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A GENERAL NOTION OF EXTREME SUBSET

Marek Lassak

Compositio Mathematica 57 (1986) 61-72.
© 1986 Martinus Nijhoff Publishers, Dordrecht. Printed in The Netherlands.

The purpose of this paper is a general view on various definitions of
extreme subsets and extreme elements as used in several branches of
mathematics. Using terms of set operations, we present a universal
scheme common for many such definitions and we discuss it under some
weak assumptions.

Let X be an arbitrary set and let P(X) denote the family of all
subsets of X. Any function 4Y mapping a subfamily gv of P(X) into
P(X) is called a set operation in X or simply an operation. D03A6 is the

domain of (D.
In [16] the following definition has been proposed

DEFINITION: If A ~ B ~ X and if for any K ~ D03A6 ~ P(B) and any
x ~ A ~ 03A6(K) there exists M ~ D03A6 ~ P(A ~ K) such that x ~ 03A6(M),
then A is said to be a 03A6-extreme subset of B.

In the case A = {a} of the above definition, a will be called a
03A6-extreme element of B.

Examples of 4D-extreme elements are extreme points of a set of a real
linear space (03A6 maps any set {x, y 1 onto the segment j oining x and y),
isolated points of a set of any topological space (03A6 is the closure

operation), terminal points of a set of a metric space (4Y maps any set
{x, y 1 onto the set of all points lying metrically between x and y ). For
examples of C-extreme subsets and other examples of V-extreme ele-
ments see the last paragraph of this paper.

1. Set operations

This paragraph is of preparatory nature.
An opération 0 in X is called:
- full, if D03A6 = P(X),
- isotonic, if for any G, H E D03A6 from Ge H it follows 03A6(G) ~ 03A6( H ),
- enlarging, if G ~ 03A6(G) for any G E D03A6,
- idempotent, if 03A6(03A6(A))=03A6(A) for any A E -9,D such that 03A6(A) E

D03A6,
- a closure operation, if it is full, isotonic, enlarging, and idempotent,
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- additive, if it is full and 03A6(G U H) = 03A6(G) U (D(H) for any

G, H ~ P(X),
- cover finite, if (1) (G) C: ~{03A6(F); F ~ D03A6 ~ P(G), |F|  oc for

any G ~ D03A6,
- domain finite, if (D (G) = ~ {03A6(F); F ~ D03A6 ~ P(G), |F|  cc for

any G E !!fi4J.
Full isotonic, full enlarging, full idempotent, full domain finite, and

closure operations are considered by many authors (see [1],[6],[10],[11],
[20],[21] for instance).

The smallest number k  0 such that

is called Caratheodory’s number of 4) and it is denoted by c(03A6). If such k
does not exist, then we put c(03A6) = oo .

Obviously, if 0 is isotonic, then the inclusion in the above definition
can be replaced by the equality. Note that any operation with finite

Caratheodory’s number is cover finite.
If 03A6(G) = 03A6(H), then G and H are called (D-equivalent. If addition-

ally G c H, then we call G a (D-equivalent subset of H.
We call K E D03A6 a (D-stable set if 03A6(K) = K.
Remeber that a closed under arbitrary intersections family  ~ P(X)

is called a closure system over X. If moreover ~ E , then (X, W) is

usually called a convexity structure. Let the symbol h(A) denote the
intersection of all sets of W which contain a given set A ~ P(X).

It is well known (see e.g. [6], p. 43) that there exists one-to-one

correspondence between closure systems over X and closure operations
in X: (~) if  is a closure system over X, then h is a closure

operation, (~) if 03A6 is a closure operation, then the family Wqy of

03A6-stable sets is a closure system over X and h03A6= (D.

If (D is a closure operation, then 03A6(K) is called the closure of K.
For a given opération 0 in X we define an auxiliary operation

If 03A6 is full, then let (comp. [11], p. 311)

where 03A60(G) = G, 03A6l+1(G) = 03A6(03A6l(G)), i = 0, 1,....
Obviously, both of the operations 03A6~, 03A603C9 are full. Moreover, 03A6~ is

isotonic. If (D is isotonic, then 03A6~(G) = 03A6(G) for any G G 3qy. If 03A6 is
full and isotonic, then 03A6~ = (D.
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2. Général properties of 4Y-extreme subsets

Observe that the definition of 4Y-extreme subset A of B can be shortly
expressed by the formula

The following five statements of Theorem 1 generalize well known
properties of the classic extreme subsets in real linear spaces.

THEOREM 1: For each operation (D in X we have:
(a) Any finite intersection of 4)-extreme subsets of a set B is a (D-ex-

treme subset of B. This is also true for arbitrary intersections provided 03A6 is
cover finite.

(b) Any union of 03A6-extreme subsets of a set B is also a 03A6-extreme
subset of B.

(c) If B is a 03A6-extreme subset of C and A is a (D-extreme subset of B,
then A is a (D-extreme subset of C.

(d) If A c B c C and if A is a (D-extreme subset of C, then A is a

(D-extreme subset of B.
(e) Sets B, ~ and (if ~ E DO) all subsets of B ~ 03A6(~) are 03A6-extreme

subsets of B.

PROOF: We prove only the first part. The other ones are left to the reader.
Let Al, A2 be (D-extreme subsets of B. Suppose, x E (AI n A2) ~

03A6(K), where K ~ D03A6 ~ P(B). Since AI is a (D-extreme subset of B and
x ~ AI ~ 03A6(K), there exists Ml E D03A6 n 8P(A1 ~ K) such that x ~ 03A6(M1).
Similarly, from x E A 2 ~ 03A6(M1) and Ml e D03A6 ~ 9 (B) we get that x c
03A6(M) for some M ~ D03A6 n Y (A 2 n M1). Obviously, M ~ D03A6 ~ P(A1 ~
A2 ~ K). Thus AI ~ A2 is a (D-extreme subset of B. Consequently, any
finite intersection of (D-extreme subsets of B is also (D-extreme.

Now, let 03A6 be cover finite and A., À E A, be 0-extreme subsets of B.
Put A = ~ {A03BB, 03BB E 039B}. Suppose, K E D03A6 ~ 8P(B) and x E A ~ 03A6(K).
Since (D is cover finite, x F= 0 (M) for a finite M ~ D03A6 ~ P(K). Without
loss of generality, we can assume that M is minimum (in respect to
inclusion) set of D03A6 ~ P(K) for which x ~ 03A6(M). Moreover, x E A À
and Ax is a (D-extreme subset of B for any À E A. Thus for any À E A
there exists Mx ~ D03A6 ~ P(A03BB ~ M) c D03A6 n,9(K) such that x ~ 03A6(M03BB).
Since M is minimal and Mx c M, we have Mx = M for all À E A. From
Mx c Ax, À E A, we get M c A. Hence M E D03A6 n9(A ~ K). Thus A is
a (D-extreme subset of B.

Note that in general case the intersection of infinitely many (D-extreme
subsets may fail to be (D-extreme (comp. e.g. Example 4).

PROPOSITION 1: Let 03A6 be a full isotonic operation [respectively: a cover
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finite operation, an operation with finite Caratheodory’s number, an

additive operation]. A subset A of B is 03A6-extreme if and only if the below
condition (2) [respectively: (3), (4), (5)] holds:

PROOF: The first three statements result easily from (1), because 03A6~ = (D
for any full isotonic operation, and from the definitions of cover finite
operation and Caratheodory’s number.
We prove the last part. As additive, the operation (D is isotonic and

full. So it is sufficient to show that (2) and (5) are equivalent.
Immediately, (5) results from (2) putting K = BBA.
Assume, (5) holds. Therefore A ~ 03A6(BBA) ~ A ~ 03A6(~). Let K be a

subset of B. Since (D is isotonic, 03A6(KBA) ~ 03A6(BBA) and 03A6(~) ~ 03A6(K
r1 A). Moreover, (D is additive. Thus we get that

which ends the proof.

Condition (2) is very useful and it can be applied to full isotonic

operations, particularly to the operation 03A6~ for any 03A6. This is why we
formulate the following proposition whose proof is left to the reader.

PROPOSITION 2: A is a (D-extreme subset of B if and only if A is a

0 U -extreme subset of B.
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3. 4l-extreme and 03A603C9-extreme subsets

THEOREM 2: Any 03A6-extreme subset of B is also (D w-extreme provided 03A6 is
full domain finite and B is 03A603C9-stable ( particularly: 03A6-stable).

PROOF: Let A be a 4Y-extreme subset of B. Since 03A6 is full and (as domain
finite) isotonic, 03A603C9 is also full and isotonic. By the first part of Proposi-
tion 1, to verify that A is a (D’-extreme subset of B it is sufficient to
show the inclusion A ~ 03A603C9(H) ~ 03A603C9(A n H) for any H ~ P(B).

Let x E A ~ 03A603C9(H). Let m be the smallest number such that x e
03A6m(H). Recurrently, define finite sets Hm, ... , Ho as follows. Put Hm =

{x}. Obviously, Hm ~ 03A6m(H). Suppose, a finite subset Hn of 03A6n(H) is
defined, where m  n &#x3E; 0. Since (D is full domain finite, there exists a
finite set Gn-1 ~ 03A6n-1(H) such that Hn ~ 03A6(Gn-1). Consequently, there
exists a finite minimal (in respect to inclusion) subset Hn_l of 03A6n-1(H)
such that Hn ~ 03A6(Hn-1). So Hm,...,H0 are defined. Of course, Hk c
03A6(Hk-1) for k = 1,..., n and Hk ~ 03A6k(H) for k = 0,..., m.

Since 03A6 is isotonic, any ok is also isotonic. Therefore

Obviously, Hm c A. Assume Hn c A, where m  n &#x3E; 0. Putting K =
Hn-1 in (2) we obtain A ~ 03A6(Hn-1) ~ 03A6(A ~ Hn-1). Since Hn c A and
Hn ~ 03A6(Hn-1), we have Hn ~ 03A6(A ~ Hn-1). Moreover, Hn-1 is a minimal
subset of 03A6n-1(H) such that Hn ~ 03A6(Hn-1). Therefore Hn-1 c A ~ Hn-1 
and consequently, Hn-1 ~ A. Thus Hm,..., Ho are subsets of A. Particu-
larly, H0 ~ A.

From Hk ~ 03A6(Hk-1), k = 1,..., m, from H0 ~ A and H0 ~ 03A60(H) =
H, thanks the isotonicity of 03A6l, we get

PROPOSITION 3 : Any 03A603C9-extreme subset of B is also (D-extreme provided:
03A6 is full, c(03A6)  oc, and (D (F) is 03A6-stable for 1 F |  c(03A6).

PROOF : Let A be a 03A603C9-extreme subset of B. By (1) we obtain that

If |K|  c(03A6), then 03A603C9(K)=03A6(K). Moreover, 03A603C9(M)=03A6(M) for

M ~ P(A ~ K ). Consequently, (03A603C9)~(A n K) = 03A6~(A ~ K ). Hence (4)
is satisfied which, in virtue of Proposition 1, ends the proof.
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4. 4l-extreme elements

If ç G D03A6, then any element of 03A6(~) is a 0-extreme element of each set
to which it belongs (comp. (e) in Theorem 1). Such elements are called
trivially 03A6-extreme. For an arbitrary operation 03A6 in X, we denote by
E03A6(B) the set of all non-trivially (D-extreme elements, i.e. of all (D-ex-

treme elements of B which do not belong to 03A6(~).

PROPOSITION 4: If a ~ E03A6(B), then

For a full enlarging operation 03A6, the conditions a E E03A6(B) and (6) are
equivalent.

Let us observe (for use in Example 2) that if 03A6 is cover finite, than (6)
is equivalent to the condition

PROPOSITION 5 : If 03A6 is a full operation and a E E(D(B), then

For full enlarging isotonic operations, the conditions a E ED(B) and (8)
are equivalent.

PROPOSITION 6 : If 03A6 is full and enlarging, then a E ED(B) implies

If (D is a closure operation, a E E03A6(B) is equivalent to (9).

PROPOSITION 7: Let (D be a full, enlarging, isotonic operation and let a

belong to a (D-stable set B. Then a E Ecp(B) if and only if

We omit the proofs of Propositions 4-7 as rather tedious. Simply
examples show that all assumptions about 0 are necessary there. In the
case of closure operations, an additional characterization of non-trivially
03A6-extreme elements is given in the first part of Proposition 9.

With the help of Proposition 4 one can easily obtain the following

PROPOSITION 8: Let 4D be an enlarging operation and B ~ D03A6. Then

E03A6(B) is contained in each (D-equivalent subset of B. Moreover, if E03A6(B)
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is a (D-equivalent subset of B, then it is the smallest 4)-equivalent subset of
B.

PROPOSITION 9: For any closure operation (D and any B ~ P(X) we have :
(a) Ev(B) coincides with the intersection of all 4:J-equivalent subsets of B.
(b) If there exists the smallest (D-equivalent subset of B, then it is equal

to E03A6(B).
(c) 03A6(E03A6(B))=03A6(B) if and only if the family of all 03A6-equivalent

subsets of B is a closure system over B.
(d) E03A6(03A6(B)) ~ E03A6(B).

PROOF: (a) Let a e E03A6(B). In virtue of Proposition 8 it is sufficient to
show that a does not belong to some 03A6-equivalent subset of B. The
searched subset is BB{a} because (9) does not hold.

(b) If there exists the smallest 4:J-equivalent subset of B, then it

coincides with the intersection of all 03A6-equivalent subsets of B. Conse-
quently, it is equal to EO (B) as we have shown in (a).

(c) This statement easy results from (b) and from Proposition 8.
(d) Let a ~ E03A6(03A6(B)). By (a) we obtain that a belongs to any

03A6-equivalent subset 03A6(B). Particularly, a ~ B. Since a is a 0-extreme

element of 4:J(B) and B c 4:J(B), we infer from part (d) of Theorem 1
that a is also a 4:J-extreme element of B. From a E E03A6(03A6(B)) it follows
a ~ 03A6(~). Consequently, a e E03A6(B).

For B being 4:J-stable, the reader can observe a connection of state-
ment (a) of Proposition 9 with the operation jh considered in [24] and
consequently, a connection of Examples 1 and 4 presented at the end of
this paper with Corollaries 2.3 and 2.4 of [24].

PROPOSITION 10: For any closure operation (1) and any set B E P(X) the
following conditions are equivalent:

PROOF: (11) ~ (12). Let a ~ B B 03A6 (BB{a}) in (12). From Proposition 5
we obtain that a ~ E03A6(B) = E03A6(03A6(B)). Since 03A6(B) is (D-stable, by
Proposition 7 we get that the set 03A6(B)B{a} is (D-stable.

(12) ~ (11). Let a E Ev(B). By Proposition 5 and by our assumption
(12), the set 03A6(B)B{a} is 03A6-stable. From Proposition 7 we infer that
a E E03A6(03A6(B)). Thus E03A6(B) c E03A6(03A6(B)). The inverse inclusion has been
shown in Proposition 9.
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(12) - (13). Put S = 03A6(B)B{a} in (12). Since 03A6 is enlarging, a E

03A6(B). Consequently, S U {a} = 03A6(B). By the idempotence of (D, the set
S U (al is 03A6-stable. From a ~ 03A6(BB{a}) and from the isotonicity of 03A6
we get that 03A6(BB{a}) ~ 03A6(B)B{a}=S.

(13) ~ (12). Thanks to the correspondence between closure operations
and closure systems, it is sufficient to show that 03A6(B)B{a} is an
intersection of 03A6-stable sets, i.e. that for any c ~ 03A6(B)B{a} there exists
a 03A6-stable set Kc such that c ~ Kc and 03A6(B)B{a} ~ Kc. Obviously, if
our c is different from a, then one can put Kc = 03A6(B). In the case c = a
put Ka = S. Since S ~ {a} is 03A6-stable and since (D is enlarging and
isotonic, from 03A6(BB{03B1}) ~ S we infer that

Consequently, 03A6(B)B {a} c S = Ka . Of course, a ~ Ka.
The proof is complete.

Note that any qb-stable set C such that a ~ C can be presented in the
form 03A6(BB{a}), where B = C ~ ( a ). Consequently, using standard

techniques, from Proposition 10 we obtain

THEOREM 3: If 03A6 is a closure operation, then the following conditions are
equivalent:

any set and its closure have identical non-trivially (D-extreme
elements, (14)

for any (D-stable set C and a ~ C the set 03A6 ( C U ( a}) B ( a}
is (D-stable, (15)

for any (D-stable set C and a ~ C there exists a (D-stable set S
such that S U ( a} is (D-stable, a e S and C c S, (16)

(D-equivalent sets have identical non-trivially (D-extreme elements. (17)

From Theorem 1.4 of [6], p. 46, and from the correspondence between
closure operations and closure systems it results that if 03A6 is a domain
finite closure operation, then any (D-stable set not containing an element
x E X can be enlarged to a maximal (D-stable set not containing x.

Consequently, the equivalence of (14) and (16) implies

THEOREM 4: Let 03A6 be a domain finite closure operation. Any set and its
closure have identical non-trivially (D-extreme elements if and only if for any
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x e X and any maximal (D-stable set C not containing x, the set C ~ {x} is
03A6-stable.

5. Some examples

Usually, 03A6-extreme subsets and elements are considered for 4) defined
on pairs of elements of X. This way one defines the notions of extreme
subset and extreme point of a set of a real linear space, extreme support
hyperplanes (comp. [3], p. 15), terminal points ([2], p. 53) and subsets [16]
of a set of a metric space, extreme points of a subset of a partially
ordered set ([7], comp. also Example 3 below), extreme points and
subsets in various axiomatic convexity spaces (see e.g. [5]). Also extreme
rays of a cone can be defined on this way. The equivalence of some
formulas used in such definitions is presented in Proposition 11, where
instead 03A6({x, y ) ) we simply write 03A6{x, y}.

PROPOSITION 11: Let 03A6 and 03A6 be two operations defined on all pairs of
(not necessarily different) elements of X such that x, y ~ 03A6{x, y},
03A6{x, x} = ~ and 03A6{x, y} = {x, y} ~ 03A6{x, yl for any x, y E X. For
any subset A of B the following conditions are equivalent:

(a) A is a (D-extreme subset of B,
(b) A is a (D-extreme subset of B,
(c) for every x, y E B from A rl 03A6{x, y} ~ ~ it results x, y E A,
(d) for every x, y E B and a E A ~ 03A6 {x, y} it is x = a, or y = a, or

x, y ~ A,
(e) A ~ 03A6{x, y} = ~ for each x E B BA and each y E B,
(f) A n 03A6{x, y} ~ {y} for each x E BBA and each y E B.

EXAMPLE 1: Let L be a real liner space and let segm{x, y 1 = {(1- a)x
+ a y; 0  a  1}. Obviously, the classical notion of extreme subset of a
set is just the notion of segm-extreme subset. Consider other kinds of
extremeness in L. Let conv denote the operation of convex hull. From
the equality (segm~)03C9 = conv (comp. [4]) and by Propositions 2, 3, 5 and
Theorems 2, 4 (as it results from Theorem 3.1 of [11], for any maximal
convex set C not containing a gien point a, the set C~{a} is also

convex) we conclude that conv-extreme subsets of any convex set coin-
cide with extreme subsets and that conv-extreme points of any set B are
identical with extreme points of conv B. A generalization of conv-ex-
tremeness is presented in Example 2. A subset A of a convex set B is
called a semi-extreme subset of B if BBA is convex (comp. [12], p. 32).
As in [22], pp. 186-187, this notion can be extended to arbitrary (i.e. not
necessary convex) set B : if A c B and A n conv(BBA) = q5, then we call
A a semi-extreme subset of B. Simply examples show that the intersection
of two semi-extreme subsets may not be a semi-extreme subset. From (a)
in Theorem 1 we infer that the notion of semi-extreme subset is not a

case of our scheme of 03A6-extremeness. One can extend the definition of
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semi-extreme subsets for operations as follows. If A c B c X and if for
any K ~ D03A6 ~ P(BBA) and any x ~ A ~ 03A6(K) there exists M ~ D03A6 ~
P(A ~ K ) such that x ~ 03A6(M), then A is called a 03A6-semi-extreme subset
of B. The reader can easily check up that for 03A6-semi-extreme subsets
there hold analogical properties as (b), (d) and (e) of Theorem 1 and that
conv-semi-extreme subsets are just semi-extreme ones. Also relative ex-
treme points [15] and relative extreme subsets [17] are studied. Remember
that a subset A of B is said to be an extreme subset of B relative to C if

for any x e B, y e C, from A n segm(x, y} ~ ~ it follows x e A. This is
a special case of our notion of 4J-extreme subset, where D03A6 consists of all
one-point sets and 03A6({x}) = ~y ~ Csegm{x, y}.

EXAMPLE 2: Consider two kinds of extremeness in a convexity structure
(X, ). As in many papers concerning convexity structures, the hull
operation (i.e. the closure operation) h,, generated by W will be simply
denoted by the same symbol W. In [22], pp. 186-187, there was intro-
duced a notion of extreme subset for convexity structures for which, as
for a special case of the definition of 03A6-semi-extreme subset presented in
Example 1, we use the term -semi-extreme subset or semi-extreme
subset for short. Let A c B c X. We call A a W-semi-extreme subset of B
if

Simultaneously, it is natural to consider also %-extreme (shortly: extreme)
subsets. By Proposition 1 it is clear that (2) may be used as a definition:
if

then A is called a -extreme subset of B. In the case A = {a}, a is called
a -extreme point of B. In two special cases, the notion of -extreme
point a E B has been introduced earlier: using (7) for W being domain
finite ([8], p. 151) and with the help of (10) when B ~  (see [13], p. 127
and [14], p. 119). From Proposition 5 we obtain a simply characterization
of -extremeness of a point a of B, namely

It enables us to observe a surprising connection of the notions of
-extreme point and -independent set ([21], p. 38, [18], p. 174, [9], p. 27,
[13], p. 120) which can be simply expressed by defining a -independent
set as one with all points -extreme. Other properties of %-extreme
subsets and points are given in Theorems 1, 3, 4 and Propositions 4, 6, 8,
9, 10. Moreover, from (3), (4) and from the equality ~= they result
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characterizations of -extreme subsets for W being domain finite and for
W with finite Caratheodory’s number. Obviously, any -extreme subset
of B is a -semi-extreme one of B. Moreover, -semi-extreme and
=extreme points of arbitrary set coincide.

EXAMPLE 3: Let P be a set partially ordered by a relation . For any x,
zeP put 03A3{x, z}={y; x  y  z or z  y  x} and 03A3{x, z}=
03A3{x, z}B{x, z}. A set C c P is called order convex [7] if 03A3{x, z} ~ C
for any x, z E C. Since the family of order convex subsets is a closure
system over P, there is defined the corresponding closure (hull) operation
03A9. By order extreme subsets we understand 03A3-extreme subsets, i.e.,
E-extreme subsets (see Proposition 11). Order extreme elements have
been introduced and discussed in [7]. From the equality Y- ’ = Q (see [7])
and from Proposition 2 and Theorem 4 we obtain that order extreme and
0-extreme subsets of arbitrary set coincide and that any set and its order
convex hull have identical order extreme elements. As an example of
order extreme elements, one can take  a-maximal elements (see [23], pp.
18 and 30) in a semi-regular topological convexity structure and, more
general, in any convexity structure such that for any a, b, c from

c ~ {a, b} and b ~ {a, c} it results b = c. Similarly as in Examples 1
and 2 we can consider relative order extreme subsets (i.e. relative 1-ex-
treme subsets) and 0-semi-extreme subsets. It is easy to test that order

extreme subsets relative a set and relative its order convex hull are

identical and that A is an 03A9-semi-extreme subset of B if and only if A is
an order extreme subset of B relative to BBA.

EXAMPLE 4: Denote by cl the closure operation in a topological space T.
From the last part of Proposition 1 we obtain that a subset A of B is

cl-extreme if and only if A ~ cl(BBA) = ç. Particularly, cl-extreme points
of B coincide with isolated points of B. Note that cl-extreme subsets of T
are just open sets.
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