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Abstract

In terms of the kernel of starshaped sets characterizations are given of the property that a
set is convex if and only if the hull of each pair in the set is in the set too, and of the
so-called join-hull commutativity property. The setting is that of a convexity space.

1. Introduction

A convexity space is a pair (X, W) where X is a nonempty set and  is a
family of subsets of X closed under arbitrary intersections and contain-
ing X and the empty set 0. Members of W are called -convex sets. For
any S c X the convex hull of S is defined as (S) = ~{A~:S~A}.
The concept of convexity spaces was introduced by Levi [10] and has
been extensively studied by many authors (see, among others, [3,5,6,12]).

The following two classes of convexity spaces are well-known.
A convexity space (X, ) is said to be join-hull commutative (JHC) iff

for each p~X and S~X we have (p~S)= ~{(p, x):x~ W(S)I.
A convexity space (X, ) is said to be domain finite (DF) iff for each

S~X, (S) = ~{(T):T~S and card T~}.
In this note some new classes of convexity spaces are defined and their

relationships are studied. It is shown that the known characterization of
convex sets for the class of JD ( = J H C and DF) convexity spaces is in
fact true in a greater class. Using this we add a remark to [11] where the
solution of the linearization problem of a convexity space has been given.

2. W-starshaped sets

First we mention that -starshaped sets are already studied by Soltan
[13] but our approach is somewhat different.
A set S c X is called -starshaped relative to a point p E S iff

(p, x) c S for each x E S. The set of points with respect to which S is
a -starshaped set is called the -kernel of S and is denoted by -ker(S).
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Obviously each -convex set S is a -starshaped set relative to any point
p E S. A -star emanating from a point q E S is defined as the set of all
points y ~ S such that W(q, y ) c S and is denoted by -st(q, S).

PROPERTY 2.1: p ~ -ker(S) iff U ( W ( p, x ) : x ~ S } ~ S.

PROPERTY 2.2: For each set S c X

In general, in a convexity space singletons need not be convex. The
next property shows that those points which are the W-kernels of some
-starshaped sets are -convex.

PROPERTY 2.3: If -ker(S) = {p} for some S c X, then {p} E W.

PROOF: Suppose ( p 1 e . Then there is an element y ~ (p) such that
p =1= y. However we have

and this implies that y ~ -ker(S), which is a contradiction.

3. B-convexity spaces

In 1913 Brunn [1] showed that in the ordinary convexity space (Rn, conv)
the kernel of every subset of IR n is a convex set. This is also true for any
linear space with the ordinary convex sets (cf. [15]), but is false for

general convexity spaces, as the following example shows.

EXAMPLE 3.1: Let X = R2 and suppose W consists of all ordinary convex
closed subsets of X. (X, ) is a convexity space. Now take the set
S = {(x, y):x2+y21}. It is clear that S is a -starshaped set and
W-ker(S) = S, but S not belongs to W.

A convexity space (X, ) is said to be a B-convexity space iff for each
S ~ X, -ker(S) is a -convex set.

As already mentioned, (IR n, conv) is a B-convexity space. A Bryant-
Webster convexity space is also a B-space, this follows from [2] Theorem
13.
We are interested in the following question: What is the class of

convexity spaces for which Brunn’s theorem holds?
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THEOREM 3.2: Each B-convexity space is DF.

PROOF: Let us recall that (X, ) is a DF-convexity space if and only if
U,597(E W for each chain F~ [4] (a chain being a nonempty family of
sets totally ordered by inclusion). Let (X, ) be a B-convexity space and
suppose that (X, W) is not DF. Then there is a chain F~ such that
U57e W. Clearly, ~F is a -starshaped set and -ker(~F) = U,9v.
Hence, -ker(~F) ~ , which is a contradiction.

THEOREM 3.3: Any JD-convexity space is a B-convexity space.

PROOF: Let (X, ) be a JD-convexity space and take any S c X. If S is
not -starshaped, then -ker(S) = 0 and we are done. So we may
assume that S is -starshaped. Take any xl, X2 E -ker(S), p E

(x1, X2)’ and z ~ S. Always we have W(z, p)~(z~(x1, x2)) =
(z, xi, x2) = (x1, z, X2) = W(Xl U (z, x2)). The starshapedness of
S implies that (x1, q) c S for each q E (x2, z) (since %(X2, z) c S).
As (X, ) is JHC it follows that

Hence, (z, p) c S. Therefore, (x1, x2) ~ -ker(S). Applying [6]
Theorem 2 gives -ker(S) ~ W.

The example below shows that the converse of Theorem 3.3 is not true in
general.

EXAMPLE 3.4: Let X = {(x, y)~R2:x2+y21} and we define  as
the family of the sets of the form A ~ X where A is an ordinary convex
set in R2. We show that (X, ) is a B-convexity space. Take any S c X.
We may of course suppose that -ker(S) ~ 0. In R 2 we define the set
S* = U (conv(x ~ -ker(S)) : x ~ S}. It is easy to see that S = S* n X

and -ker(S)=ker(S*)~X. Now Brunn’s theorem (in R2) and the

definition of  imply that -ker(S)~ and, consequently, that (X, )
is a B-convexity space. However, it is easy to verify that (X, ) does not
satisfy JD because it does not satisfy JHC.

THEOREM 3.5: Let (X, ) be a B-convexity space. The set S c X is
-convex if and only if (x, y) c S for every x, y E S.

PROOF: The necessity is obvious. To prove sufficiency take any x E S.
Then by our assumption we have U (W(x, y): y ~ S } c S. This means
that x ~ -ker(S) and consequently that S~-ker(S). The reverse
inclusion always holds, hence S = -ker(S). Now the definition of B-con-
vexity space implies that S E W. This completes the proof.
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COROLLARY 3.6: Let (X, ) be a B-convexity space. Then for each S c X
we have %ker(%ker(S)) = %-ker(S).

Our Theorem 3.5 and Corollary 3.6 are extensions (from JD to

B-convexity space) of Theorem 2 in [6] and Corollary 1 in [13], respec-
tively.

4. T-convexity spaces

Toranzos [14] has characterized ker(S) for ordinary convexity space as
the intersection of all maximal (in the sense of inclusion) convex subsets
of S. Such a characterization of the -kernel is true for a wider class of

convexity spaces.

EXAMPLE 4.1: Let X = {1, ..., 7} and let W consists of all singletons and
the system of Steiner triples on X (i.e. a family .97 of 3-element subsets of
X such that each pair in X belongs to exactly one triple; for instance
,9v= {{1, 2, 3}, (1, 5, 7}, (1, 4, 6}, {2, 4, 5}, {2, 6, 7}, {3, 4, 7},
{3, 5, 6}}). It is easy to verify that for any set S, -ker(S) is equal to the
intersection of all maximal -convex subsets of S.

A convexity space (X, ) is said to be a T-convexity space iff for each
S ~ X, -ker(S) is the intersection of all maximal -convex subsets of S.

Obviously any T-convexity space is a B-space. The Example 3.4 shows
that the converse is not true.

The answer to the question: Characterize the class of T-convexity
spaces, is the following theorem. A similar result can be found in Soltan
[13]. A Tl convexity space has all singletons convex.

THEOREM 4.2: Let (X, ) be a Tl convexity space. (X, ) is a

T-convexity space if and only if it is a JD-convexity space.

PROOF: Suppose first that (X, ) is a JD-space. Take any S c X. Our
assumptions (with Tl) imply that S can be described as the union of the
maximal %convex subsets of S:

It sufficies to show that

The inclusion ~{Ma:a~ IS} c %ker(S ) can be shown as follows. Take
any p~~{Ma:a~ IS} and any x E S. Then there is an a’ E Is such
that x E Ma,. Hence, {p, x}~Ma’, and so (p, x) c MQ. c S, which
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implies that p ~ -ker(S). To prove the reverse inclusion take any
p ~ -ker(S). Then W(p, x ) c S for each x ~ S. As (X, ) is JHC it
follows for each aEIs that (p ~ Ma) = ~{(p, x) : ~ E Ma} ~ S.
The maximality of the Ma’s implies that W(p U Ma ) = Ma. Hence p E Ma
for each a E Is, and we are done.
Now assume that (X, ) is a T-convexity space. Then (X, W) is a

B-convexity space and by Theorem 3.2 it is a DF-space. We must show
that (X, ) satisfies JHC. Let p E X and A c X. Consider the set

S = ~{(p, x ) : x E (A)}. It is clear that S is a %starshaped set with
p ~ -ker(S). As W(A) c S, there is a maximal convex subset Ma, c S
containing (A) and p (since (4.3) holds). So we get

So (X, W) is in fact JHC and the proof is complete.

5. Remarks

R-1. A well-known theorem of Krasnosel’skii [9,15] gives necessary and
sufficient conditions for a compact set S in R n to be starshaped. In the
proof of that theorem the following additional property of the kernel of a
compact set S is established.

By means of Krasnosel’skii’s lemma (see [15]) it can be shown that any
closed set also satisfies (5.1). Using (5.1) we define the following class of
sets in an arbitrary convexity space.
A set S of X is called a K-set if and only if it satisfies the equality

(5.1).
Obviously and -convex set is a K-set.
Note that K-sets play an important part in [8] where, using the ideas of

[7], the "starshapedness number" of a convexity space is introduced.

R-2. A convexity space (X, ) is said to be a K-convexity space iff any
subset of X is a K-set.

EXAMPLE 5.2: (X, 2X) is a K-convexity space, but the space considered in
Example 4.1 does not satisfy K.
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EXAMPLE 5.3: Let D be a nonempty subset of a set X. Following [12]
consider the family of sets ={X}~{A:D~A}. Clearly (X, ) is a
convexity space. It is easy to verify that (X, ) is a K-space if and only if
card D  2.

Obviously any K-convexity space is also a B-space but not conversely
as the example of the space (tR", conv) shows. Moreover, we remark that
conditions K and T are independent.

R-3. In [11] necessary and sufficient conditions for the existence of a real
linear structure for X such that the set of all convex sets of the resulting
linear space is precisely , are given. This is a solution of the lineariza-
tion problem of a convexity space.

Our approach enables us to give the solution for the larger class of
convexity spaces. Namely, the main theorem in [11] can be formulated as 
follows (for definitions see [11]).

THEOREM 5.4: Let (X, ) be a B-convexity space with the property that
for all x, y, z ~ X, W(x, y) = W(z, y ) implies x = z. A necessary and
sufficient condition that W is the family of all convex sets generated by a
real linear structure for X is that X has a linearization family X*.

PROOF: The proof goes just as in [11] but we apply Theorem 3.5 instead
of Theorem 2 in [6].
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