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BEST APPROXIMANTS FROM NON-ARCHIMEDEAN
STONE-WEIERSTRASS SUBSPACES

Maria Zoraide M. Costa Soares

0. Introduction

Let X be a locally compact Hausdorff space, let (F,|-|) be a non-archi-
medean non-trivially valued division ring and (E, || -||) a normed space
over (F,|-]).

We say that g: X — E vanishes at infinity if, for each € > 0, the set
{x€ X; || g(x)]|| =€} is compact.

We denote by €(X; E) the vector space of all continuous functions
from X into E. €,(X; E) will denote the vector space of all continuous
functions which vanish at infinity, equipped with the norm f— || f || =
sup{ | f(x)||; x € X}.

The vector subspace of ¥(X; F) consisting of all continuous func-
tions f: X — F such that f(X) has compact closure in F, is denoted by
E*(X; F).

If A is the equivalence relation determined by 4 C €(X; F), A(x)=
{y € X; a(y)=a(x) for all a € A} is the A-equivalence class containing
X.

If YCX is any non-empty set, we denote by f|, the mapping
yeY->f(y) If # isany family of mappings f: X — S, we denote by
Flytheset {f|y; fEF }.

In this paper, we extend some results of Machado and Prolla [3] to the
case of non-archimedean normed spaces, and other results of Prolla [4].

If AC €*(X; F) is a subalgebra and WC €,(X; E) is a vector
subspace which is an A4-module, we proved in [5] that for each fe
€o(X; E),

dist(f; W) = sup dist( /| acers Wlace)-
xeX

We extend this “localization formula” for set-valued mappings under
an upper semicontinuity hypothesis (see Theorem 1.7 below) generalizing
a result of Prolla [4].

In Approximation Theory, given a normed space (N,| -||) and a
non-empty subset W C N, there are two main problems. The first one is
to characterize the closure of W in N, i.e., the set of all f& N such that
dist(f; W)=0. When N is a normed space of functions, this leads to
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Stone-Weierstrass type theorems by choosing appropriate algebraic con-
ditions on W. (For example, W is an 4-module, etc.).

The second problem arises when dist(f; W) > 0. Does there exist
g € W such that

IIf=gll = dist(f; W)?

More generally, if instead of a single f one deals with a bounded set
B C N, does there exist g € W such that

sup || f—g|l = inf sup || f—w]?
feB wEW rep

Such a g, when it exists is called a Chebyshev center of B in W. We
present some results (see Theorems 3.8 and 3.9) when N is €,(X; E) and
W is a so-called Stone-Weierstrass subspace. (see Olech [2]).

When W is a €*( X; F)-module (or more generally an 4-module, for
some separating subalgebra 4 C €*(X; F)) it is natural to ask whether
approximation properties of W(x)= {w(x); we W} in E, for every
x € X, will ensure the same for W in €,(X; E). Theorem 3.10 and 3.11
are along this line: in 3.10 one assumes that, for each s € X, and ve E
there is some element w(x) such that |[v—w(x)| = dist(v; W(x)).
Theorem 3.11 deals with the analogous question for Chebyshev centers.

This work represents part of the author’s dissertation at the Universi-
dade de Campinas.

1. Stone-Weierstrass theorems
Let X, (F,|-|) and (E, || -]|) be as in the introduction.

1.1. DEFINITION: A carrier ¢ from X to E is a mapping from X into the
non-empty subsets of E.

1.2. DEFINITION: Let ¢ be a carrier from X into E. We define the
distance of ¢ from a function g € €,(X; E) to be

dist(o; g)=SUP{ sup IIy—g(x)II}

xeX yE(P(x)
and the distance of ¢ from a subset W C €,(X; E) to be
dist(@; W) =inf{dist(¢; g); g€ W}.

1.3. DEFINITION: Let ¢ a carrier of X into E. We say that ¢ is upper
semicontinuous (u.s.c.) with respect to W C €,(X; E), if given w € W and
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r > 0, for each x € X such that ¢(x) € B(w(x); r) and each € > 0, there
is a neighborhood U of x such that ¢(y)C B(w(y); r+¢) forall y € U.
(If v€ E and s> 0 we denote by B(v; s) the set {u € E; |[u—v|| <s}).

1.4. ExampLE: If f€ €,(X; E), then ¢(x)= {f(x)}, x € X, is upper
semicontinuous with respect to any W C %,(X; E). Indeed, for each
we€ W and r > 0, the set

{(xeX; p(x)CB(w(x); r)}={xeX; || f(x)—w(x)||<r}
is open.

1.5. ExaMPLE: Let N C %,(X; E) be a equicontinuous subset. Define a
carrier ¢ from X into E by setting

p(x)={f(x); fEN},

for all x € X. We claim that ¢ is u.s.c. with respect to any W C 4,(X; E).
Indeed, let we W, r>0 and x € X with ¢(x)C B(w(x); r) be given.
Let ¢> 0. If N is equicontinuous then N — {w} is equicontinuous too,
and there is a neighborhood U of x such that || f(y)—w(y)—(f(x)—
w(x))|| <e forall ye U.

Hence, for all ye U

/() =wP) Il =111 (y) =w(y) = (f(x) =w(x))
+(f(x)—w(x)) I
<) =w(y) = (f(x) =w(x)) I
+11f(x) =w(x)

<e€e+r.

1.6. DEFINITION: Let ¢ be a carrier of X into £ and let W C €,(X; E).
We say that ¢ vanishes at infinity with respect to W, if for each we W
and € > 0 the set

{xe X; o(x) N(E\B(w(x); €)) #0}
is relatively compact, i.e. has compact closure.
1.7. THEOREM: Let (E,| ‘||) be a non-archimedean normed space over

(F, |+|); let AC €*(X; F) be a subalgebra and W C €y(X; E) a vector
subspace which is an A-module. For any carrier @ of X into E which is
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upper semicontinuous and vanishes at infinity with respect to W, we have:

dist(@; W) = sup dist(® | ax); Wlace)-

xeX

PrOOF: Let

A = sup dist(<p|Am; WIAM).

xEX

We always have A < dist(g; W).
Let ¢ >0 and x € X be given; there exists g, € W such that

diSt((PlA(x); gx'A(x)) <Ate
This implies that
Nt—g. (¥)]l <A+e forall t€ ¢(y) and y € A(x).

Since ¢ is upper semicontinuous with respect to W, there is an open
neighborhood U, of x such that

lt—g.(z)]| <A+e forallt€g(z)and z€ U,.

Clearly, A(x)C U.,.
Since ¢ vanishes at infinity with respect to W, the closure K, of

S.={reX; o(y)N(E\B(g.(»); A+¢)) =0}

is compact. We claim that A(x) N K, = /0. Indeed, assume z € A(x)N K.
Since A(x)C U, and K, is the closure of S,, there is some y € U, N S,.
But ¢p(y)C B(g,(y); A+¢) for all y € U, and so y cannot be in S,.
By Lemma 2.4, [5], there exists a finite set { x;, x,,...,Xx,} C X such
that for each 0 < § < 1, there are functions a,, a,,..., a, € A, satisfying;:

(1) Ja,(x)|<1 forall xeX;i=1,...,n;
(2) Ja,(t)| <8 forall r€K, ;i=1,...,n;

3 Ya(x)=1 forall xeX;
i=1
where A4, is the subalgebra generated by 4 and the constant functions.
We choose & > 0 such that

8- max |[t—g, (x)||<A+e forallr€p(x)

sSis

and to this 8 let q,, a,,...,a, € 4 be given satisfying (1) to (3).
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Define
n
&= Z aigx,'
i=1
Then g€ W, and for each x € X and ¢ € ¢(x), we have:

1=£() =1 £ ()= X a(0)g ()]

= X a,(x)(r=g (X))
i=1
If x€ K, , then

la,(x)(t— g, (x)) Il <8-llt—g, (x)Il

<8 max ||[t—g, (x)|| <A+e.
1<i<sn !
If x& K, , then

lla,(x)(1 =g, (x)) I <1-|[t—g, (x) I <A+e.

Hence, for all x € X and ¢ € p(x),
le=g(x) =1l ¥ a,(x)(1 =g, (x))I
i=1

< max la,(x)(t =g, (x))I
<A+te.
Then,
dist(@; g) <A +e.
A fortiori, dist(p; W) < A + €. Since € > 0 was arbitrary,

dist(p; W) <A =sup dist((p|A(x); W|A(x)).

xeX

1.8. DEFINITION: A family of functions N C %,(X; E) is said to vanish
collectively at infinity if, for each e > 0, there is a compact subset K C X
such that || f(x)|| <e for all x& K and f€ N.
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1.9. ExaMPLE: Let N C %,(X; E) be a totally bounded subset. Then N
vanishes collectively at infinity. Indeed, let € > 0 be given. There exists a
finite set { f}, f5,..., f,} € N such that, for each f€ N, thereis 1 <i<n
with || f—f; || <e€/2. For each 1<i<n, there is a compact subset
K, C X such that || f(x)| <e/2 for all x€& K,. Let K be the union
K,UK,U...UK,. Then forall x¢ K and fE€N, || f(x)| <e.

1.10. PROPOSITION: Let N C 6,(X; E) be a family which vanishes collec-
tively at infinity and let W C €,(X; E). The carrier

p(x)={f(x); fEN}, x€X,
vanishes at infinity with respect to W.

PrOOF: If N C %,(X; E) vanishes collectively at infinity and we
%,(X; E), then G= { f—w; f€ N} vanishes collectively at infinity too.
Let €e>0 and K C X be a compact set such that

If(x)=w(x)| <e

for all x& K and f€ N.
Then ¢(x) C B(w(x); €) for all x & K and

X\{x€X; p(x)CB(w(x); €)} CK
and so the set

{xeX; p(x) N(E\B(w(x); €)) #0)
is relatively compact.

1.11. THEOREM: Let (E, ||-||) be a non-archimedean normed space over
(F, ||-1); let AC €*(X; F) be a subalgebra; let W C ,(X; E) be a
vector subspace which is an A-module; and N C %,(X; E) a totally
bounded subset and define for all x € X, p(x)={ f(x); f€ N}. Then,

dist(¢@; W) = sup dist(q>|A(x); W|A(x)).

xeX

ProOOF: By Example 1.5, ¢ is upper semicontinuous, and by Example 1.9,
N vanishes collectively at infinity and by Proposition 1.10, ¢ vanishes at
infinity with respect to any W C %,(X; E). It remains to apply Theorem
1.7.

2. Chebyshev centers

2.1. DEFINITION: Let (N, ||-||) be a normed space over (F, |-|), WC N
and B be a non-empty bounded subset of N. The relative Chebyshev
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radius of B (with respect to W) is, by definition, the number

radW(B)=inf{ sup |w—f|l: we W}.

f€B
If W= N, then we write
rady (B) =rad(B)

and call it the Chebyshev radius of B.

The elements w, € W where the infimum is attained are called relative
Chebyshev centers of B (with respect to W), and we denote by cent,, (B)
the set of all such w, € W.

If W= N, there we write centy(B)=cent B and call it the set of
Chebyshev centers of B.

We say that W has the relative Chebyshev center property in N if
cent,, (B) =0 for all non-empty bounded sets B C N.

When W =N, and cent(B)# 0 for every non-empty bounded subset
Bc N, i.e. if N has the relative Chebyshev center property in N, we say
that N admits Chebyshev centers.

Let M C N be a closed linear subspace and f € N. A best approximant
of f in M is any element g € M such that

I f—gll = inf || f—h|l =dist(f; M).
heM

We denote by P,,(f) the set of all best approximants of f in M. If
P,,(f) contains at least one element for all f€ N, M is called proxim-
inal.

The main problems of best (simultaneous) approximation theory are
the following (in decreasing order of generality):

PrROBLEM I: Let WC N be given. Determine if W has the relative
Chebyshev center property in N. In particular, determine if N admits
Chebyshev centers.

PrOBLEM II: Let W C N be given. Determine the class B of all non-empty
bounded sets B C N such that cent,, (B)# 0.

ProOBLEM III: Let W C N be given. Determine if W is proximinal in N,
i.e., determine if the class B of Problem II contains all sets of the form

B={(f), fEN.

Suppose that N is %,(X; E) equipped with the sup-norm an let
W c %,(X; E). To each non-empty and bounded set B C %,(X; E), we
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define the carrier

ps(x)={f(x); fe B}
for all x € X. It follows that

dist(pg; W) =rad, (B).

Consequently, by Theorem 1.11, we have the following formula of
localizability for the Chebyshev radius.

2.2. THEOREM: Let (E, || -||) be a non-archimedean normed space over
(F, ||); let AC €*(X; F) be a subalgebra and W C €,( X; E) a vector
subspace which is an A-module. For each non-empty and totally bounded
subset B C 6,(X; E) we have

rady, (B) = sup tadyy | o) (B acx))-

xeX

2.3. DEFINITION: Let A be an equivalence relation in X. We say that a
carrier ¢ from X into E is A-bounded if

p(A(x))=U{@(1); 1€ A(x)}

is a bounded subset of E, for all x € X. Let us define
8(p)= Sug{radw(A(X)))
xe€e

2.4. THEOREM: Let (E, ||-||) be a non-archimedean normed space over
(F,|-|) and AC €*(X; F) a subalgebra. Let W C €y(X; E) be an
A-module such that for each x € X and z € E, there is some w € W such
that w(t) =z for all t € A(x). Then for any A-bounded carrier ¢ from X
into E which is upper semicontinuous and vanishes at infinity with respect to
W, we have:

dist(p; W) <8(9).

PROOF: By Theorem 1.7, we have:

dist(@; W) = sup dist(® | acers Wlacx))

xeX

= sup inngist(<p|A(x); w)

xEXWE

=sup inf sup sup ||y—w(2)].
xeXWEW teA(x) yeo(t)
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Let x € X. For each z € E, choose w, € W such that w,(¢) =z for all
t € A(x). Then

inf sup sup |ly—w(2)]
WEW teA(x) yeo(r)

< sup  sup ||ly—w,(2)]
teA(x) yeo(t)

= sup |ly—z|.
YE@(A(x))

Since z € E was arbitrary, we have

inf sup sup ||[y—w(t)]|<inf sup |y—z|.
WEW reA(x) yeo(r) 2€E yeq(A(x)

Hence,

dist(p; W) <8(op).

3. Stone-Weierstrass subspaces

3.1. DErFINITION: A vector subspace W C €,(X; E) is said to be a
Stone-Weierstrass subspace if there is a locally compact Hausdorff space
Y and a proper continuous surjection #: X — Y such that

W={gom g€ %(Y; E)}.

We denote by W, the Stone-Weierstrass subspace determined by 7.
If W, c %,(X; E) is a Stone-Weierstrass subspace, then

A,={(gom g € (X; F))
is a subalgebra of ¥*(X; F) which contains the constants and

{="Y(y); yeY}

is the set of equivalence classes modulo A4,,. Therefore, W, is an A,-mod-
ule.
Clearly W, is closed in %y( X; E).

We will prove that this definition of Stone-Weierstrass subspace is the
same as Definition 3.5, [5], by proving that A(W,) C W,, where A(W,) is
the Stone-Weierstrass hull of W, in €,(X; E).

Let f€ A(W,). We will prove that f is constant on the sets 7~ !( y)
forall yeY.
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Let ¢ and ¢ be in X such that #(¢)= 7 (¢’). Then g(¢)=g(¢’) for all
g € W,. Then, the pair (¢, ') €Ay, .

If 8(z, t)=0 then §,, =8, =0 and by hypothesis f€ A(W,),
then we have f(¢)=0:f(t")=0.

If 8(¢, #)=1 then 0#8§,, =6, and since f€A(W,) we have
f()=1-f()=f(1).

Therefore, fe W,.

Let f€ %,(X; E) be given. Since 7 is proper, 7~ '(y) is compact and
then f(7~'(y)) is compact, hence bounded in E, for each y € Y. Let us
define

8(f)=suprad(f(7"'(»))).

yeY
If we W, then

I f—wll=sup sup |If(t)=w(t)]l>8(f).

YEY tea"V(y)
Hence

8(f) < dist(f; W,).

3.2. THEOREM: Let (E, || ‘||) be a non-archimedean normed space over
(F,|-|) and W,C 6,(X; E) a Stone-Weierstrass subspace. Then, for all
f€ € (X; E)

dist(f; W) =8(/).

PrROOF: By Theorem 2.4, dist( f; W, ) < 8(f) and by remarks made before
we have 8( f) < dist(f; W,,).

Let us now generalize the above results for the case of Chebyshev
centers. Consider then a bounded and equicontinuous subset B C
%,(X; E) and the associated carrier ¢z from X into E defined by

es(x)={f(x); feB} forall x€X.

Since B is bounded, it follows that ¢ is A-bounded for any equiv-
alence relation A on X.
For each y € Y define

B(n (y))=u{f(="'(»)); f€ B}

and

8(B)=sup{rad(B(7"'(y))); ye Y }.
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then §(B) = 8(pg), and by Theorem 2.4,
rady, (B) <6(B)

because W, is a Stone-Weierstrass subspace.
Conversely, each w € W, is constant on 7~ '(y) for every y € Y. Thus

dist(pp; w)=sup sup sup |z—w(z)]|
YEY tex(y) 2€95(1)

= sup inf sup sup ||z —v|
yey vEE tex”(y) 2€@s(0)

=sup inf sup sup | f(¢)—v|
yeYVEE jeq-1(y) feB

= s:;;rad(B(w'l(y))) =§(B).

Hence
8(B) < dist(q@z; W,)=rady, (B).
We have thus proved the following.

3.3. THEOREM: Let (E, ||-||) be a non-archimedean normed space over
(F,|-|) and W, < €,(X; E) a Stone-Weierstrass subspace. Then, for any
bounded and equicontinuous subset B C 6,( X; E), we have

rady, (B) = sg;;,rad(B(w'l(y))).

3.4. DEFINITION: Let X and Z be two topological spaces. A set valued
mapping ¢ from X into Z is said to be lower semicontinuous if {x €
X; (x)N G # 0} is open in X for every open subset G C Z.

A continuous mapping f: X — Z is called a continuous selection for a
carrier ¢ if f(x) € p(x) for all x € X.

The following result is a consequence of Michael [1], Theorem 2, page
233.

3.5. THEOREM: Let X be a O0-dimensional compact T-space and let
(E, ||-|l) be a Banach space over a non-trivially valued division ring
(F, |-|). Every lower semicontinuous carrier ¢ from X into the non-empty,
closed subsets of E admits a continuous selection.
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3.6. REMARK: Let X be a 0-dimensional, Hausdorff and locally compact
space. The Alexandroff compactification, X, of X is 0-dimensional and
Hausdorff space. There is a linear isometry of %,(X; E) into €(X_; E).

Let X be a locally compact T;-space, and « a proper continuous
surjection of X onto another locally compact T;-space Y. Let (E, || -||) be
a non-archimedean normed space over (F, |-|). Let BC %,(X; E) be a
bounded non-empty subset which is equicontinuous and vanishes collec-
tively at infinity. For each x € E let be given a closed vector subspace
W(x)C E. Let § > 0 be given.

Let us define two set valued mappings ¢, and ¢, on Y, and X,
respectively, by setting for any y€ Y

<pw(y)={s€E; sup  sup IIf(X)—SIlsﬁ}
f€B xex~(y)

and
P, (w)={0};

and for any x € X

Y,(x)= W(x)n{sEE; jg;;”(x)—s] <8}

Yo(w)={0}.

3.7. LEMMA: Under the preceding hypothesis, the set valued mappings @,
and {, are lower semicontinuous on Y, and X, respectively.

PROOF: a) Let gC E be open such that ¢ (yo)NG#0. If y,€Y, we
choose s, € ¢,()y) N G, then

sup sup | f(x)—so| <9.
fEB xen'(x)

Since 77'(y,) is a compact subset of X, there exists a finite open
covering V;, Vs, ..., V, of w7 (), with

Vina i (y)#0, 1<i<n,
such that
x, x' €V;= | f(x)=f(x)|| <8

for all f€ B. This is possible because the set B C €,(X; E) is equicon-
tinuous.
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Let x € X. For each z € E, choose w, € W such that w,(¢) =z for all
t € A(x). Then

inf sup sup ||y—w(t)]
WEW reA(x) yeo(r)

< sup  sup |ly—w/(2)]
telA(x) yee(l)

= sup |ly—z|.
yE€@(A(x))

Since z € E was arbitrary, we have

inf sup sup ||[y—w(s)||<inf sup |ly—z|.
WEW 1eA(x) yeo(1) 2€E yeq(ax)

Hence,

dist(@; W) <8(9).

3. Stone-Weierstrass subspaces

3.1. DEFINITION: A vector subspace W C %,(X; E) is said to be a
Stone-Weierstrass subspace if there is a locally compact Hausdorff space
Y and a proper continuous surjection 7: X — Y such that

W={gem g€ %(Y; E)}.

We denote by W, the Stone-Weierstrass subspace determined by .
If W, c ,(X; E) is a Stone-Weierstrass subspace, then

A,={p° 7 9 E*(X; F))
is a subalgebra of ¥*(X; F) which contains the constants and

{7 (y); yeY)

is the set of equivalence classes modulo A4,,. Therefore, W, is an 4_-mod-
ule.
Clearly W, is closed in €,( X; E).

We will prove that this definition of Stone-Weierstrass subspace is the
same as Definition 3.5, [5], by proving that A(W,)C W,, where A(W,) is
the Stone-Weierstrass hull of W, in €,(X; E).

Let fe A(W,). We will prove that f is constant on the sets 7~ !( y)
forall yeY.
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Let ¢ and ¢’ be in X such that #(¢) =« (¢’). Then g(¢)= g(¢’) for all
g € W,. Then, the pair (¢, ') E4,,.

If (¢, t')=0 then §,,, =8, =0 and by hypothesis f€ A(W,),
then we have f(¢)=0-f(¢")=0.

If (¢, t')=1 then 0+, =§,, and since f€A(W,) we have
f()=1-F(t)=f(1).

Therefore, f€ W,.

Let f€ %,(X; E) be given. Since = is proper, 7~ !(y) is compact and
then f(7~!(y)) is compact, hence bounded in E, for each y € Y. Let us
define

8(f)=suprad(f(7"'(»))).

yeEY
If we W, then

| f=wl=sup sup | f(£)=—w(2)|l=8(f).

YEeYrer(y)
Hence

8(f) < dist(f; W,).

3.2. THEOREM: Let (E, ||||) be a non-archimedean normed space over
(F,|-|) and W, C €,(X; E) a Stone-Weierstrass subspace. Then, for all
f€ %(X; E)

dist(f; W,)=8(f).

PROOF: By Theorem 2.4, dist( f; W, ) < 8(f) and by remarks made before
we have 8(f) < dist(f; W,,).

Let us now generalize the above results for the case of Chebyshev
centers. Consider then a bounded and equicontinuous subset BC
%,(X; E) and the associated carrier ¢, from X into E defined by

ep(x)={f(x); feB} forall x€X.

Since B is bounded, it follows that ¢, is A-bounded for any equiv-
alence relation A on X.
For each y € Y define

B(77'(»)) = u{f(=(»)); f€ B}
and

8(B)= sup{rad(B(vr_l(y)); yE Y}.
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We claim that rad(K') < 6. Indeed, let g € W, be given. Then

rad(K)=inf  sup [If(x)—z||

wa"(y)

< sup I f(x)=g(x)I<If-gl.

wa_‘(y)

Since g was arbitrary,
rad(K)< inf || f—g]|-
gEW,

It follows that s, € @, (y) and hence ¢ (y)+#0 for all y € Y.

By Lemma 3.7 applied to B= {f}, ¢, is lower semicontinuous.

By Theorem 3.5, there is g, € ¢(Y,; E) with g (y)€ ¢,(y) for all
y €Y, furthermore g, (w)=0. Let g€ %,(X; E) be the restriction of
g, to Y. Then g(y)E@(y) forall yeY. Let w=goa. Then weE W,
and, for any x € X let y = 7(x). Then

If(x)=wC) I =11f(x) —g(y) Il <8
Hence
| f—wll < dist(f; W,).
This ends the proof that W, is proximinal in €,(X; E).

3.9. THEOREM: Let X be a O-dimensional, locally compact Ty-space. Let
(E, || -||) be a non-archimedean Banach space over (F, |-|). If E admits
Chebyshev centers, and W, C 6,(X; E) is a Stone-Weierstrass subspace,
then centy, (B)#f0 for every non-empty bounded subset B C €y(X; E)
which is equicontinuous and vanishes collectively at infinity.

PrOOF: Let 71 X — Y be the continuous and proper mapping of X onto
a locally compact Hausdorff space Y such that

W,={ge°m g€ %(Y; E)}.
Let B C %,(X; E) be a non-empty bounded subset which is equicontinu-
ous.

Let 8 =rady (B):

Case I: 8>0. Consider Y, =Y U {w} the compactification of
Alexandroff of Y.
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For each y €Y, let

#.(»)={seE; sup sup 17(x) =51l <8)
fE€B xen~(y)

and
¢, (w)={0}.

Let us prove that ¢, is a carrier from Y, into the non-empty closed
subsets of E. Let y € Y, be given. If y =w then ¢ (y)= {0} and hence
¢, () is non-empty and closed. If y € Y then ¢,(y) is closed in E. Since
B c %,(X; E) is bounded,

B(y)={f(x);xea"\(y), fEB)

is bounded in E, and by hypothesis cent(B(y))+/0, i.e., there exists
So € E such that

sup sup || f(x)—s,ll =rad(B(y)).
f€B xex"(y)

To each g€ W,, we have

rad(B(y))<sup sup | f(x)—g(x)Il
fE€B xex~(y)

because g is constant on 7~ '(y). Hence

rad(B(y))<sup sup sup || f(x)—g(x)Il
YEY fEB xen"(y)

=sup sup sup || f(x)—g(x)
fEB yeY xenx~(y)

=sup| f—gll.
f€EB

Since g was arbitrary,

rad(B(y))< inf sup| f—g| =rady, (B)=34.
gEW, "

= fEB

Therefore, s, € ¢, (y) and ¢ () is non-empty.

By Lemma 3.7, ¢, is lower semicontinuous.

By Theorem 3.5, there is g, € ¢(Y,; E) with g_(y)€ ¢ () for all
y € Y. Notice that g_(w)=0. Let g€ %,(X; E) be the restriction of g,
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to Y. Then g(y)€ ¢, (y) forall ye Y. Let w=g o 7. Then w € W, and
for any x € X, let y = w(x). Then for any f € B we have

I f(x)=w(x)I=11f(x)—g(y)lI< sup [ f(z)—g(y)ll<8.

ren=(y)
Hence
sup || f~wl|| <8, andsow€&centy, (B).
feB
Case II: §=0.

Now rad,, (B)=0 implies B={f} and dist(f; W,)=rad, (B)=0.
therefore f € W, and there is nothing to prove.

3.10. THEOREM: Let X be a O-dimensional, locally compact T-space. Let
(E, ||-|l) be a non-archimedean Banach space over (F,|-|). Let AC
€*(X; F) be a separating subalgebra and let W C 6,(X; E) be a closed
vector subspace which is an A-module such that W(x) is proximinal in E
for every x € X. Then, W is proximinal in €,(X; E).

PROOF: Let f€ %,(X; E) be given with f& W. Then
§=dist(f; W)>0,

because W is closed. Consider X, = XU {w} the compactification of
Alexandroff of X. For each x € X, let

Y, (x)=W(x)N{s€E; | f(x)-s| <8}
and
¥,(w)=(0}.

Let us prove that ¢ is a carrier from X, into the non-empty closed
subset of E. Indeed, let x € X . If x=w then ¢ (x)= {0} and then
¥, (x) is non-empty and closed. If x € X, there exists w € W such that

lw(x) —f(x) || < dist(f(x); W(x))<$8

and hence y_(x)+# 0 and closed since W(x) is proximinal.

By Lemma 3.7 applied with B= { f}, ¥ is lower semicontinuous.

By Theorem 3.5, there exists g, € €(X,; E) such that g _(x)€ ¢ (x)
for all x € X, furthermore g, (w)=0.

Let g€ 4,(X; E) be the restriction of g, to X. Hence g(x) € W(x).
By Theorem 2.5 [5], g € W. Since W is closed, g € W. On the other hand

I1f(x) —g(x) |l <8 =dist(f; W)
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for all x € X, and therefore

| /- gll < dist(f; W),
i.e.,, W is proximinal in €,(X; E).

3.11. THEOREM: Let X and E as Theorem 3.10. Let A C €*(X; F) be a
separating subalgebra and let W C €,(X; E) be a closed vector subspace
which is an A-module and such that W(x) has the relative Chebyshev center
property in E, for every x € X. Then

cent,, (B) # 0,

for every non-empty equicontinuous and bounded B C €,(X; E) which
vanishes collectively at infinity.

PrROOF: Let BC %,(X; E) be a non-empty bounded subset which is
equicontinuous at every point of X and vanishes at infinity. Let § =
rad,, (B). If § =0, then B is a singleton { f} with f& W and there is
nothing to prove. We may assume that & > 0.

Let X, be the compactification of Alexandroff of X. To each x € X,

V()= W(x)n{s€ Es supll £(x) =51l <3}
fEB

and
¥, () ={0}.

We will prove that ¢ is a carrier from X into the nonempty closed
subsets of E. Indeed. Let x€ X_. If x=w then ¢ (x)= {0} #0 and
Y, (x) is closed in E. If x # w, we define B(x)={ f(x); f€ B}, then
B(x) is bounded in E and by hypothesis there is some w € W such that

j:g I f(x)=w(x)l < radW(x)(B(x))'

Now

radW(x)(B(x))= in{ysup I f(x)=w(x)|
weW rcp

< inf sup || f—w| =38.
wEerB

Hence ¢ (x) # 0. Clearly, y_(x) is closed.
By Lemma 3.7, ¢, is lower semicontinuous.
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By Theorem 3.5, there exists g, € ¥(X,; E) such that g (x)€ ¢ (x)
an g (w)=0.

Let g€ %,(X; E) be the restriction of g, to X. Hence g(x) € W(x)
for all x € X. By Theorem 2.5 [5], g € W. Since W is closed, g€ W. On
the other hand,

sup || f(x) —g(x)|I <8
fEeB

for all x € X, and hence

sup || f—g|| <8=rad, (B) and gecenty(B).
fEB
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