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0. Introduction

Let X be a locally compact Hausdorff space, let (F,|·|) be a non-archi-
medean non-trivially valued division ring and (E, ~·~) a normed space
over (F, 1 - 1).
We say that g: X - E vanishes at infinity if, for each E &#x3E; 0, the set

f x E X; ~ g(x)~} is compact.
We denote by (X; E) the vector space of all continuous functions

from X into E. 0(X; E ) will denote the vector space of all continuous
functions which vanish at infinity, equipped with the norm f  ~f~ =

sup{~f(x)~; x~X}.
The vector subspace of (X; F) consisting of all continuous func-

tions f : X - F such that f(X) has compact closure in F, is denoted by
*(X; F).

If A is the equivalence relation determined by A c (X; F), 0394(x)=
y e X; a(y) = a ( x ) for all a E A} is the 0-equivalence class containing
x.

If Y~X is any non-empty set, we denote by f Y the mapping
y E Y -+ I(y). If 9v is any family of mappings f : X ~ S, we denote by
F|Y the set {f|Y; f~F}.

In this paper, we extend some results of Machado and Prolla [3] to the
case of non-archimedean normed spaces, and other results of Prolla [4].

If A ~*(X; F) is a subalgebra and W~ 0(X; E) is a vector

subspace which is an A-module, we proved in [5] that for each 1 E
0(X; E),

We extend this "localization formula" for set-valued mappings under
an upper semicontinuity hypothesis (see Theorem 1.7 below) generalizing
a result of Prolla [4].

In Approximation Theory, given a normed space (N,~·~) and a
non-empty subset W c N, there are two main problems. The first one is
to characterize ihe closure of W in N, i.e., the set of all f E N such that
dist( f ; W) = 0. When N is a normed space of functions, this leads to
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Stone-Weierstrass type theorems by choosing appropriate algebraic con-
ditions on W. (For example, W is an A-module, etc.).

The second problem arises when dist( f ; W) &#x3E; 0. Does there exist

g E W such that

More generally, if instead of a single f one deals with a bounded set
B c N, does there exist g E W such that

Such a g, when it exists is called a Chebyshev center of B in W. We
present some results (see Theorems 3.8 and 3.9) when N is 0(X; E) and
W is a so-called Stone-Weierstrass subspace. (see Olech [2]).
When W is a *(X; F )-module (or more generally an A -module, for

some separating subalgebra A c W*(X; F )) it is natural to ask whether
approximation properties of W(x) = {w(x); w E W 1 in E, for every
x E X, will ensure the same for W in 0(X; E). Theorem 3.10 and 3.11
are along this line: in 3.10 one assumes that, for each s E X, and v E E
there is some element w(x) such that ~v-w(x)~=dist(v; W( x )).
Theorem 3.11 deals with the analogous question for Chebyshev centers.

This work represents part of the author’s dissertation at the Universi-
dade de Campinas.

1. Stone-Weierstrass theorems

Let X, (F,|·|) and (E, il - Il) be as in the introduction.

1.1. DEFINITION: A carrier cp from X to E is a mapping from X into the
non-empty subsets of E.

1.2. DEFINITION: Let (p be a carrier from X into E. We define the
distance of cp from a function g E 0(X; E) to be

and the distance of cp from a subset W c 0( X; E) to be

1.3. DEFINITION: Let cp a carrier of X into E. We say that cp is upper
semicontinuous (u.s.c.) with respect to W c 0(X; E), if given w E W and
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r &#x3E; u, tor each x~ A such that ~(x)~B(w(x); r ) ana eacn E &#x3E; u, there

is a neighborhood U of x such that ~(y) c B(w(y); r + E ) for all y e U.
(If v E E and s &#x3E; 0 we denote by B(v; s ) the set {u ~ E; ~ u - v Il  s}).

1.4. EXAMPLE: If f~0(X; E), then ~(x)={f(x)}, x E X, is upper
semicontinuous with respect to any W~ 0(X; E). Indeed, for each
w E W and r &#x3E; 0, the set

is open.

1.5. EXAMPLE: Let N c 0(X; E ) be a equicontinuous subset. Define a
carrier 9) from X into E by setting

for all x E X. We claim that ~ is u.s.c. with respect to any W~ 0(X; E).
Indeed, let w E W, r &#x3E; 0 and x E X with ~(x)~B(w(x); r ) be given.
Let E &#x3E; 0. If N is equicontinuous then N - {w} is equicontinuous too,
and there is a neighborhood U of x such that ~f(y)-w(y)-(f(x)-
w(x))~  E for all y~U.

Hence, for all y E U

1.6. DEFINITION: Let T be a carrier of X into E and let W c 0(X; E).
We say that 99 vanishes at infinity with respect to W, if for each w E W
and E &#x3E; 0 the set

is relatively compact, i.e. has compact closure.

1.7. THEOREM : Let (E, ~·~) be a non-archimedean normed space over
(F,|·|); let A ~*(X; F) be a subalgebra and W~ 0(X; E) a vector
subspace which is an A-module. For any carrier cp of X into E which is
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upper semicontinuous and vanishes at infinity with respect to W, we have:

PROOF: Let

We always have 03BB  dist(T; W ).
Let E &#x3E; 0 and x E X be given; there exists gx ~ W such that

This implies that

Since q is upper semicontinuous with respect to W, there is an open
neighborhood Ux of x such that

Clearly, 0394(x)~Ux.
Since (p vanishes at infinity with respect to W, the closure Kx of

is compact. We claim that 0394(x) ~ Kx = Ø. Indeed, assume z E 0394(x) n Kx.
Since 0394(x) c Ux and Kx is the closure of Sx, there is some y E Ux n Sx.
But ~(y) c B(gx(y); 03BB + e) for aIl yEUx and so y cannot be in Sx .

By Lemma 2.4, [5], there exists a finite set {x1, X2’...’ xn} C X such
that for each 0  8  1, there are functions aj , a2, ... , an E Ao satisfying:

where Ao is the subalgebra generated by A and the constant functions.
We choose 8 &#x3E; 0 such that

and to this 8 let al’ a2’.’" an E A be given satisfying (1) to (3).
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Define

Then g E W, and for each x E X and t E ~(x), we have:

If x E Kx, then

If x~Kxl, then

Hence, for all x E X and t E ~(x),

Then,

dist(~; g)03BB+.

A fortiori, dist(~; W)03BB + E. Since E &#x3E; 0 was arbitrary,

dist(~; W)03BB = sup dist(~|0394(x); W|0394(x)).

1.8. DEFINITION: A family of functions N c 0(X; E) is said to vanish
collectively at infinity if, for each E &#x3E; 0, there is a compact subset K c X
such that Il I(x) Il   for all x 5É K and f ~ N.
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1.9. EXAMPLE: Let N c 0( X; E) be a totally bounded subset. Then N
vanishes collectively at infinity. Indeed, let E &#x3E; 0 be given. There exists a
finite set {f1, f2, ... , fn} c N such that, for each f E N, there is 1  i  n

with I f - fi I  E/2. For each 1  i  n, there is a compact subset

K, c X such that ~fl(x)~  E/2 for all x ~ K,. Let K be the union
Ki U K2 U ... U Kn . Then for all x ~ K and f E N, Il f(x)~  E .

1.10. PROPOSITION: Let N c 0(X; E) be a family which vanishes collec-
tively at infinity and let W c 0(X; E). The carrier

vanishes at infinity with respect to W.

PROOF : If N~0(X; E) vanishes collectively at infinity and w E

0(X; E ), then G={f- w; f~N} vanishes collectively at infinity too.
Let E &#x3E; 0 and K c X be a compact set such that

f or all x 5É K and f~N.
Then ~(x) c B(w(x); E) for all x OE K and

and so the set

is relatively compact.

1.11. THEOREM: Let (E,~·~) be a non-archimedean normed space over
(F,~·~); let A ~ *(X; F) be a subalgebra; let W~ 0(X; E) be a
vector subspace which is an A-module; and N c 0(X; E) a totally
bounded subset and define for all x E X, ~(x) = ( f(x); f~N}. Then,

PROOF: By Example 1.5, cp is upper semicontinuous, and by Example 1.9,
N vanishes collectively at infinity and by Proposition 1.10, cp vanishes at
infinity with respect to any W~ 0(X; E). It remains to apply Theorem
1.7.

2. Chebyshev centers

2.1. DEFINITION: Let (N,~·~) be a normed space over (F,|·|), W~ N
and B be a non-empty bounded subset of N. The relative Chebyshev
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radius of B ( with respect to W) is, by definition, the number

If W = N, then we write

radN(B)=rad(B)

and call it the Chebyshev radius of B.
The elements wo E W where the infimum is attained are called relative

Chebyshev centers of B ( with respect to W), and we denote by centW(B)
the set of all such wo E W.

If W = N, there we write centN(B)= cent B and call it the set of

Chebyshev centers of B.
We say that W has the relative Chebyshev center property in N if

centW(B)~Ø for all non-empty bounded sets B c N.
When W = N, and cent(B) ~ Ø for every non-empty bounded subset

B c N, i.e. if N has the relative Chebyshev center property in N, we say
that N admits Chebyshev centers.

Let M c N be a closed linear subspace and f E N. A best approximant
of f in M is any element g E M such that

We denote by PM(f) the set of all best approximants of f in M. If
PM(f) contains at least one element for all f E N, M is called proxim-
inal.

The main problems of best (simultaneous) approximation theory are
the following (in decreasing order of generality):

PROBLEM I: Let W~N be given. Determine if W has the relative

Chebyshev center property in N. In particular, determine if N admits
Chebyshev centers.

PROBLEM II: Let W c N be given. Determine the class B of all non-empty
bounded sets B c N such that centW(B) 9ÉO.

PROBLEM III: Let W c N be given. Determine if W is proximinal in N,
i.e., determine if the class B of Problem II contains all sets of the form

B={f},f~N.

Suppose that N is 0(X; E) equipped with the sup-norm an let
W c 0(X; E ). To each non-empty and bounded set B c 0(X; E ), we
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define the carrier

for all x E X. It follows that

Consequently, by Theorem 1.11, we have the following formula of

localizability for the Chebyshev radius.

2.2. THEOREM: Let (E,~·~) be a non-archimedean normed space over
(F,|·|); let A c W*(X; F) be a subalgebra and W~ 0(X; E) a vector
subspace which is an A-module. For each non-empty and totally bounded
subset B c 0(X; E) we have

2.3. DEFINITION: Let à be an equivalence relation in X. We say that a
carrier (p from X into E is à-bounded if

is a bounded subset of E, for all x E X. Let us define

2.4. THEOREM: Let (E, ~·~) be a non-archimedean normed space over
(F, 1 - 1) and A ~*(X; F) a subalgebra. Let W~ 0(X; E) be an

A -module such that for each x E X and z E E, there is some w E W such
that w(t) = z for all t E 0394(x). Then for any à-bounded carrier ~ from X
into E which is upper semicontinuous and vanishes at infinity with respect to
W, we have :

PROOF: By Theorem 1.7, we have:
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Let x E X. For each z E E, choose Wz E W such that wz(t) = z for all
t E 0394(x). Then

Since z~E was arbitrary, we have

Hence,

dist( W ; W)  03B4(~).

3. Stone-Weierstrass subspaces

3.1. DEFINITION: A vector subspace W c 0(X; E) is said to be a

Stone- Weierstrass subspace if there is a locally compact Hausdorff space
Y and a proper continuous surjection 03C0: X - Y such that

We denote by W03C0 the Stone-Weierstrass subspace determined by 03C0.

If W03C0 c 0(X; E ) is a Stone-Weierstrass subspace, then

is a subalgebra of W*(X; F) which contains the constants and

is the set of equivalence classes modulo A’7T. Therefore, W’7T is an A’7T-mod-
ule.

Clearly W’7T is closed in 0(X; E ).

We will prove that this definition of Stone-Weierstrass subspace is the
same as Definition 3.5, [5], by proving that 0394(W03C0) c W03C0, where 0394(W03C0) is
the Stone-Weierstrass hull of W’7T in 0(X; E).

Let 1 E d ( W’7T ). We will prove that f is constant on the sets 03C0-1(y)
for all y E Y.
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Let t and t’ be in X such that 03C0(t) = 03C0(t’). Then g( t ) = g(t’) for all
g E W1T. Then, the pair ( t, t’) ~ 0394W03C0.

If 03B4(t, t’) = 0 then 03B4t|W03C0=03B4t’|W03C0=0 and by hypothesis f~0394(W03C0),
then we have f(t) = 0·f(t’)= 0. 

If 8 ( t, t’) = 1 then 0~03B4t|W03C0 =03B4t’|W03C0 and since f~0394(W03C0) we have
f(t)=1·f(t’)=f(t’).

Therefore, f E W1T.
Let f E 0(X; E ) be given. Since gr is proper, 03C0-1(y) is compact and

then f(03C0-1(y)) is compact, hence bounded in E, for each y E Y. Let us
define

If w E W’1T then

Hence

3.2. THEOREM: Let (E,~·~) be a non-archimedean normed space over
(F,|- 1) and W’1T c 0(X; E) a Stone- Weierstrass subspace. Then, for all
f~ leo(X; E)

PROOF: By Theorem 2.4, dist( f ; W03C0)  03B4(f) and by remarks made before
we have 03B4(f)  dist( f ; W03C0).

Let us now generalize the above results for the case of Chebyshev
centers. Consider then a bounded and equicontinuous subset B c
0(X; E ) and the associated carrier (PB from X into E defined by

Since B is bounded, it follows that WB is à-bounded for any equiv-
alence relation à on X.

For each y E Y define

and



341

then 03B4(B) = 03B4(~B), and by Theorem 2.4,

because W’7T is a Stone-Weierstrass subspace.
Conversely, each w E W’7T is constant on 03C0-1(y) for every y E Y. Thus

Hence

We have thus proved the following.

3.3. THEOREM: Let (E,~·~) be a non-archimedean normed space over
(F,|·|) and Ww c %’0 (X; E) a Stone- Weierstrass subspace. Then, for any
bounded and equicontinuous subset B c 0(X; E), we have

3.4. DEFINITION: Let X and Z be two topological spaces. A set valued
mapping cp from X into Z is said to be lower semicontinuous if (x E
X; cp(x) ~ G ~ Ø} is open in X for every open subset G c Z.

A continuous mapping f : X ~ Z is called a continuous selection for a
carrier cp if f(x) E (p(x) for all x E X.

The following result is a consequence of Michael [1], Theorem 2, page
233.

3.5. THEOREM: Let X be a 0-dimensional compact TI-space and let

(E, ~·~) be a Banach space over a non-trivially valued division ring
(F, |·|). Every lower semicontinuous carrier cp from X into the non-empty,
closed subsets of E admits a continuous selection.
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3.6. REMARK: Let X be a 0-dimensional, Hausdorff and locally compact
space. The Alexandroff compactification, X,,, of X is 0-dimensional and
Hausdorff space. There is a linear isometry of 0(X; E) into (X03C9; E).

Let X be a locally compact TI-space, and 7r a proper continuous

surjection of X onto another locally compact Tl -space Y. Let (E, ~·~) be
a non-archimedean normed space over (F, |·|). Let B~0(X; E) be a
bounded non-empty subset which is equicontinuous and vanishes collec-
tively at infinity. For each x E E let be given a closed vector subspace
W( x ) c E. Let 8 &#x3E; 0 be given.

Let us define two set valued mappings ~03C9 and 03C803C9 on Yw and X,,
respectively, by setting for any y E Y

and

and for any x E X

3.7. LEMMA: Under the preceding hypothesis, the set valued mappings qq’,
and 03C803C9 are lower semicontinuous on y03C9 and Xw respectively.

PROOF: a) Let g c E be open such that ~03C9(y0) ~ G ~ Ø. If yo E Y, we
choose so E ~03C9(y0) n G, then

Since 03C0-1(y0) is a compact subset of X, there exists a finite open
covering V1, h2, ... , lg of 03C0-1(y0), with

such that

for all f E B. This is possible because the set B c o(X; E ) is equicon-
tinuous.
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Let x E X. For each z E E, choose wz E W such that wz(t) = z for all
t E 0394(x). Then

Since z~E was arbitrary, we have

Hence,

3. Stone-Weierstrass subspaces

3.1. DEFINITION: A vector subspace W c 0(X; E ) is said to be a
Stone- Weierstrass subspace if there is a locally compact Hausdorff space
Y and a proper continuous surjection 77-: X - Y such that

We denote by W03C0 the Stone-Weierstrass subspace determined by qr.
If W03C0 ~ 0(X; E ) is a Stone-Weierstrass subspace, then

is a subalgebra of *(X; F) which contains the constants and

is the set of equivalence classes modulo A’7T. Therefore, W’7T is an A’7T-mod-
ule.

Clearly W’7T is closed in 0(X; E ).

We will prove that this definition of Stone-Weierstrass subspace is the
same as Definition 3.5, [5], by proving that 0394(W03C0) c W03C0, where 0394(W03C0) is
the Stone-Weierstrass hull of W’7T in 0(X; E).

Let f E 0394(W03C0). We will prove that f is constant on the sets 03C0-1(y)
for all y E Y.
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Let t and t’ be in X such that 03C0(t) = 03C0(t’). Then g( t ) = g(t’) for all
g E W03C0. Then, the pair (t, t’) E d w .

If 03B4(t, t’) = 0 then 03B4t|W03C0=03B4t’|W03C0=0 and by hypothesis f~0394(W03C0),
then we have f(t) = 0·f(t’) = 0. 

If 03B4(t, t’) =1 then 0 =t= 811 Ww = 03B4t’|W03C0 and since f~0394(W03C0) we have
f(t)=1·f(t’)=f(t’).

Therefore, f E Ww.
Let 1 E 0(X; E ) be given. Since qr is proper, 03C0-1(y) is compact and

then f(03C0-1(y)) is compact, hence bounded in E, for each y ~ Y. Let us
define

If w ~ W03C0 then

Hence

3.2. THEOREM: Let (E, ~·~) be a non-archimedean normed space over
( F, 1 . 1) and W1T c 0(X; E) a Stone- Weierstrass subspace. Then, for all
lE 0(X; E)

PROOF: By Theorem 2.4, dist( f ; W03C0)  03B4(f) and by remarks made before
we have 03B4(f)  dist(f; W03C0).

Let us now generalize the above results for the case of Chebyshev
centers. Consider then a bounded and equicontinuous subset B c

leo(X; E ) and the associated carrier CPB from X into E defined by

Since B is bounded, it follows that ~B is 0-bounded for any equiv-
alence relation à on X.

For each y E Y define

and
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We claim that rad(K)  8. Indeed, let g E W03C0 be given. Then

Since g was arbitrary,

It follows that so E ~03C9(y) and hence ~03C9(y) ~Ø for all y E Y.
By Lemma 3.7 applied to B = {f}, ~03C9 is lower semicontinuous.

By Theorem 3.5, there is g03C9 ~ (Y03C9; E) with g03C9(y)~~03C9(y) for all
y ~ Yw, furthermore g03C9(03C9)=0. Let g E 0(X; E ) be the restriction of
g. to Y. Then g( y ) E ~(y) for all y E Y. Let w = g 0 03C0. Then w E W,
and, for any x~X let y = i7(x). Then

Hence

This ends the proof that W7T is proximinal in 0(X; E).

3.9. THEOREM: Let X be a 0-dimensional, locally compact TI-space. Let
(E, ~·~) be a non-archimedean Banach space over (F, 1 - |). If E admits
Chebyshev centers, and W7T c 0(X; E) is a Stone- Weierstrass subspace,
then cent W(B)~Ø for every non-empty bounded subset B c 0(X; E)
which is equicontinuous and vanishes collectively at infinity.

PROOF: Let 03C0: X - Y be the continuous and proper mapping of X onto
a locally compact Hausdorff space Y such that

Let B c 0(X; E ) be a non-empty bounded subset which is equicontinu-
ous.

Let 03B4 = radW03C0(B):

CASE 1 : 8 &#x3E; 0. Consider Yw - Y~{03C9} the compactification of
Alexandroff of Y.
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For each y E Y, let

and

Let us prove that ~03C9 is a carrier from Y,, into the non-empty closed
subsets of E. Let y E Yw be given. If y = w then ~03C9(y) = {0} and hence
~03C9(y) is non-empty and closed. If y E Y then ~03C9(y) is closed in E. Since
B c WO(X; E) is bounded,

is bounded in E, and by hypothesis cent(B(y))~Ø, i.e., there exists
so E E such that

To each g E W03C0, we have

because g is constant on 03C0-1(y). Hence

Since g was arbitrary,

Therefore, so E ~03C9(y) and ~03C9(y) is non-empty.
By Lemma 3.7, ~03C9 is lower semicontinuous.

By Theorem 3.5, there is g03C9~(Y03C9; E ) with g03C9(y)~~03C9(y) for all
y E Y03C9. Notice that g03C9(03C9) = 0. Let g E 0(X; E ) be the restriction of g03C9
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to Y. Then g(y)~ ~03C9(y) for all y E Y. Let w = g 0 ir. Then w ~ W03C0 and
for any x E X, let y = 03C0(x). Then for any f E B we have

Hence

CASE Il: 8 = o.
Now rad w (B) = 0 implies B f 1 and dist( f ; W03C0) = rad w (B) = 0.

therefore f E W’1T and there is nothing to prove. 
3.10. THEOREM: Let X be a 0-dimensional, locally compact Tl-space. Let
(E, ~·~) be a non-archimedean Banach space over (F, 1 - |). Let A c

W*(X; F) be a separating subalgebra and let W~ 0(X; E) be a closed
vector subspace which is an A-module such that W(x) is proximinal in E
for every x E X. Then, W is proximinal in 0(X; E).

PROOF: Let lE 0(X; E) be given with f ~ W. Then

because W is closed. Consider X03C9 = X~{03C9} the compactification of
Alexandroff of X. For each x E X, let

and

Let us prove that 03C803C9 is a carrier from X03C9 into the non-empty closed
subset of E. Indeed, let x~X03C9. If x = 03C9 then 03C803C9(x) ={0} and then
03C803C9(x) is non-empty and closed. If x E X, there exists w E W such that

and hence 03C803C9(x)~Ø and closed since W(x) is proximinal.
By Lemma 3.7 applied with B = {f}, 0/", is lower semicontinuous.

By Theorem 3.5, there exists g03C9~(X03C9; E ) such that g03C9(x) ~ 03C803C9(x)
for all x E X03C9, furthermore g03C9(03C9) = 0.

Let g ~ 0(X; E ) be the restriction of g03C9 to X. Hence 0153(x) ~ W(x).
By Theorem 2.5 [5], g E W. Since W is closed, g E W. On the other hand
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for all x E X, and therefore

i.e., W is proximinal in 0(X; E).

3.11. THEOREM : Let X and E as Theorem 3.10. Let A c W*(X; F) be a
separating subalgebra and let W c 0(X; E) be a closed vector subspace
which is an A-module and such that W(x) has the relative Chebyshev center
property in E, for every x E X. Then

for every non-empty equicontinuous and bounded BC: 0(X; E) which

vanishes collectively at infinity.

PROOF: Let B~0(X; E) be a non-empty bounded subset which is

equicontinuous at every point of X and vanishes at infinity. Let 8 =

radW(B). If 8 = 0, then B is a singleton {f} with f e W and there is
nothing to prove. We may assume that 8 &#x3E; 0.

Let X03C9 be the compactification of Alexandroff of X. To each x E X,

and

We will prove that 0/ (J) is a carrier from X03C9 into the nonempty closed
subsets of E. Indeed. Let x ~ X03C9. If x = 03C9 then 03C803C9(x)={0}~Ø and
03C803C9(x) is closed in E. If x ~ 03C9, we define B(x) = {f(x); f ~ B}, then
B(x) is bounded in E and by hypothesis there is some w E W such that

Now

Hence 03C803C9(x)~Ø. Clearly, 03C803C9(x) is closed.
By Lemma 3.7, 03C803C9 is lower semicontinuous.
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By Theorem 3.5, there exists gú) E (X03C9; E ) such that g03C9(x) ~ 03C803C9(x)
an g03C9(03C9)=0.

Let g E 0(X; E ) be the restriction of gw to X. Hence g(x) ~ W(x)
for all x E X. By Theorem 2.5 [5], g E W Since W is closed, g E W. On
the other hand,

for all x ~ X, and hence
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