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STARSHAPEDNESS IN CONVEXITY SPACES

Krzysztof Kolodziejczyk

Abstract

In terms of the kernel of starshaped sets characterizations are given of the property that a
set is convex if and only if the hull of each pair in the set is in the set too, and of the
so-called join-hull commutativity property. The setting is that of a convexity space.

1. Introduction

A convexity space is a pair (X, ¥) where X is a nonempty set and € is a
family of subsets of X closed under arbitrary intersections and contain-
ing X and the empty set &. Members of € are called %convex sets. For
any S C X the convex hull of S is defined as €(S)=N{A € ¥:SCA4}.
The concept of convexity spaces was introduced by Levi [10] and has
been extensively studied by many authors (see, among others, [3,5,6,12]).

The following two classes of convexity spaces are well-known.

A convexity space (X, %) is said to be join-hull commutative (JHC) iff
foreach p€ Xand S C X wehave (pU S)= U{%(p, x): x € €(S)}.

A convexity space (X, €) is said to be domain finite (DF) iff for each
SCX,4(S)=U{¥(T):Tc S and card T < 0}.

In this note some new classes of convexity spaces are defined and their
relationships are studied. It is shown that the known characterization of
convex sets for the class of JD (=JHC and DF) convexity spaces is in
fact true in a greater class. Using this we add a remark to [11] where the
solution of the linearization problem of a convexity space has been given.

2. @-starshaped sets

First we mention that %-starshaped sets are already studied by Soltan
[13] but our approach is somewhat different.

A set SCX is called %starshaped relative to a point pe S iff
%(p, x)C S for each x € S. The set of points with respect to which S is
a %starshaped set is called the @kernel of S and is denoted by %ker(S).
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Obviously each %convex set S is a %starshaped set relative to any point
p € S. A %star emanating from a point g € S is defined as the set of all
points y € S such that ¥(gq, y) C S and is denoted by %st(q, S).

PROPERTY 2.1: p € %ker(S) iff U{¥(p, x):xES}CS.
PROPERTY 2.2: For each set S C X
Fker(S)= N{%st(q, S):q€S}.

In general, in a convexity space singletons need not be convex. The
next property shows that those points which are the %kernels of some
%-starshaped sets are #-convex.

PROPERTY 2.3: If ker(S)={p} for some SC X, then { p} € %.

PROOF: Suppose { p} & €. Then there is an element y € €( p) such that
p #y. However we have

U{¥%(y, x):xeS}cU{¥(¥(p)Ux):xeS}
=U{%(p,x):xeS}CS,
and this implies that y € %ker(S), which is a contradiction.
3. B-convexity spaces

In 1913 Brunn [1] showed that in the ordinary convexity space (R”, conv)
the kernel of every subset of R” is a convex set. This is also true for any
linear space with the ordinary convex sets (cf. [15]), but is false for
general convexity spaces, as the following example shows.

EXAMPLE 3.1: Let X=R? and suppose % consists of all ordinary convex
closed subsets of X. (X, ¥) is a convexity space. Now take the set
S={(x, y):x*+y?< 1}. It is clear that S is a %starshaped set and
%ker(S) =S, but S not belongs to %.

A convexity space (X, %) is said to be a B-convexity space iff for each
S C X, %ker(S) is a $convex set.

As already mentioned, (R", conv) is a B-convexity space. A Bryant-
Webster convexity space is also a B-space, this follows from [2] Theorem
13.

We are interested in the following question: What is the class of
convexity spaces for which Brunn’s theorem holds?
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THEOREM 3.2: Each B-convexity space is DF.

PROOF: Let us recall that (X, €) is a DF-convexity space if and only if
UZe € for each chain #C € [4] (a chain being a nonempty family of
sets totally ordered by inclusion). Let (X, ) be a B-convexity space and
suppose that (X, €) is not DF. Then there is a chain #C ¥ such that
UF¢ €. Clearly, U# is a %starshaped set and %ker(UZF )= UZF.
Hence, ¢ker(U% )& €, which is a contradiction.

THEOREM 3.3: Any JD-convexity space is a B-convexity space.

PROOF: Let (X, %) be a JD-convexity space and take any S C X. If S is
not %starshaped, then %ker(S)= @ and we are done. So we may
assume that S is %starshaped. Take any x,, x, € %ker(S), pe
€(x,, x,), and z € S. Always we have €(z, p)C €(zU E(x;, x,))=
€(z, x;, x,)= €(x,, 2z, x,)= €(x, U €(z, x,)). The starshapedness of
S implies that €(x,, g) C S for each g € €(x,, z) (since €(x,, z)C S).
As (X, €) is JHC it follows that

€(x,U b (x5, 2))=U{%(x,9):q€ €(x,,z)} CS.

Hence, ¢(z, p)C S. Therefore, ¥(x,, x,)C %ker(S). Applying [6]
Theorem 2 gives %ker(S) € .

The example below shows that the converse of Theorem 3.3 is not true in
general.

EXAMPLE 3.4: Let X = {(x, y)€R*:x*+y?>1) and we define € as
the family of the sets of the form 4 N X where 4 is an ordinary convex
set in R2. We show that (X, €) is a B-convexity space. Take any S C X.
We may of course suppose that %ker(S)# @. In R? we define the set
S* = U{conv(x U %ker(S)): x €S}. It is easy to see that S=S*NX
and %ker(S)=ker(S*)NX. Now Brunn’s theorem (in R?) and the
definition of ¥ imply that %ker(S)€ € and, consequently, that (X, €)
is a B-convexity space. However, it is easy to verify that (X, €) does not
satisfy JD because it does not satisfy JHC.

THEOREM 3.5: Let (X, €) be a B-convexity space. The set SC X is
%convex if and only if €(x, y)C S for every x, y € S.

PROOF: The necessity is obvious. To prove sufficiency take any x € S.
Then by our assumption we have U{%(x, y): y €S} C S. This means
that x € %ker(S) and consequently that S C %ker(S). The reverse
inclusion always holds, hence S = %ker(S). Now the definition of B-con-
vexity space implies that S € €. This completes the proof.
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COROLLARY 3.6: Let (X, €) be a B-convexity space. Then for each S C X
we have %-ker(%-ker(S))= %ker(S).

Our Theorem 3.5 and Corollary 3.6 are extensions (from JD to
B-convexity space) of Theorem 2 in [6] and Corollary 1 in [13], respec-
tively.

4. T-convexity spaces

Toranzos [14] has characterized ker(S) for ordinary convexity space as
the intersection of all maximal (in the sense of inclusion) convex subsets
of S. Such a characterization of the %-kernel is true for a wider class of
convexity spaces.

ExamPLE 4.1: Let X={1,...,7} and let % consists of all singletons and
the system of Steiner triples on X (i.e. a family % of 3-element subsets of
X such that each pair in X belongs to exactly one triple; for instance
F={{1, 2, 3}, {1, 5, 7}, {1, 4, 6}, {2, 4, 5}, {2, 6, 7}, {3, 4, T},
{3, 5, 6}}). It is easy to verify that for any set S, %ker(S) is equal to the
intersection of all maximal %convex subsets of S.

A convexity space (X, €) is said to be a T-convexity space iff for each
S C X, %ker(S) is the intersection of all maximal %convex subsets of S.

Obviously any T-convexity space is a B-space. The Example 3.4 shows
that the converse is not true.

The answer to the question: Characterize the class of T-convexity
spaces, is the following theorem. A similar result can be found in Soltan
[13]. A T, convexity space has all singletons convex.

THEOREM 4.2: Let (X, ¥) be a T, convexity space. (X, €) is a
T-convexity space if and only if it is a JD-convexity space.

PrROOF: Suppose first that (X, €) is a JD-space. Take any S C X. Our
assumptions (with T;) imply that S can be described as the union of the
maximal %convex subsets of S:

S=U{M,:a€l}.
It sufficies to show that

Fker(S)=N{M,:acI}. (4.3)
The inclusion N{M,: a € I} C %ker(S) can be shown as follows. Take

any p€ N{M,:a€I;} and any x € S. Then there is an a’ € I such
that x € M,.. Hence, { p, x} C M,, and so ¥(p, x)C M, C S, which
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implies that p € %ker(S). To prove the reverse inclusion take any
p € %ker(S). Then €(p, x)C S for each x €S. As (X, €) is JHC it
follows for each a€ Ig that ¥(pUM,)=U{%(p, x):xEM,} CS.
The maximality of the M,’s implies that ¥(p U M,)= M,. Hence p € M,
for each a € I, and we are done.

Now assume that (X, &) is a T-convexity space. Then (X, %) is a
B-convexity space and by Theorem 3.2 it is a DF-space. We must show
that (X, €) satisfies JHC. Let p€ X and 4 c X. Consider the set
S=U{%(p, x): x € €(A)}. Itisclear that S is a #starshaped set with
p € €ker(S). As €(A)C S, there is a maximal convex subset M, C S
containing ¥(A4) and p (since (4.3) holds). So we get

¢(pud)=%(pu¥(4))
cM,
cU{M,:acls}=S
=U{%(p, x):x€¥(A4)}.
So (X, %) is in fact JHC and the proof is complete.
5. Remarks

R-1. A well-known theorem of Krasnosel’skii [9,15] gives necessary and
sufficient conditions for a compact set S in R” to be starshaped. In the
proof of that theorem the following additional property of the kernel of a
compact set S is established.

Fker(S)= N{€(%st(x, S)):xeS}. (5.1)

By means of Krasnosel’skii’s lemma (see [15]) it can be shown that any
closed set also satisfies (5.1). Using (5.1) we define the following class of
sets in an arbitrary convexity space.

A set S of X is called a K-set if and only if it satisfies the equality
(5.1).

Obviously and %convex set is a K-set.

Note that K-sets play an important part in [8] where, using the ideas of
[7], the “starshapedness number” of a convexity space is introduced.

R-2. A convexity space (X, €) is said to be a K-convexity space iff any
subset of X is a K-set.

EXAMPLE 5.2: (X, 2%) is a K-convexity space, but the space considered in
Example 4.1 does not satisfy K.
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ExAMPLE 5.3: Let D be a nonempty subset of a set X. Following [12]
consider the family of sets ¥={ X} U{A: D& A}. Clearly (X, €) is a
convexity space. It is easy to verify that (X, €) is a K-space if and only if
card D 2.

Obviously any K-convexity space is also a B-space but not conversely
as the example of the space (R", conv) shows. Moreover, we remark that
conditions K and T are independent.

R-3. In [11] necessary and sufficient conditions for the existence of a real
linear structure for X such that the set of all convex sets of the resulting
linear space is precisely ¥, are given. This is a solution of the lineariza-
tion problem of a convexity space.

Our approach enables us to give the solution for the larger class of
convexity spaces. Namely, the main theorem in [11] can be formulated as
follows (for definitions see [11]).

THEOREM 5.4: Let (X, €) be a B-convexity space with the property that
for all x, y, z€ X, €(x, y)= €(z, y) implies x =z. A necessary and
sufficient condition that € is the family of all convex sets generated by a
real linear structure for X is that X has a linearization family X*.

PrOOF: The proof goes just as in [11] but we apply Theorem 3.5 instead
of Theorem 2 in [6].
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