C03B1 ~ Ca, is an isomorphism. Since C03B1 (resp.
C03B1’) is a two sheeted covering of C03B1/~i~ = P1 (resp. C03B1’/~i~ ~ P1), the
isomorphism ép induces an isomorphism ~ from P1 = C03B1/~i~ to P1 ~
C03B1’/~i~. We have the following three cases:

(i) RA(C03B1) ~ RA(C03B1’) ~ S3 ,
(ii) RA(C03B1) ~ RA(C03B1’) ~ D12
(iii) RA (C03B1) ~ RA(C03B1’) ~ S4,

Let 03C303B1 (resp. oa’) be the element of RA(C03B1) (resp. RA(C03B1’)) defined by

where w is a primitive cube root of unity. By the structure of the group
RA( Ca. ), the elements of order three in RA(C03B1’) are conjugate to each
other. Since (p - 03C303B1 · ~-1 is an element of order three in RA(C03B1’), we see
that there exists an element 03B8 in RA(C03B1’) such that
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Set 03C8 = 03B8 · cp. Then, the isomorphism 03C8 from P1 ~ C03B1/~i~ to P1 ~ C03B1’/~i~
induces a bijection from the set of six branch points

to the six branch points

The subgroup ~03C303B1~ (resp. ~03C303B1’~) generated by 03C303B1 (resp. °a’) acts on Sa
(resp. S03B1’). It has two orbits (!JI = {1, w, 03C92} and O2 = {3~03B1, 3~03B103C9, 3~03B103C92}
(resp. O’1 = {1, w, w2 and (!J2 = {3~03B1’, 3~03B1’ 03C9, 3~03B1’03C92}). Therefore, by
(1.19), the isomorphism 03C8 induces a mapping either from O1 to al and
from a2 to (!J2, or from al to a2 and from a2 to (!Ji. In the former case,
the isomorphism 03C8, 03C303B1’ · 03C8 or 03C3203B1’ · 03C8 is the identity from O1 to O’1.
Therefore, one of them is the identity from P1 ~ Caj(L) to P1 = C03B1’/~i~.
Hence, we have a = a’. In the latter case, we consider the automorphism
03B8’ of pl defined by

Then, the isomorphism 0’ - 03C8, 0’ - - 41 or 0’ - 03C3203B1’ · 03C8 is the identity from
(1, W, 03C92} to {1, W@ W2 1, hence, the identity from P1 to Pl. Hence, the
isomorphism 03C8, 03C303B1’ · 03C8 or 0;’ . Bf; is given by

Since this isomorphism gives a mapping from a2 to O’1, we conclude
aa’ = 1.

Next, let C/3 and C/3’ be curves in Class (b). Assume that C03B2 is

isomorphic to Cp’, say, ép: C03B2 ~ C03B2’ is an isomorphism. We denote by ~
the isomorphism from P1 ~ C03B2/~i~ to P1 ~ C03B2’/~i~ which is induced by
ép. We have the following three cases:

(i) RA(C03B2) = RA(C03B2’) ~ Z/2 x Z/2,
(ii) RA (C03B2)~ RA(C03B2’)~ D12,
(iii) RA(C03B2) ~ RA(C03B2’) ~ S4 .

We set
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Let op (resp. op’) be the element of RA(C03B2) (resp. RA(C03B2’)) defined by

The subgroup ~03C303B2~ of RA(C03B2) (resp. ~03C303B2’~ of RA(C03B2’)) acts on S03B2 (resp.
S03B2’). It bas four orbits O1 = {0}, O2 = {~}, O3 = {1, -1 } and (!J4 =
{~03B2, - ~03B2} (resp. O1 = {0}, O’2 = {~}, O’3 = {1,-1} and (!J4 =
{~03B2, - ~03B2’}). In Case (i), the element 03C303C1’ is the unique element of
order two in RA(C03B2’) which has two fixed points in S03B2’ . Therefore, we
have cp. 03C303B2 . ~-1 = 03C303B2’ . In Cases (ii) and (iii), we have three elements of
order two in RA(C03B2’) which have respectively two fixed points in S03B2’ . By
the structure of the group RA(C03B2’), they are conjugate to each other.
Therefore, by a suitable choice of an isomorphism ~, we can assume
~ · 03C303B2 · cp -1 = 03C303B2’ · Hence, in any case, we can assume that the isomorphism
cp maps either al to O’1 and O2 to a2, or O1 to (!J 2 and (!J 2 to O’1. Hence,
by the similar method as in the first part of this proof, we can conclude
03B2 = 03B2’ or /3 = 1/03B2’ . The converse is trivial. Q.E.D.

For a real number y, we denote by [y] ] the integral part of y.

DEFINITION 1.6:

DEFINITION 1.7:

PROPOSITION 1.8: A curve Ca in Class (a) is supersingular (resp.
ordinary) if and only if g( a) = 0 ( resp. g(a) =A 0).

PROOF: Using the notation in (1.5), we have

Therefore, this proposition follows from Lemma 1.1. Q.E.D.

PROPOSITION 1.9: A curve Ca in Class (b) is supersingular ( resp.
ordinary ) if and only if h (03B2) = 0 (resp. h(03B2)~0).
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PROOF: Using the notation in (1.5), we have

Therefore, this proposition follows from Lemma 1.1. Q.E.D.

PROPOSITION 1.10: For a curve C in Class (2), (3), (4) or (5), the

following conditions are equivalent.
(i) The Jacobian variety J(C) is a supersingular abelian surface.
(ii) The Jacobian variety J(C) is isomorphic to a product of two

supersingular elliptic curves.
(iii) Eo or ET is a supersingular elliptic curve.

PROOF: In these cases, the Jacobian variety J(C) is either supersingu-
lar or ordinary by Propositions 1.8 and 1.9. Therefore, if Eo or ET is a

supersingular elliptic curve, then both Ea and ET are supersingular
elliptic curves. Hence, this proposition follows from Proposition 1.3.

Q.E.D.

EXAMPLE: There exists a curve C in Class (1) such that Eo or ET is a
supersingular elliptic curve, and the Jacobian variety J(C) is not super-
singular. For example, we consider the curve C defined by the equation

over an algebraically closed field of characteristic 13. Then, using the
notation in (1.5), we have

Incidentally, we have RA( C ) = Z /2.

For the curves in Class (4), (5) or (6), we have the following proposi-
tions.

PROPOSITION 1.11: The Jacobian variety J(C) of the curve C in Class
(4) is isomorphic to a product of two supersingular elliptic curves (resp.
J( C ) is ordinary) if and only if p ~ 5 (mod 6) ( resp. p ~ 1 (mod 6)).

PROOF: Since the reduced group of automorphisms of this curve
contains an element of order six, by the uniqueness of such a curve, this
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curve C is isomorphic to the one defined by

Using the notation in (1.5), we have

Therefore, this proposition follows from Lemma 1.1. Q.E.D.

PROPOSITION 1.12: The Jacobian variety J(C) of the curve C in Class
(5) is isomorphic to a product of two supersingular elliptic curves (resp.
J(C) is ordinary) if and only if p = 5 or 7 (mod 8) ( resp. p = 1 or 3 (mod
8)).

PROOF : Using the notation in (1.5), we have

Therefore, this proposition follows from Lemma 1.1. Q.E.D.

PROPOSITION 1.13 : For the Jacobian variety J(C) of the curve C in
Class (6), we have the following three cases.

(i) If p ~ 1 (mod 5), then the Jacobian variety J(C) is ordinary.
(Ü) If p ~ 2 or 3 (mod 5), then the Jacobian variety J(C) is supersin-

gular and J(C) is not isomorphic to a product of two supersingular
elliptic curves.

(iii) If p ~ 4 (mod 5), then the Jacobian variety J(C) is isomorphic to a
product of two supersingular elliptic curves.

PROOF: Since the curve C has automorphisms of order five, by the
uniqueness of such a curve, this curve C is isomorphic to the curve
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defined by

Using the notation in (1.5), we have

Therefore, this proposition follows from Lemma 1.1. Q.E.D.

1.4. Simpleness of zeros of g(x) and h(x)

In this section, we prove the following proposition.

PROPOSITION 1.14: The zeros of g(x) ( resp . h(x)) are simple.

PROOF : The method to prove this proposition is similar to the method
in Igusa [8]. First, we consider the hypergeometric differential equation

where a, b, c are rational numbers. It is well-known that this equation
has a solution
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where r(x) is the gamma function. We set

Then, by direct calculation, we have

Theretore, choosing suitable a, b, c for G(x) (resp. H(x)) as above, we
see that G(x) (resp. H(x)) is a solution of a differential equation in
(1.31) in characteristic p. Since the zeros of G(x) (resp. H(x)) are
different from 0 and 1, the zeros of G(x) (resp. H(x)) are simple. Hence,
we conclude that the zeros of g(x) (resp. h ( x )) are simple. Q.E.D.

REMARK 1.15: By Igusa [8], the zeros of the Legendre polynomial
03A6(x) are all simple. Using this fact and Proposition 1.10, we can also
prove Proposition 1.14. We omit the details.

2. Class numbers of quaternion hermitian f orms and polarizations

2.1. Quaternion hermitian forms

First, we recall definitions by Shimura [19]. Let B be a definite quatern-
ion algebra over Q with discriminant D. We regard Bn as a left vector
space over B. The definite quaternion hermitian form on Bn is unique up
to base change over B, and it is given explicitly by 03A3ni = 1xiyi for row

vectors x = (xi), y = (yi) ~ B n. Here, means the canonical involution
of B. For a valuation v of Q, we put Bv = B ~QQv . By continuous
prolongation, we get a quaternion hermitian form on Bnv. The groups of
similitudes of these forms are given by



140

where 0 ’ (resp. Qxv) denotes the group of units of 0 (resp. 0,) and
where 1 n is the identity matrix. Let a be a maximal order of B. A
Z-module L in B" is called a left O-lattice if L is a left (9-module and at
the same time a Z-lattice in B". Two O-lattices LI and L2 are said to be
equivalent globally (resp. locally at p) if Llg = L2 for some g E G (resp.
(L1 0 Zp)g = L2 0 71.p for some g E Gp). A genus of O-lattices is a set of
(global) U-lattices in B n which are equivalent to each other locally at
every prime p. From here on, we treat only maximal lattices. We set

(9p = O ~ Zp. First, if Bp = M2(Cp), then maximal ap-lattices in Bp form
the unique local equivalence class, which is represented by

Secondly, if Bp is a division algebra, there exist exactly two local

equivalence classes, which are represented by

where the integer r is given by r = [ n/2], the scalar TT is a prime element
of (9 p, and the matrix t is an element of GLn ( Bp ) such that

For positive integers D1, D2 such that D = D1D2, we denote by
Ln(D1, D2 ) the set of left O-lattices in B" which are equivalent to Mp at
p if p does not divide D2, and to Np at p if p divides D2. The genus
Ln(D, 1) is called a principal genus. When D is a prime number, we call
Ln(1, D ) a non-principal genus. We denote by Hn(D1, D2 ) the number of
global equivalence classes in Ln(D1, D2). As is well-known, the class
number Hn(D1, D2 ) is finite. Now, we characterize some elements in
Ln(D1, D2 ) more explicitly.

THEOREM 2.1: ( Eichler [3]). The class number of Mn(B) is equal to one
for n ~2.

COROLLARY 2.2: For every left 0-lattice L in Bn (n ~ 2), there exists
x E GLn (B) such that L = (9 nX.

PROOF: This is rather well-known. Since Hom O(On, L) is a left

Mn(O)-ideal, we can take as x a generator for this ideal. Q.E.D.

We denote by Qx+ the group of positive rational numbers. For
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g E GLn (O), we mean by g &#x3E; 0 that g is positive definite, that is,
ygyt &#x3E; 0 for all yEBn, y ~0.

LEMMA 2.3 : Let x be an element of GLn(B). Then, a lattice L = 0 nX is
contained in Ln(D, 1) if and only if xxt  = mg for some m E 0 ’ and
g E GLn «9) such that g = g &#x3E; 0.

PROOF: If Onx is contained in Ln(D, 1), then we have (9pnx = (9pn-yp for
some yp E Gp. So we have x = 03B4p03B3p for some Sp E GLn«9p)- Since the
mapping

is surjective, by changing 8P if necessary, we can assume 03B3p03B3tp =pep1n with
an integer ep. Then, we see that m = 03A0ppep and g = m-1 xxt satisfy our
requirement. The converse follows from the following lemma.

LEMMA 2.4: A ny g = g t E GLn(O) can be written as g = 03B403B4t with some
03B4~GLn(Op).

PROOF : We write

with ai ~Zp, xij ~ Op and xji = îij. First, assume that al is not con-
tained in 71.;. If some a; i is contained in 71.;, then changing rows and
columns, we get a matrix whose (1, 1)-component is contained in 71.; . So,
assume that all ai’s are not contained in Z p ’. Since g E GLn(Op), there
exists some j such that x1j ~ pOp, and besides if Bp is a division algebra,
we have x1j ~ 03C0Op for some j. For the sake of simplicity, we assume
j = 2. It is easy to see that there exists an element y of ap such that
tr(x12 03B3) ~ Zp . Considering the matrix

we see that the (1, l)-component of this matrix is equal to al + a2 yy +
tr(x12Y)’ which is contained in Zxp . Therefore, we can assume that al is
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contained in 71.;. Now, we set

Then, we have

Therefore, by induction, we can assume that g is a diagonal matrix.
Hence, this lemma follows from the surjectivity of the norm mapping of

ap to 71.; . Q.E.D.

Let L1 = Onx1 and L2 = (!JnX2 ( xl, X2 E GLn(B)) be two lattices in
Ln(D, 1). By Lemma 2.3, there exist elements m1, m2 of Qx+ and
elements gi, g2 of Gn(O) which satisfy g1 = gt1 and g2 = gt2 such that
x1 xt1 = m1g1 and x2 xt2 = m2 g2 . Then, we have the following:

LEMMA 2.5: Under the above notations, two lattices Li and L2 are
equivalent globally if and only if there exist y E GLn( (!J) and m OE Q N such
that ytglY = mg2.

PROOF: Assume that Li and L2 are equivalent globally. Then, there
exists an element g of G in (2.1) such that

Since we have the equality

there exists an element y of GL,,(0) such that

Therefore, we have

Conversely, assume that there exist y E GLn( (!J) and m E Q + such that
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mgl = =ylg2Y. Set g = xI1yx2. Then, we see that g E G and L 1 g = L2 .
Q.E.D.

For each prime p which divides D, we denote by 13 the two sided
prime ideal of 0 above p. By the same method as in Lemma 2.3, we have
the following lemma.

LEMMA 2.6: Assume that the discriminant of B is equal to a prime
number p. Then, a lattice L = (9 2X with x E GL2 ( B ) is contained in

Y2(1, p) if and only if

for some m OE Q N , s, t E Z, s &#x3E; 0, t &#x3E; 0 and r Gi 13 such that p 2st - rr = p.

Let LI = (!JnXl and L2 = on X2 (x 1, x 2 E GL n (B)) be two lattices in
l (1, p). By Lemma 2.6, there exist ml, m 2 of Q N and two matrices

(s i , tiez, Si &#x3E; 0, t i &#x3E; 0, riGI3 and p2 s it i - ri ri = p (i = 1, 2)) such that
xlXt1 = mlgl and x2x2 = m2g2. Then, by the same method as in Lemma
2.5, we have the following:

LEMMA 2.7: Under the above notations, two lattices Lattices LI and L2
in Y2(1, p ) are equivalent globally if and only if there exist y E GL2 ( O )
and m E Q ? such that ytg1Y = mg2 .

2.2. The number of principally polarized supersingular abelian varieties

Let E be a supersingular elliptic curve defined over an algebraically
closed field k of characteristic p &#x3E; 0. Then, it is well-known that B =

End( E ) ©zQ is the definite quaternion algebra over 0 with discriminant
p, and that 0 = End( E ) is a maximal order of B. We set A = En ( n &#x3E; 2).
For a divisor L on A, we denote by 99L the homomorphism from A to the
dual At defined by PL (x) = Tx* L - L for x E A, where Tx is the transla-
tion by x (cf. Mumford [14], p. 60 and Lang [12]). We set

Then, the polarization X is a principal polarization on A. We define an
injective homomorphism j from the Néron-Severi group NS(A) to
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End( A ) as follows:

For g E Mn ( B ) such that g = g t, we denote by HNm(g) the Hauptnorm
of g. In case n = 2, we have HNm(g) = det(g). The following proposi-
tion follows easily from Mumford [14], p. 150, p. 209, and the definition
of px.

PROPOSITION 2.8: The image of NS(A) by j is

and Lnln! = HNm( j ( L )) for L E NS(A). The divisor L is ample if and
only if j(L) is positive definite. Moreover, the homomorphism j induces a
bijection from the set of principal polarizations on A to

COROLLARY 2.9: Assume n = 2. Then, for each positive integer d the
following map is bijective:

THEOREM 2.10 * : The number of principal polarizations on A = E n(n &#x3E;
2) up to automorphisms of A is equal to the class number Hn( p, 1) of the
principal genus of the quaternion hermitian space En.

PROOF: Let g be an automorphism of A. For LI, L2 E NS(A), we
have g*LI = L2 in NS(A) if and only if (CPxIgtpx)( CPxIPLB)g = PxICPL2’
where g’ is the dual homomorphism of g. Therefore, this theorem follows
from Lemmas 2.3, 2.5 and Proposition 2.8. Q.E.D.

* The authors heard that Professor J.-P. Serre had also known this theorem (cf. J.-P.
Serre: Nombres de points des courbes algébriques sur Fq, Séminaire de Théorie des
Nombres (Bordeaux), Année 1982-1983, Exposé n°22, where the result is mentioned in
the case of n = 2).
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REMARK 2.11: The class number Hn(P’ 1) was explicitly computed by
Eichler [2], Satz 2 (see also [4]) for n = 1, Hashimoto and Ibukiyama [6],
(1), for n = 2, and Hashimoto [5] for n = 3.

We set h = Hl( p, 1) and H = H2( p, 1). As is shown in Deuring [1], p.
266, the number h is equal to the number of isomorphism classes of
supersingular elliptic curves over k. Let {El }1=1.2,...,h be a set of repre-
sentatives of isomorphism classes of supersingular elliptic curves. P.

Deligne proved that E, X E, is isomorphic to E X E for any i, j (cf.
Shioda [21], Theorem 3.5). It is easy to see that every supersingular
abelian surface with reducible principal polarization is isomorphic to
some E, x E, with polarization El X {O} + {O} X El (i j), and that

E, X E, with polarization El X {O} + {O} X El ( i  j ) are not isomorphic
to each other as principally polarized abelian surfaces. Using these

results, we have the following corollary to Theorem 2.10.

COROLLARY 2.12: The number of isomorphism classes of non-singular
irreducible curves of genus two whose Jacobian varieties are isomorphic to a
product of two supersingular elliptic curves is equal to H - {h ( h + 1 )/2 } .

REMARK 2.13: In case End(E) is isomorphic to the principal order of
an imaginary quadratic field Q( m ), the number of isomorphism
classes of curves of genus two whose Jacobian varieties are isomorphic to
E X E is explicitly calculated in Hayashida [7].

2.3. Polarizations and the non-principal genus

Let E be a supersingular elliptic curve defined over the finite field IF p
with p elements. Let A be a supersingular abelian surface which is not
isomorphic to a product of two supersingular elliptic curves. Then, by
Oort [18], Corollary 7, there exists an exact sequence

Let i, j be elements of k such that ( i, j ) defines the inclusion e of ap
into ap X a p c E X E in (2.7). An abelian surface A is not isomorphic to
a product of two supersingular elliptic curves if and only if j =A 0 and
ilj e FP2 (cf. Oort [18], Introduction). Let 13 be the two sided ideal of
(9 = End( E ) over p. Then, by our choice of E, the ideal 13 is principal,
that is, 13 = -uO for some ff E 0. We consider the composition of injective
homomorphisms:
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where X = E x {O} + {O} x E as before and where Bf;t 
t is the dual homo-

morphism of Ç. Using this homomorphism, we have the following
proposition.

PROPOSITION 2.14: Let A be a supersingular abelian surface with j =,4 0,
i lj E FP2. Then, the set of principal polarizations on A is naturally bijective
to

PROOF: Let C be a principal polarization on A. Then, we have the
following commutative diagram:

Since we have 1 = dimkHom(ap, A) = dimkHom(ap, At) (cf. Oort [18],
Theorem 2), the subgroup schemes which are isomorphic to a p are

unique in A and At, respectively. Since Tc and (px are isomorphisms, we
have by (2.7)

Let (ac bd) be the image of C by the homomorphism in (2.8). Since
(Bf;*C)2 = pC2 = 2 p, by (2.10) and Corollary 2.9, we have

By (2.11), we have a, b, c, d = 0 (mod TT(O). Since a and b are integers,
we conclude that a and b are divisible by p. Hence, the matrix a bc d

is contained in A. Conversely, let a b be an élément of A. Then, byc d

Corollary 2.9, there exists an effective divisor D such that a b _
Px-1 0 q with D 2 = 2 p. By the définition of A, we have 

c d

On the other hand, we have deg( Therefore,
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Therefore, using the descent theory in Mumford [14], Corollary to

Theorem 2 on page 231, we see that there exists an effective divisor C
such that D = ip*C. Since 2 p = D 2 = (deg Bf;)C2, we have C 2 = 2, that is,
the polarization C is a principal polarization on A. It is clear that the

image of C by the homomorphism in (2.8) is a b . Q.E.D.( c d).
THEOREM 2.15: The group Aut( E 2 ) = GL2 ( O ) acts on the set of prin-

cipal polarizations on A by

The number of orbits under this action is equal to the class number H2 (1, p )
of the non-principal genus in B 2.

PROOF: This follows from Proposition 2.14, Lemmas 2.6 and 2.7.

Q.E.D.

REMARK 2.16: This theorem will be used to show that the number of
irreducible components of the locus of supersingular abelian surfaces in
the coarse moduli scheme A 2,1 of principally polarized abelian surfaces is
equal to H2(l, p) (cf. Katsura and Oort [10]).

REMARK 2.17: By Hashimoto and Ibukiyama [6], (II) and (III), we
have the following explicit formula for H’ = H2 (1, p) :

If p = 2, 3 or 5, then H’ = 1, and if p &#x3E;, 7, then

where ( denotes the Legendre symbol.
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Finally we give a remark on the structure of the endomorphism ring of
an abelian surface A with j = 0, and ilj OE FP4. First, we need the
following general lemma.

LEMMA 2.18: Let E be a supersingular elliptic curve. Assume that A is
an abelian variety of dimension n &#x3E; 2 which is isogenous to En. Then, we
can choose an isogeny (p: E n - A such that for any a E End(A), there

exists f3 E End( E" ) which satisfies a 0 cp = q o f3.

PROOF: By tensoring with 0, the group Hom( E", A) can be em-
bedded into Mn(B). Since Hom(En, A ) is a right End(En)-ideal, by
Theorem 2.1 we can find an element q of Hom(En, A ) such that

Hence, for any a E End(A), we have a (p E (p End(En). Q.E.D.

Now, let E be a supersingular elliptic curve defined over Fp such that
End( E ) is defined over the finite field FP2 (for the existence of such an
elliptic curve, see Waterhouse [22], Theorem 4.1.5), and let A be an
abelian surface with j = 0, and i/j E FP4. Then, we can take 4, in (2.7) as
(p in Lemma 2.18.

PROPOSITION 2.19: Under the above notations,

PROOF: Let g = ( b be an element of End(E 2). Then, there exists(c d)
an element h of End(A) such that (p ’ h = g. cp if and only if g(e(aP» c
e(ap). On the other hand, the endomorphism g induces a homomor-

phism on a p X ap, and it is given by a matrix 
a M2 (Fp 2) (cf.

Oort [18], Lemma 5). Therefore, we have g( e( ap)) C e( ap) if and only if
a :) =X with a suitable element À of FP4. By assumption, we

have j = 0 and ilj e FP4. Hence, we have a = 8 = À and f3 = y = o.
Q.E.D.

§3. Supersingular curves of genus two

3. 1. The mass formula

Let k be an algebraically closed field of characteristic p &#x3E; 0, and E a
supersingular elliptic curve. Let {E)j i (i = 1, 2,..., Hn ( p, 1))} be a set of
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representatives of isomorphism classes of principal polarizations on E n.
We denote by I, the group of automorphisms of a principally polarized
abelian variety ( E n, Oi ). The formula for

is known as the mass formula for general n. In case n = 1, we have

(cf. Eichler [2], Satz 1, and Deuring [1], §5, §10). In case n = 2, we have

(cf. Hashimoto and Ibukiyama [6], (1), Section 3, and see also Katsura
and Oort [10], Theorem 5.6).

PROPOSITION 3.1: (mass formula for curves of genus two).

where C runs through isomorphism classes of non-singular irreducible curves
of genus two whose Jacobian varieties J(C) are isomorphic to a product of
two supersingular elliptic curves.

PROOF: In case n = 2, the group of automorphisms of a principally
polarized abelian surface ( E X E, 8) is isomorphic to the group of

automorphisms of 0. Using the notations in 2.2, we see that the order of
the group of automorphisms of a principally polarized abelian surface
(Ei X Ej, Ei x (0 1 + (0 1 x Ei) is given by 1 Aut(E,) 1 1 Aut(Ei) 1 if i * j,
and by 2 j Aut( E¡) 12 if i = j. Therefore, we have

Therefore, subtracting this from the mass formula in (3.2), we complete
our proof. Q.E.D.
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3.3. The number of supersingular curves of genus two

In this section, we examine the number of isomorphism classes of

supersingular curves of genus two with reduced group r of automor-
phisms. First, we need the following proposition.

PROPOSITION 3.2: Assume char. k = p &#x3E; 5. The number of isomorphism
classes of curves of genus two with r such that S3 c r (resp. Z/2 X Z/2 c
r) whose Jacobian varieties are isomorphic to a product of two supersingu-
lar elliptic curves is given by [([ p/3] + 1)/2] ( resp. [([ p/4] + 1)/2]).

PROOF : Since the degree of the polynomial g(x) (resp. h ( x )) is equal
to [ p/3] (resp. [ p/4]), this proposition follows from Lemma 1.5, Proposi-
tions 1.8, 1.9 and 1.14. Q.E.D.

THEOREM 3.3: The number of isomorphism classes of curves of genus two
with reduced group F of automorphisms whose Jacobian varieties are

isomorphic to a product of two supersingular elliptic curves can be listed as
follows:

which is equal to 0

which is equal to 0
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(II) p=5.
There exists only one such curve, and its reduced group r of automor-
phisms is isomorphic to PGL(2, 5).

( III )p = 2 or 3. No such curves.

PROOF: (II) and (III) follow from Corollary 2.12 and Proposition 1.12.
Using Propositions 1.11, 1.12 and 1.13, we have the numbers in (4), (5)
and (6). Using Proposition 3.2 and the above results, we have the
numbers in (2) and (3). We denote by a (resp. b) the number of

isomorphism classes of curves of genus two with reduced group r = {1}
(resp. r = Z/2) of automorphisms whose Jacobian varieties are isomor-
phic to a product of two supersingular elliptic curves. Then, using
Corollary 2.12 and Proposition 3.1, we have two equations with respect
to a and b. Since we have the explicit formulas for h and H (cf. Deuring
[1], p. 266, Igusa [8], Hashimoto and Ibukiyama [6], (I)), solving these
equations we have the numbers in (0) and (1). Q.E.D.

REMARK 3.4: As for the number of isomorphism classes of curves of
genus two with reduced group r whose Jacobian varieties are isomorphic
to a product of two supersingular elliptic curves, we have the following
list for small p.
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