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A GENERAL NOTION OF EXTREME SUBSET

Marek Lassak

The purpose of this paper is a general view on various definitions of
extreme subsets and extreme elements as used in several branches of
mathematics. Using terms of set operations, we present a universal
scheme common for many such definitions and we discuss it under some
weak assumptions.

Let X be an arbitrary set and let #(X) denote the family of all
subsets of X. Any function ® mapping a subfamily 94 of £(X) into
P(X) is called a set operation in X or simply an operation. D is the
domain of .

In [16] the following definition has been proposed

DEfFINITION: If A CBC X and if for any K€ Py NP(B) and any
x€AN®(K) there exists M € Dy NP(ANK) such that x € (M),
then A is said to be a ®-extreme subset of B.

In the case A ={a} of the above definition, a will be called a
®-extreme element of B.

Examples of ®-extreme elements are extreme points of a set of a real
linear space (® maps any set {x, y} onto the segment joining x and y),
isolated points of a set of any topological space (® is the closure
operation), terminal points of a set of a metric space (® maps any set
{x, y} onto the set of all points lying metrically between x and y). For
examples of ®-extreme subsets and other examples of ®-extreme ele-
ments see the last paragraph of this paper.

1. Set operations

This paragraph is of preparatory nature.
An operation ® in X is called:
— full, if Dy = P(X),
— isotonic, if for any G, H € 94 from G C H it follows ®(G)C ®(H),
— enlarging, if G C ®(G) for any G € Dy,
— idempotent, if ®(P(A))= P(A) for any 4 € D such that ®(A)e
Dy,
— a closure operation, if it is full, isotonic, enlarging, and idempotent,
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— additive, if it is full and ®(GU H)=®(G)UP®(H) for any

G, He2(X),

— cover finite, if ®(G)C U{P(F); FEDyNP(G), |F|<oo} for
any G € D,

— domain finite, if ®(G)= U{®(F); FED;NP(G), |F| < oo} for
any G € Y.

Full isotonic, full enlarging, full idempotent, full domain finite, and
closure operations are considered by many authors (see [1],[6],[10],[11],
[20],[21] for instance).

The smallest number k > 0 such that

D(G)CU{®(F); FEDQ,NP(G), |F|<k} foranyGe P,

is called Caratheodory’s number of ® and it is denoted by ¢(®). If such &
does not exist, then we put ¢(®) = oco.

Obviously, if @ is isotonic, then the inclusion in the above definition
can be replaced by the equality. Note that any operation with finite
Caratheodory’s number is cover finite.

If ®(G)=®(H), then G and H are called ®-equivalent. 1f addition-
ally G < H, then we call G a ®-equivalent subset of H.

We call K € 9, a ®-stable set if P(K)=K.

Remeber that a closed under arbitrary intersections family ¥C 2( X)
is called a closure system over X. If moreover ¢ € €, then (X, €) is
usually called a convexity structure. Let the symbol h,(A) denote the
intersection of all sets of ¢ which contain a given set 4 € #( X).

It is well known (see e.g. [6], p. 43) that there exists one-to-one
correspondence between closure systems over X and closure operations
in X: (=) if ¥ is a closure system over X, then A, is a closure
operation, (<) if ® is a closure operation, then the family %; of
®-stable sets is a closure system over X and hq, = ®.

If ® is a closure operation, then ®(K) is called the closure of K.

For a given operation ® in X we define an auxiliary operation

®Y(G)= U{®(D); DEDyN2(G)).

If ® is full, then let (comp. [11], p. 311)
e e}
2°(G)= U 2"(6),
n=0

where ®°(G)= G, ®'"1(G)=®(®(G)), i=0,1,... .

Obviously, both of the operations ®“, ®“ are full. Moreover, ® " is
isotonic. If @ is isotonic, then ®¥(G) = ®(G) for any G € Dy, If @ is
full and isotonic, then ® = @.
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2. General properties of ®-extreme subsets

Observe that the definition of ®-extreme subset 4 of B can be shortly
expressed by the formula

AND(K)c®Y(ANK) forany K€ D,NP(B). (1)

The following five statements of Theorem 1 generalize well known
properties of the classic extreme subsets in real linear spaces.

THEOREM 1: For each operation ® in X we have:

(a) Any finite intersection of ®-extreme subsets of a set B is a P-ex-
treme subset of B. This is also true for arbitrary intersections provided ® is
cover finite.

(b) Any union of ®-extreme subsets of a set B is also a ®-extreme
subset of B.

(c) If B is a ®-extreme subset of C and A is a ®-extreme subset of B,
then A is a ®-extreme subset of C.

(d) If ACBCC and if A is a ®-extreme subset of C, then A is a
®-extreme subset of B.

(e) Sets B, ¢ and (if ¢ € Dy) all subsets of BN ®(¢) are P-extreme
subsets of B.

ProOOF: We prove only the first part. The other ones are left to the reader.

Let A4,, A, be ®-extreme subsets of B. Suppose, x €(A4;NA4,)N
®(K), where K € D4, N P(B). Since A4, is a $-extreme subset of B and
x € A; N ®(K), there exists M; € Dy, N P(A; N K) such that x € D(M,).
Similarly, from x € A, N ®(M,) and M, € D, N P(B) we get that x €
®(M) for some M € Dy NP(A, N M,). Obviously, M € Dy, NP(A, N
A, N K). Thus 4, N A, is a $-extreme subset of B. Consequently, any
finite intersection of ®-extreme subsets of B is also ®-extreme.

Now, let @ be cover finite and A4,, A € A, be ®-extreme subsets of B.
Put A= N{A4,, A€ A}. Suppose, K€ Dy NP(B) and x € A N P(K).
Since @ is cover finite, x € ®(M) for a finite M € D, N P(K ). Without
loss of generality, we can assume that M is minimum (in respect to
inclusion) set of D4, NP (K) for which x € ®(M). Moreover, x € 4,
and A, is a ®-extreme subset of B for any A € A. Thus for any A € A
there exists My € Dy N P(A\NM)C Dy N P(K) such that x € d(M,).
Since M is minimal and M, C M, we have M, = M for all A € A. From
M,cA,, A\e A, weget MC A. Hence M € D5, N P(A N K). Thus 4 is
a ®-extreme subset of B.

Note that in general case the intersection of infinitely many ®-extreme
subsets may fail to be ®-extreme (comp. e.g. Example 4).

PROPOSITION 1: Let ® be a full isotonic operation [respectively: a cover
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finite operation, an operation with finite Caratheodory’s number, an
additive operation]. A subset A of B is ®-extreme if and only if the below
condition (2) [respectively: (3), (4), (5)] holds:

AN®(K)c®(ANK) forany K< P(B), (2)

AN®(K)C®Y(ANK) forany finite K€ Dy NP (B), (3)

AN®(K)c®Y(ANK) forany K€ DyNP(B)

with | K | < c(®), (4)

AND®(B\A)C D(9). (5)
ProoF: The first three statements result easily from (1), because ® Y= ®
for any full isotonic operation, and from the definitions of cover finite
operation and Caratheodory’s number.

We prove the last part. As additive, the operation @ is isotonic and
full. So it is sufficient to show that (2) and (5) are equivalent.

Immediately, (5) results from (2) putting K = B\ 4.

Assume, (5) holds. Therefore 4 N ®(B\A)CTANDP(p). Let K be a
subset of B. Since @ is isotonic, ®(K\ 4)C ®(B\A4) and P(¢)C (K
N A). Moreover, @ is additive. Thus we get that

AN®(K)=AN®[(KNA)U(K\A4)]
=AN[®(KNA)UB(K\A)]
=[AN®(KNA)]|U[4n®(K\A4)]
clAn®(KNA)|u[4n®(B\A)]
clAn®(KnA)u[4n®(¢)]
=ANO®(KNA)CP®(KNA),

which ends the proof.

Condition (2) is very useful and it can be applied to full isotonic
operations, particularly to the operation ®" for any ®. This is why we
formulate the following proposition whose proof is left to the reader.

PROPOSITION 2: A is a ®-extreme subset of B if and only if A is a
® Y-extreme subset of B.
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3. ¢P-extreme and P“-extreme subsets

THEOREM 2: Any ®-extreme subset of B is also ®“-extreme provided ® is
full domain finite and B is ®“-stable ( particularly: ®-stable).

PROOF: Let 4 be a ®-extreme subset of B. Since ® is full and (as domain
finite) isotonic, ®* is also full and isotonic. By the first part of Proposi-
tion 1, to verify that 4 is a ®“-extreme subset of B it is sufficient to
show the inclusion 4 N ®“(H)C ®“(A4 N H) for any H € #(B).

Let x€eAN®“(H). Let m be the smallest number such that x €
®"(H). Recurrently, define finite sets H,,,..., H, as follows. Put H, =
{x}. Obviously, H,, C ®"(H). Suppose, a finite subset H, of ®"(H) is
defined, where m > n> 0. Since ® is full domain finite, there exists a
finite set G,_, € ®"~'(H) such that H, C ®(G,_,). Consequently, there
exists a finite minimal (in respect to inclusion) subset H,_, of ®"~'(H)
such that H,c ®(H,_,). So H,,..., H, are defined. Of course, H, C
®(H,_,) for k=1,...,n and H,C ®*(H) for k=0,...,m.

Since @ is isotonic, any ®F is also isotonic. Therefore

H c ®(H)c ®*(B)c ®“(B)=B fork=0,...,m.

Obviously, H,,C A. Assume H,C A, where m > n > 0. Putting K =
H,_, in (2) we obtain A N ®(H,_,)CcP(ANH,_;). Since H,C A and
H,Cc ®(H,_,),wehave H,C ®(A N H,_,). Moreover, H,_, is a minimal
subset of ®"~'(H) such that H, ¢ ®(H,_,). Therefore H,_, CANH,_,
and consequently, H, _, C A. Thus H,,..., H, are subsets of A. Particu-
larly, H,C A.

From H, c ®(H,_,), k=1,...,m, from HyC A and H,C ®°(H)=
H, thanks the isotonicity of ®', we get

{(x}=H,c®(H,_,)c®*(H,_,)C...c®"(H,)
=0"(HyNA)C®"(HNA)CP°(HNA).

PROPOSITION 3: Any ®“-extreme subset of B is also ®-extreme provided:
D is full, ¢(®)< o0, and ®(F) is ®-stable for | F| < c(P).

PrOOF: Let 4 be a ®“-extreme subset of B. By (1) we obtain that
AN®°(K)c (®°)7(A4NK) forany K €2 (B).
If |K|<c(®), then ®“(K)=®(K). Moreover, ®“(M)=d(M) for

M € P(A N K). Consequently, (#°)Y(ANK)=®"(A4 N K). Hence (4)
is satisfied which, in virtue of Proposition 1, ends the proof.
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4. ¢-extreme elements

If ¢ € 9,, then any element of ®(¢) is a P-extreme element of each set
to which it belongs (comp. (e) in Theorem 1). Such elements are called
trivially ®-extreme. For an arbitrary operation ® in X, we denote by
Ey(B) the set of all non-trivially ®-extreme elements, i.e. of all ®-ex-
treme elements of B which do not belong to ®(¢).

PROPOSITION 4: If a € E4(B), then
ac®(K)=acK forany KEZ,N P(B). (6)

For a full enlarging operation ®, the conditions a € E4(B) and (6) are
equivalent.

Let us observe (for use in Example 2) that if @ is cover finite, than (6)
is equivalent to the condition

ac®(K)=aecK forany finite K € 2, N P(B). (7)
PROPOSITION 5: If @ is a full operation and a € E4(B), then
a€ B\®(B\{a}). (8)

For full enlarging isotonic operations, the conditions a € E¢(B) and (8)
are equivalent.

PROPOSITION 6: If ® is full and enlarging, then a € E4(B) implies

®(B\{a})*®(B). )
If @ is a closure operation, a € Ey(B) is equivalent to (9).

PROPOSITION 7: Let @ be a full, enlarging, isotonic operation and let a
belong to a ®-stable set B. Then a € E4(B) if and only if

B\{a} is ®-stable. (10)

We omit the proofs of Propositions 4-7 as rather tedious. Simply
examples show that all assumptions about ® are necessary there. In the
case of closure operations, an additional characterization of non-trivially
d-extreme elements is given in the first part of Proposition 9.

With the help of Proposition 4 one can easily obtain the following

PROPOSITION 8: Let ® be an enlarging operation and B € Dy. Then
E4(B) is contained in each ®-equivalent subset of B. Moreover, if E4(B)
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is a ®-equivalent subset of B, then it is the smallest ®-equivalent subset of
B.

PROPOSITION 9: For any closure operation ® and any B € P( X) we have:
(a) Eg(B) coincides with the intersection of all ®-equivalent subsets of B.
(b) If there exists the smallest ®-equivalent subset of B, then it is equal
to E4(B).

(c) ®(EH(B))=D@(B) if and only if the family of all ®-equivalent
subsets of B is a closure system over B.

(d) Eq(®(B))C Eq(B).

PROOF: (a) Let a & E4(B). In virtue of Proposition 8 it is sufficient to
show that a does not belong to some ®-equivalent subset of B. The
searched subset is B\ {a} because (9) does not hold.

(b) If there exists the smallest ®-equivalent subset of B, then it
coincides with the intersection of all ®-equivalent subsets of B. Conse-
quently, it is equal to E4(B) as we have shown in (a).

(c) This statement easy results from (b) and from Proposition 8.

(d) Let a€ Eu(P(B)). By (a) we obtain that a belongs to any
®-equivalent subset ®(B). Particularly, a € B. Since a is a ®-extreme
element of ®(B) and B C ®(B), we infer from part (d) of Theorem 1
that a is also a ®-extreme element of B. From a € E4(®(B)) it follows
a & ®(¢). Consequently, a € Ey(B).

For B being ®-stable, the reader can observe a connection of state-
ment (a) of Proposition 9 with the operation j, considered in [24] and
consequently, a connection of Examples 1 and 4 presented at the end of
this paper with Corollaries 2.3 and 2.4 of [24].

ProPOSITION 10: For any closure operation ® and any set B € P(X) the
following conditions are equivalent:

E(®(B)) = Eqs(B), (11)
for any a € B\®(B\{a}) the set ®(B)\{a} is B-stable,  (12)
for any a € B\ ®(B\{a}) there exists a ®-stable set S

such that S U {a} is ®-stable, a & S and ®(B\{a})cS. (13)

PrOOF: (11) = (12). Let a € B\ ®(B\ {a}) in (12). From Proposition 5
we obtain that a € E4(B)= Ey(P(B)). Since ®(B) is P-stable, by
Proposition 7 we get that the set ®(B)\{a} is ®-stable.

(12) = (11). Let a € E4(B). By Proposition 5 and by our assumption
(12), the set ®(B)\{a} is ®-stable. From Proposition 7 we infer that
a € Eg(®(B)). Thus Eg4(B) C Ey(®(B)). The inverse inclusion has been
shown in Proposition 9.
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(12)= (13). Put S=®(B)\{a} in (12). Since ® is enlarging, a &
®(B). Consequently, S U {a} = ®(B). By the idempotence of ®, the set
S U {a} is ®-stable. From a & ®(B\ {a}) and from the isotonicity of ®
we get that ®(B\{a})C ®(B)\{a}=S.

(13) = (12). Thanks to the correspondence between closure operations
and closure systems, it is sufficient to show that ®(B)\{a} is an
intersection of ®-stable sets, i.e. that for any ¢ & ®(B)\{a} there exists
a ®-stable set K, such that ¢ ¢ K, and ®(B)\{a} C K,. Obviously, if
our c is different from a, then one can put K, = ®(B). In the case c=a
put K,=S. Since SU {a} is ®-stable and since ® is enlarging and
isotonic, from ®(B\ {a})C S we infer that

®(B)c®[®(B\(a})U{a}]cSu{a}.

Consequently, ®(B)\{a} c S=K,. Of course, a & K.
The proof is complete.

Note that any ®-stable set C such that a € C can be presented in the
form ®(B\{a}), where B=CU {a}. Consequently, using standard
techniques, from Proposition 10 we obtain

THEOREM 3: If ® is a closure operation, then the following conditions are
equivalent:

any set and its closure have identical non-trivially ®-extreme
elements,  (14)

for any ®-stable set C and a & C the set ®(C U {a})\{a}
is ®-stable,  (15)

for any ®-stable set C and a & C there exists a ®-stable set S
such that SU {a} is ®-stable, a& Sand CC S, (16)

®-equivalent sets have identical non-trivially ®-extreme elements.(17)

From Theorem 1.4 of [6], p. 46, and from the correspondence between
closure operations and closure systems it results that if ® is a domain
finite closure operation, then any ®-stable set not containing an element
x € X can be enlarged to a maximal ®-stable set not containing x.
Consequently, the equivalence of (14) and (16) implies

THEOREM 4: Let ® be a domain finite closure operation. Any set and its
closure have identical non-trivially ®-extreme elements if and only if for any
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x € X and any maximal ®-stable set C not containing x, the set CU {x} is
®-stable.

5. Some examples

Usually, ®-extreme subsets and elements are considered for ® defined
on pairs of elements of X. This way one defines the notions of extreme
subset and extreme point of a set of a real linear space, extreme support
hyperplanes (comp. [3], p. 15), terminal points ([2], p. 53) and subsets [16]
of a set of a metric space, extreme points of a subset of a partially
ordered set ([7], comp. also Example 3 below), extreme points and
subsets in various axiomatic convexity spaces (see e.g. [5]). Also extreme
rays of a cone can be defined on this way. The equivalence of some
formulas used in such definitions is presented in Proposition 11, where
instead ®({x, y}) we simply write ®{x, y}.

PROPOSITION 11: Let ® and ® be two operations defined on all pairs of
(not necessarily different) elements of X such that x, y&€®{x, y},
O{x, x}=¢ and ®{x, y}={x, y}U®{(x, y} for any x, y€ X. For
any subset A of B the following conditions are equivalent:

(a) A is a ®-extreme subset of B,

(b) 4 is a ®-extreme subset of B,

(c) for every x, yEB from AN®{x, y}+# ¢ it results x, y E A,

(d) for every x, yEB and ac€ AN®{x, y} itis x=a, ory=a, or

X, yEA,
() AND®{x, y}=9¢ for each x € B\ A and each y € B,
(f) AN®{x, y}c{y} for each x € B\ A and each y € B.

ExaMmPLE 1: Let L be a real liner space and let segm{x, y}={(1—a)x
+ ay; 0 <a <1}. Obviously, the classical notion of extreme subset of a
set is just the notion of segm-extreme subset. Consider other kinds of
extremeness in L. Let conv denote the operation of convex hull. From
the equality (segm")“ = conv (comp. [4]) and by Propositions 2, 3, 5 and
Theorems 2, 4 (as it results from Theorem 3.1 of [11], for any maximal
convex set C not containing a gien point a, the set CU {a} is also
convex) we conclude that conv-extreme subsets of any convex set coin-
cide with extreme subsets and that conv-extreme points of any set B are
identical with extreme points of conv B. A generalization of conv-ex-
tremeness is presented in Example 2. A subset 4 of a convex set B is
called a semi-extreme subset of B if B\ 4 is convex (comp. [12], p. 32).
As in [22], pp. 186-187, this notion can be extended to arbitrary (i.e. not
necessary convex) set B: if A C B and A N conv(B\ 4) = ¢, then we call
A a semi-extreme subset of B. Simply examples show that the intersection
of two semi-extreme subsets may not be a semi-extreme subset. From (a)
in Theorem 1 we infer that the notion of semi-extreme subset is not a
case of our scheme of ®-extremeness. One can extend the definition of
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semi-extreme subsets for operations as follows. If 4 € BC X and if for
any K€ 9, NP(B\A) and any x € 4 N ®(K) there exists M € Dy N
P(A N K)such that x € ®(M), then A is called a ®-semi-extreme subset
of B. The reader can easily check up that for ®-semi-extreme subsets
there hold analogical properties as (b), (d) and (e) of Theorem 1 and that
conv-semi-extreme subsets are just semi-extreme ones. Also relative ex-
treme points [15] and relative extreme subsets [17] are studied. Remember
that a subset 4 of B is said to be an extreme subset of B relative to C if
forany x € B, y € C, from 4 Nsegm{ x, y} # ¢ it follows x € 4. This is
a special case of our notion of ®-extreme subset, where 9, consists of all
one-point sets and ®({x})=U  c -segm{x, y}.

ExAMPLE 2: Consider two kinds of extremeness in a convexity structure
(X, ¥). As in many papers concerning convexity structures, the hull
operation (i.e. the closure operation) %, generated by ¥ will be simply
denoted by the same symbol €. In [22], pp. 186-187, there was intro-
duced a notion of extreme subset for convexity structures for which, as
for a special case of the definition of ®-semi-extreme subset presented in
Example 1, we use the term %semi-extreme subset or semi-extreme
subset for short. Let A C B C X. We call 4 a @semi-extreme subset of B
if

ANE(B\A)=0¢.

Simultaneously, it is natural to consider also %extreme (shortly: extreme)
subsets. By Proposition 1 it is clear that (2) may be used as a definition:
if

ANE(K)c¥(ANK) forany KC B,

then A is called a €extreme subset of B. In the case 4 ={a}, a is called
a %-extreme point of B. In two special cases, the notion of %-extreme
point a € B has been introduced earlier: using (7) for ¢ being domain
finite ([8], p. 151) and with the help of (10) when B € € (see [13], p. 127
and [14], p. 119). From Proposition 5 we obtain a simply characterization
of %extremeness of a point a of B, namely

a¢ ¢(B\{a}).

It enables us to observe a surprising connection of the notions of
%-extreme point and %independent set ([21], p. 38, [18], p. 174, [9], p. 27,
[13], p. 120) which can be simply expressed by defining a %-independent
set as one with all points %extreme. Other properties of %-extreme
subsets and points are given in Theorems 1, 3, 4 and Propositions 4, 6, 8,
9, 10. Moreover, from (3), (4) and from the equality € “= € they result



[11] General notion of extreme subset 71

characterizations of #-extreme subsets for € being domain finite and for
% with finite Caratheodory’s number. Obviously, any %extreme subset
of B is a %semi-extreme one of B. Moreover, %-semi-extreme and
%-extreme points of arbitrary set coincide.

ExAMPLE 3: Let P be a set partially ordered by a relation <. For any x,
z€P put S{x,z}={y; x<y<z or z<y<x)} and Z{x, z}=
S{x, z}\{x, z}. A set CC P is called order convex [7] if E{x, z}C C
for any x, z € C. Since the family of order convex subsets is a closure
system over P, there is defined the corresponding closure (hull) operation
Q. By order extreme subsets we understand S-extreme subsets, i.e.,
S-extreme subsets (see Proposition 11). Order extreme elements have
been introduced and discussed in [7]. From the equality =“=Q (see [7])
and from Proposition 2 and Theorem 4 we obtain that order extreme and
Q-extreme subsets of arbitrary set coincide and that any set and its order
convex hull have identical order extreme elements. As an example of
order extreme elements, one can take < ,-maximal elements (see [23], pp.
18 and 30) in a semi-regular topological convexity structure and, more
general, in any convexity structure such that for any a, b, ¢ from
c€ ¥{a, b} and b€ €{a, c} it results b = c. Similarly as in Examples 1
and 2 we can consider relative order extreme subsets (i.e. relative Z-ex-
treme subsets) and Q-semi-extreme subsets. It is easy to test that order
extreme subsets relative a set and relative its order convex hull are
identical and that A is an §2-semi-extreme subset of B if and only if A4 is
an order extreme subset of B relative to B\ 4.

ExAMPLE 4: Denote by ¢/ the closure operation in a topological space 7.
From the last part of Proposition 1 we obtain that a subset 4 of B is
cl-extreme if and only if 4 N c/(B\ A) = ¢. Particularly, c/-extreme points
of B coincide with isolated points of B. Note that c/-extreme subsets of T
are just open sets.

References

[1] G. BIRKHOFF: Lattice Theory. New York: American Mathematical Society (1948).

[2] L.M. BLUMENTHAL: Theory and Applications of Distance Geometry. Oxford: Clarendon
Press (1953).

[3] T. BONNESEN and W. FENCHEL: Theorie der konvexen Korper. Berlin: Springer-Verlag
(1934). Reprint; New York: Chelsea Publishing Company (1948).

[4] W. BonNICE and V.L. KLEe: The generation of convex hulls. Math. Ann. 152 (1963)
1-29.

[5] V. BryanT: Topological convexity spaces. Proc. Edinburgh Math. Soc. 19 (1974)
125-132.

[6] P.M. ConN: Universal Algebra. New York: Harper and Row (1965).

[7] S.P. FRANKLIN: Some results on order convexity. Amer. Math. Monthly 69 (1962)
357-359.

[8] B. FUCHSSTEINER: Verallgemeinter Konvexitatsbegriffe und der Satz von Krein-Mil-
man. Math. Ann. 186 (1970) 149-154.



72 M. Lassak [12]

[9] G. GRATZER: Universal Algebra. Princeton: Van Nostrand (1968).

[10] P.C. HaMMER: Extended topology: Set-valued set-functions. Nieuw Arch. Wisk. 10
(1962) 55-717.

[11] P.C. HAMMER: Semispaces and the topology of convexity. Proceedings of Symposia in
Pure Mathematics 7 (Convexity), pp. 305-316. Providence: American Mathematical
Society (1963).

[12] R.B. HOLMES: Geometric Functional Analysis and its Applications. New York:
Springer-Verlag (1975).

[13] R.E. JamisoN: Partition numbers for trees and ordered sets. Pacific J. Math. 96 (1981)
115-140.

[14] R.E. JAMISON: A perspective on abstract convexity: Classifying alignments by varie-
ties. Proceedings of the Second University Oklahoma Conference (Convexity and related
combinatorial geometry), pp. 113-150. Normal: Marcel Dekker, (1980).

[15] V. KLEE: Relative extreme points. Proceedings of the International Symposium on
Linear Spaces, pp. 282-289. Jerusalem: Jerusalem Academic Press (1961).

[16] M. Lassak: Terminal subsets of convex sets in finite-dimensional real normed spaces.
Collog. Math. (to appear).

[17] M. Lassak: Relative extreme subsets. Compositio Math. 56 (1985) 233-236.

[18] E. MARczewsKI: Independence in abstract algebras. Results and problems. Collog.
Math. 14 (1966) 169-188.

[19] R.T. ROCKAFELLAR: Convex Analysis. New York: Princeton University Press (1970).

[20] J. ScumipT: Uber die Rolle der transfiniten Schlussweisen in einer allgemeinen
Idealtheorie. Math. Nachr. 7 (1952) 162-168.

[21] J. ScuMIiDT: Einige grundlegende Begriffe und Satze aus der Theorie der
Hiillenoperatoren. Bericht Uber Mathematische Tagung, pp. 21-48. Berlin: Deutscher
Verlag der Wissenschaften (1953).

[22] G. SierksMA: Generalizations of Helly’s theorem: Open problems. Proceedings of the
Second University Oklahoma Conference (Convexity and related combinatorial geometry),
pp- 173-192. Norman: Marcel Dekker (1980).

[23] M. VAN DE VEL: Pseudo-boundaries and pseudo-interiors for topologicaly convexities.
Dissertationes Math. 210 (1983) 1-76.

[24] L.R.J. WESTERMANN: On the hull operator. Indag. Math. 38 (1976) 179-184.

(Oblatum 30-111-1984)

Instytut Matematyki i Fizyki ATR
ul. Kaliskiego 7

85-790 Bydgoszcz

Poland



