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§0. Introduction

Let X be a quintic fourfold (smooth hypersurface of degree 5 in (5),
and S2x the variety of lines in X. According to [1], if X is generically
chosen, then 03A9X is a smooth surface. Let 4Y* : H2(03A9X, Q) ~ H4(X, Q) be
the "cylinder homorphism" obtained by blowing up each point on
Y E H2(03A9X, Q) to a corresponding line in X (thus sweeping out a 4 cycle
in X). This homomorphism was studied in [4], and in particular, viewing
03A6* on cohomology (viz Poincaré duality):

(0.1) THEOREM: ([4; (4.4)]). Let X be generic, w E H1,1(X, Q) the Kâhler
class dual to the hyperplane section of X. Then 03A6*: H2(03A9X, 03A9) ~
H4(X, Q)/Q03C9 n w is an epimorphism.

For relatively elementary reasons (see (5.5)), it is also true that 03A6*:
H2(03A9X, Q) ~ H4(X, Q) is an epimorphism for generic X. This paper is
devoted to the answering of the following question :

(0.2) What is the kernel of 03A6*?

In order to satisfactorily answer (0.2), some terminology has to be
introduced. The family of hypersurfaces { Xv}v~PN of degree 5 in p5 is a
projective space of dimension N = 251. Let U~PN be the open set
parameterizing the smooth Xv, Uo c U the open subset corresponding to
those X for which Q x is a smooth, irreducible surface. Let à c Uo be a
polydisk centered at 0~0394, X = Xo, and for any v~0394, define jv:
03A9X  v~039403A9Xt. to be the inclusion morphism. Now Uv E dQ x , is topo-
logically équivalent to à X Q x (see [7]) for any given v E 0394, and there-
fore there is an isomorphism il; 0 (j*0)-1: H2(03A9X, Q) ~ H2(03A9Xt, Q).
(0.3) DEFINITION:

(i) H1,1A(03A9X, Q) = {03B3 E H2(Qx, Q)|j*v  (jÓ)-I(y) E H1,1(03A9Xt, Q)
for all v C= à 

(ii) H2P(03A9X, Q) = orthogonal complement of H1,1A(03A9X, Q) in

H2(03A9X, Q).
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defined as follows (see (3.1) for a precise definition): (0.5) Let lx be the
line corresponding to x E 2x. Define D(x) = (y E Q x |y ~ x &#x26; lx n ly ~
Ø}. It is proven (see (2.5)) that for generic X, D(x) is a finite set for
generic x E Ox.

Our theorem is: ( X generic)

(0.6) THEOREM:
(i) i preserves the subspaces defined in (0.3)(i)&#x26;(ii); moreover i :

H2P(03A9X, Q) ~ H2P(03A9X, Q) is an isomorphism.
(ii) There is a s. e. s. :

where i and I are respectively the inclusion and identity morphisms.
(iii) 03A6*(H1,1A(03A9X, 0» = Q(() /B (().

(0.7) COROLLARY:

is sign commutative.

Much of the techniques of this paper are borrowed from an interesting
paper by Tyurin ([6]).

§1. Notation

(i) Z = integers, Q = rational numbers, C = complex numbers
(ii) X is a quintic fourfold, PM is complex, projective M-space.
(iii) If Y is a projective, algebraic manifold, then Hp,p(Y) is

Dolbeault cohomology of type ( p, p ) and Hp,p(Y, K)=Hp,p(Y)~
H2p(Y, K), where K= Z, Q.

(iv) Prim stands for primitive cohomology.
(v) There are 2 senses to the word "generic" in this paper. We say

that X is generic if it is a member of a family {Xv}v~W satisfying a
given property, and where W~PN is a Zariski open subset. The other
use of the word "generic" is where X satisfies a given property that is
transcendental in nature, and in this case the word generic will be

prefixed by " transcendental".
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(vi) Let Y c pM be given as in (iii) above, G = Grassmannian of lines
in pM. For x E G, let lx be the corresponding line in pM. The variety of
lines in Y, denoted by 03A9Y is defined as follows: 9 y = {x ~G|lx c Y}.

(vii) Given Y as in (iii) and S c Y an algebraic subset. Then dim S =

max (dim of irreducible components of S}, and codim YS = dim Y -
dim S.

§2. The variety of lines in X

Let Y c P " be a generic hypersurface of degree d, and assume 2n - d -
5  0. An immediate consequence of [1] is:

(2.1) THEOREM: 0 y is smooth and irreducible, of dimension 2n - d - 3.
There are two noteworthy cases to consider:

(2.2) COROLLARY: Given X a generic quintic fourfold, and Z a generic
fivefold of degree 5 in p6, then:

(i) 03A9X is a smooth, irreducible surface and
(ii) 03A9Z is a smooth, irreducible fourfold.
An argument identical to one given in [6; p. 38] yields:

(2.3) PROPOSITION: Given Z as in (2.2). Then through a generic point of Z
passes 5! lines.

Before stating the main result of this section, we introduce the following
notation : Let c E S2x, 1,. c X the corresponding line.

(2.4) 03A9X, c = (y E Ox Ily n le ~Ø}.We prove:

(2.5) THEOREM: Let X be generic.
(i) dim 03A9X,c = 0 for generic c E gx.
(ii) Let c EE Ox be generic. Then for any y E 1,,, there is at most one line

l0 c X other than 1,, passing through y.

PROOF: We start by letting X be any degree 5 hypersurface in pS, and
x E X. If we let [ Xo, Xl’ X2, X3, X4, X5 ] be the homogeneous coordi-
nates defining P5, then X admits as its defining equation F = 0, F E
C[X0,..., XS ] a homogeneous polynomial of degree 5. Now after applying
a projective transformation, there is no loss of generality in assuming
x = [0, 0, 0, 0, 0, 1]. In this case F takes the form: F = X54F, + X35F2 +
XlF3 + XS F4 + Fs, where Fi E C[X0,..., X4] is homogeneous of degree i.

We now convert to affine coordinates by setting x, = XiIX5, i = 0,..., 4.
Define f, = Fl/X’5. and note that fi E C[x0,...,x4] is homogeneous of
degree i. Likewise, set f FIX5, and note that f = f + f2 + f3 + f4 + fs .
In affine coordinates x = (0, 0, 0, 0, 0), therefore any line 1 a passing
through x must be of the form la = ( ta ) |t~C}, where a ~C5 is non-zero.
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It follows that

The upshot of this argument is that the lines in X passing through x
correspond to the zeros of f1,...,f5 in P4. Note that for generic x E X,
no such line exists. Let V(1) be the vector space of homogeneous
polynomials of degree i in C[x0,..., X4]’ and set V= V(1) ~ ... ~ V(5).
It is clear from our construction that X determines a point v~ P(V),
conversely, any v~ P(V) determines X so that x E X.

(2.6) Every v~P(V) determines an algebraic set S( v ) defined as the
zeros of f1, ... , f5 in P4. Define V1 = {v~P(V)|dim S(v)0}.If v E
P(V) is given so that dim S(v)=0, then define #S(v) to be the

cardinality of S(v) as a set. For i = 2, 3 define Vl = {v ~ V1|dim S(v)  1
or #S(v)  i}, and set VB = {v ~ V1|dim S(v)  1). We need the fol-
lowing :

(2.7) LEMMA: codimP(V)Vl = i, for i = 1, 2, 3 &#x26; codimP(V)VB  5.

PROOF: Let VJ = V(j) ~ ... ~ V(5) c V, for j = 1,..., 5, and P(V’) c
P(V) the corresponding projective subspaces. Note that for v ~ P(V’),
S( v ) = zeros of {fj,...,f5} in p4. We will prove (2.7) case-by-case:
(a) codimP(V)V1 = 1: It follows from general principles ([5 ; (3.30)]) that
v E P(V2) ~ S(v) ~Ø, so for such v, choose any y E S(v). Clearly {f1 ~
P(V(1))|f1(y) = 0} cuts out a codimension 1 subspace of P(V(1)), hence
codimP(V)V1 = 1.
(p) codimP(V)V2=2: Let v~V2 be given so that dim S(v)=0 and
#S(v)2. Let y1, y2 E S(v) with y1 ~ y2. Then {f1 ~ P(V(1))|f1(y1)=
f1(y2)=0} cuts out a subspace of codimension 2 in P(V(1)). Statement
(b) now follows from:

(2.8) SUBLEMMA : {v~P(v2)|dim S(v)1} has codimension  3 in
P(V2).

PROOF: If v E P(V3), then dim S(v)  1 and equal to 1 for generic v.

Define H={(y,v)~P4 P(V3)|y~S(v)}, and let ql’ q2 be the
canonical projections in the diagram below:



319

Note that the fibers of q, are projective spaces, all of which are

projectively equivalent to each other; moreover q, (and q2 ) are surjective,
hence H is irreducible. In addition q-12(v) = S(v), and by our construc-
tion, the generic fiber of q2 is a smooth, irreducible curve of degree 60
(Bezout’s theorem). Let K={v~P(V3)|dim S(v)2}. Then by con-
sidering the morphism q2, it follows that codimP(V3)K 2, (in fact

codimP(V3)K3). If v~P(V3) is given so that dim S(v)=1, then

elementary reasoning implies {f2~ P( V(2» f2 vanishes on a component
of S(v) of dimension 1} is of codimension  3 in P(V(2)). On the other
hand if U E P(V3) is given so that dim S(v)  2, then one constructs a
diagram analogous to (2.9), replacing P(V3) by P(V4), modifying H
accordingly, and applying a similar reasoning as above to conclude

codimP(V3)K 3, hence (2.8).
(c) codimP(V)V3=3: If v~V2 is generically chosen, then #S(v)=5!
(bezout’s theorem), moreover no 3 points in S(v) are collinear. If yj , y2,
y3~S(v) are distinct, then {f1~P(V(1))|f1(y1)=f1(y2)=f1(y3)=0}
is a subspace of codimension 3in P(V(1)). The case that v E h2 is given
so that dim S(v)1 is taken care of by (2.8). There remains the

possibility that v~V2 is given so that dim S(v)=0 and that some

collinearity (of 3 points) exists. For this to happen, U would have to

belong to a proper subvariety, of V2 , and one can easily argue that
statement (c) still holds.
( d ) codimP(V)VB  5: A construction similar to the proof of (2.8) implies
{v~P(V2)|dim S(v)2} is of codimension  5 in P(V2). Now sup-
pose v~P(V2) is given so that dim S(v)=1. Then {f1 ~P(V1))|f1
vanishes on a dimension 1 component of S(v)} is of codimension  2 in
P(V(1)). We now apply (2.8) to conclude statement (d), and the proof of
(2.7).

(2.10) Conclusion of the proof of (2.5)

Recall at the beginning of the proof a choice of x e P 5 which determines
P(V), h, , V2, V3, VB, where P(V) corresponds to those X~P5 for
which x E X. To indicate that our choice of x determines P(V), we will
relabel things with the obvious meaning as P(Vx), V1, ,., V2, x, V3, x, VB. , .
Now define W=x~P5P(Vx), Wl=x~P5Vt,x for i=1, 2, 3, WB =
x~P5 VB, x. 

It is easy to verify that W, W,’s, WB all have the structure of
an algebraic variety, moreover by (2.7):

(2.11) codimwWl = i for i = 1, 2, 3 and codimWWB  5.
Recall the statement just preceeding (2.6), that for any X and x E X, X
determines a point Vx E P(Vx). Therefore X determines a fourfold Xw c
W given by the formula XW=x~Xvx. For generic X~P5, dim{ Xw ~
Wl}=4-i, and XW~ WB =,6. Translating this in terms of 0 x, (2.5)
clearly holds. 

Q.E.D.
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§3. The incidence and cylinder homomorphisms

Let D1~03A9X 03A9X be given by the formula: D1={(x1,x2)~03A9X
03A9X|lx1~lx2~Ø &#x26; x1~x2}. It is clear from the definition that

{x, D1(x)}=03A9X,x. Throughout this section X will be assumed to be
generic. 

(3.1) DEFINITION: The incidence correspondance D c Q x X 03A9X is defined
to be: D = D1.

Note that codim03A9X 03A9XD = 2, therefore the fundamental class of D
defines a cocycle [D]~ H4(03A9X X 03A9X, Q). Now the component of [ D in
H2(03A9X, Q)~H2(03A9X, Q), via the Künneth formula H4(03A9X 03A9X, Q)=
~p+q=4Hp(03A9X, Q) ~ Hq(03A9X, 0), induces a morphism i: H2(flx. Q) ~H2(03A9X, Q), where we use the fact H2(03A9X, 0)* - H2(03A9X, Q) (Poincaré
duality).

(3.2) DEFINITION: The homomorphism i : H2(03A9X, Q)~H2(03A9X, Q) is
called the incidence homomorphism.

The morphism i factors into a composite of 3 other morphisms given
as follows:

(3.3) Let
(i) p: D ~ Q x be the projection onto the first factor,
(ii) j: 2x X 2x , Ox  03A9X the morphism which permutes the factors,

i.e. j(x1, X2) = (X2, Xl). Note that j(D) = D.
Then:

(3.4) PROPOSITION : i = p *  j  p*.

PROOF: Use the fact that the correspondence defined by p *  j  p* in
0 x  03A9X is precisely D.

(3.5) The cylinder homomorphism

We will be constantly referring to the following diagram:
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where, Z is a smooth degree 5 hypersurface in P’, for which X c Z is a
(smooth) hyperplane section

p (resp. 03C1Z) is the projection of P(X) (resp. P(Z)) onto the first
factor

~ (resp. çz) is the projection of P(X) (resp. P(Z)) onto the second
factor

i1, i 2, i3, jl’ j2 are inclusion morphisms.
The same reasoning given in [2; p. 81] implies the following:

(3.7) PROPOSITION (see [4]):
( i ) P(X), P(Z) are Pl bundles over S2x and 03A9Z respectively.
(ii) P(X), P(Z), X, 03A9X, 03A9Z are’ smooth and irreducible.

(iii) All morphisms in (3.6), except for inclusions, are surjective.
(iv) deg ~Z = deg ~X = 5 !.
( v) px is birational and induces: X~ blow up of 03A9Z along 03A9X.

(3.8) REMARKS:
(i) (2.2 implies the smoothness and irreducibility for 2, and 0,.
(ii) (3.7) (iv) is a consequence of (2.3).
As will be discussed in §4, the threefold T(P(X» has a 2-dimensional

singular set. Let S be a generic hyperplane section of cp(P(X». One
should expect S to be singular. The next result is a direct consequence of
(2.5), together with the definitions of P(X), p, qq:

(3.9) PROPOSITION: cp is a birational morphism, moreover cp induces a
birational map 03A9X ~ S.

(3.10) DEFINITION: The cylinder homomorphism 03A6*: H2(03A9X, Q) ~
H4( X, Q) is given by: 03A6* = j1,*  cp* 0 p*.

Let I: H2(03A9X, Q) - H2(03A9X, Q) be the identity morphism, w E
H1,1(X, Z) the Kahler class defined in (0.1). The next result ties in a

relationship between i and 03A6*.

(3.11) PROPOSITION: 03A6*({(i+119·I)H2(03C9X, Q)})=0 in H4(X,Q)/
Q03C9 039B 03C9

PROOF: The proof of (3.11) is formally identical to the proof of lemma 6
in [6; p. 42] where
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(a) Z and deg Tz = 5! replace X4 and deg ~ in [6].
(b) the cycles are even dimensional.
(c) the weak Lefschetz theorem applied to the inclusions Z ~ P6&#x26;j2:
X  Z implies j*2(H4(Z, Q)) = Q03C9 n w .

(d) 119=5!-1.

§4. The numerical characteristic of the surface U x

Let 0/1: Dj - X be the morphism defined by the formula: o/l(Xl’ x2) =
lx1 ~ 1 X2 E X. Then 03C81 extends to a rational map 03C80: D - X, moreover
deg % = 2 by (2.5)(ii). Let 0393 = D/{j} with quotient morphism 0/:
D - r. There is a factorization of 03C80:

where k is a birational map onto its image, %(D). This factorization will
be useful in the next section where we consider an analogue to the
fundamental computational lemma in [6; p. 45]. Note that the fibers of (P
in (3.6) are a discrete over every point in 99 (P( X)), moreover #~-1(x) 2

over 0/1(D1) and #~-1(x)=1 over ~(P(X))-03C81(D1), where # in-
cludes multiplicity. By applying Zariski’s Main theorem to ~, it is clear
that sing(~(P(X)))=03C81(D1). On the other hand, 03C81(D1)=03C80(D),
therefore, taking into account the result (2.5)(ii), we can summarize the
above discussion in:

(4.2) PROPOSITION: sing(~(P(X)))=03C80(D), moreover through a generic
point of sing(~(P(X))) passes exactly 2 lines in X.

So far we have only focused on the number of lines passing through a
given point in (p(P(X». We now turn our attention to the problem of
determining the number of lines meeting a generic line in X. This number
will be denoted by No, and bears the title of this section, namely, recall the
definition of p in (3.3)(i):

(4.3) DEFINITION: The numerical characteristic No of 03A9X is given by:
No=deg p.

(4.4) REMARK: This definition is borrowed in part from [6; p. 40].
There is another ingredient we want to introduce, but before doing so,

we recall from the Lefschetz theorem applied to X~P5 that H2(X, Z)
= 7- co. Let [~(P(X))] be the fundamental class of ~(P(X)) in H2(X, Z).
Then there is a positive integer d for which [~(P(X))] = d03C9. Geometri-



323

cally, d is the degree of the hypersurface in P5 cutting out 99(P(X» in
X. A partial generalization of Fano’s work (see [6; p. 40]) implies d and
No are related by the simple:

(4.5) PROPOSITION: d - N0  - 2.

PROOF: The proof is essentially borrowed from lemma 5 in [6; p. 40], but
there are important differences accounting for the changes in statements
between (4.5) and [6]. Let 1 = P1, P3, X be generically chosen in P5, so
that l c X ~ P3, and that So = P3 n X is a smooth quintic surface. The
adjunction formula for S0~P3 implies gs2 () = OS0(1), where gl is the
canonical sheaf of So. Note that 1 is the only line in So, since a generic
hyperplane section of X contains only a finite number of lines ([I]), and
So is cut out by a generic P3. If H is a generic hyperplane in P5
containing 1, then H ~ So = 1 + Co, where Co is a smooth and irreducible
curve. Note from the above expression for gs2 o that gs2 0 = OS0(H ~ S0) =
OS0(l + Co ). Now taking intersections: 1 = (1. H)P5 = (l · (H · S0))S0 = (l
. ( l + C0))S0, (where - = n), consequently (1. C0)S0 = 1 - l 2. On the other
hand, the adjunction formula applied to 1 c So implies: -2 = (l · (l + (H
· S0))S0 = l2 + 1, hence 12 = - 3, afortiori (1. C0)S0 = 4. Next So n
~(P(X))=l+C1~d(H·S0)=dl+dC0, hence C1~(d-1)l+dC0,
therefore (C1·l)S0=(d-1)l2+d(l·C0)S0=d+3. Now ~-1(~(P(X))
~S0)=l+~-1(C1) where ~-1(C1) is no longer regarded as a global
section of the fibering p: P(X) ~ 03A9X as in [6], but rather as a section of
p over a curve in Qx, where we use the aforementioned fact that 1 is the

only line in S. Then among the points of intersection in CI - 1 is a

possible point of intersection of 1 with 99 - ’(CI), and the remaining points
are the intersections of 1 with at most the other lines in X meeting 1.

Therefore (CI l)S0  No + 1, afortiori d + 3  No + 1, which proves (4.5).
Let Hl be the hypersurface of degree d which cuts out ~(P(X)) c X,

and let 1 c X be any line. Since 1 c X, we have (H1  l)P5 = ((H1 · X) · l)X.
Furthermore d = (H1 · l)P5, moreover Hl n X = ~(P(X)). In summary:

(4.6) PROPOSITION : d = (~(P(X))  1) x.

This concludes §4.

§5. The fundamental computational lemma (F.C.L.)

In this section we will arrive at a version of the F.C.L. in [6] for 4$*:
H2(03A9X, Q) - H4(X, Q) where 4Y* is studied on the homology level via
Poincaré duality. As in §4, X will be a generic quintic. Now recalling the
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diagram in (4.1) together with (4.2), there is a diagram:

Define 03930 = {y ~ 0393|k is regular at y &#x26; k(y) ~ sing(sing ~(P(X)))}.
Clearly ro is smooth and Zariski open in r. Next define Do = 03C8-1(03930),
Lo = D - Do, and note that j(D0) = Do and 2o is closed in D. Note that
2 = p(Lo) ~03A9X is closed and of codimension  1. Define 03A9X,0 = 03A9X - 03A3.
We can desingularize the diagram in (5.1) to:

where all maps are morphisms, and D, tare smooth. Diagrams (5.1) &#x26;

(5.2) are analogous to the diagrams on p. 46 &#x26; 47 in [6], indeed we have
even tried to retain similar notation. Let i0: 03A9X,0  03A9X be the inclusion,
and set H2(03A9X, Q)03A3=i0,*(H2(03A9X,0, Q)) ~ H2(03A9X, Q). We can now
state: 

(5.3) THEOREM (F.C.L.): Let yl, 03B32 ~ H2(03A9X, Q)03A3. Then (03A6*(03B31)·
03A6*(03B32))X = (d - No)( ’YI . 03B32)03A9X + (i03B31 · 03B32)03A9X.

PROOF: Except for dimensions of cycles in question, the proof of (5.3) is
formally identical to the proof of the F.C.L. in [6; p. 45], which begins on
p. 46 of [6], and involves the integral invariants No, and d of (4.6).

(5.4) For the remainder of this section, we will occupy ourselves with the
problem of reformulating (5.3) so as to not involve the particular
algebraic cycle 2 ~ 03A9X.
We will now fulfill a promise made earlier:

(5.5) PROPOSITION: 03A6*: H2(03A9X, Q) ~ H4(X, Q) is surjective.

PROOF: We will use the notation following (0.2) where 0394 c Uo is a

polydisk centered at 0 E 0394, X = Xo E v~ dXv. Let iv: Xv ’--+ v~0394Xv be
the inclusion morphism. Let X be transcendentally generic. Now because
0394 is uncountable, any 03B3~H2,2(X,Q) will have a horizontal displace-
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ment in v~0394H4(Xv, Q) which is also of Hodge type (2, 2), i.e.

i*v  (i*0)-1 (03B3) ~ H2,2(Xv, Q) for all v ~ 0394. However it is a general fact
(using Lefschetz pencils) that such 03B3~Q03C9039B03C9, hence X transcenden-
tally generic ~H2,2(X,Q) = Q03C9039B03C9. This means that the only alge-
braic cocycle in H4(X, Q) is a Q multiple of w A (V. Since 03A6* preserves
algebraicity, clearly 03A6* is surjective for transcendental X. Now it can be
easily seen that the cylinder homomorphisms 03A6v,*: H2(03A9X, C) ~
H4(Xv, C) piece together to form a morphism 0: v~0394H2(03A9Xv, C) ~
v~0394H4(Xv, C) of (trivial) analytic vector bundles over 0394. From the
above discussion 03A6 is fiberwise surjective on a uncountable dense subset
of 0394, hence by analytic considerations, must be surjective over A. Q.E.D.

(5.6) PROPOSITION:

PROOF: It follows from [3; ch. 27] that there is a commutative diagram:
(for our purposes H2(03A9X, C) will be viewed as deRham cohomology)

where Dp and DA are respectively Poincaré and Alexander duality. Now
for

Now recall the Lefschetz (1, 1) theorem which states that H1,1(03A9X, Z)
is generated by the fundamental classes of algebraic curves in 03A9X. We
introduce the following notation:
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(5.8) DEFINITION:

(5.9) COROLLARY: H2T(03A9X, Q) ~ H203A3(03A9X, Q).

PROOF: Compare (5.6) to (5.8)(i).
According to (5.9), it is clear that one can formulate a version of (5.3)

for cocycles in H2T(03A9X, Q), however there is another subspace in

H203A3(03A9X, Q) which contains H2T(03A9X, Q) and best suits our purposes.
Recall the definition of H1,1A(03A9X, Q) in (0.3). There is an equivalent
definition of H1,1A(03A9X, Q) using the notation in the proof of (5.5) and the
Lefschetz (1, 1) Theorem.

(5.10) DEFINITION:

(5.11) REMARKS: From the general theory of Hilbert schemes,
H1,1A(03A9X, Q) is independent of the choice of polydisk A c Uo,
dim H1,1A(03A9Xv, Q) is constant over v E Uo, and H1,1A(03A9X, Q) =
H1,1(03A9X, Q) for transcendentally generic X.

(5.12) PROPOSITION: H2T(03A9X, Q)c H2P(03A9X, Q) ~ Hy2 (S2 X, Q).

PROOF: The inclusion H2T(03A9X, Q) ~ H2P(03A9X, Q) is obvious from the

definitions, moreover is an equality for transcendentally generic X
((5.11)). Next as X varies, i.e. v~U0 varies, E also varies algebraically,
hence [03A3]~H1,1A(03A9X, Q), therefore the second inclusion follows from

(5.6), (5.8)(ii)&#x26;(5.10)(ii).

(5.13) REMARKS :
(i) The well known properties of the pairing H2(03A9X, C) X H2(03A9X, C)
 C imply H2(03A9X, Q) = H2P(03A9X, Q) ~ H1,1A(03A9X, Q) is an orthogo-
nal decomposition under A.

(ii) As X varies, i.e. v E Uo varies, the incidence correspondence
De Qx X 0 x also varies algebraically. Therefore i(H1,1A(03A9X, Q)) c
H1,1A(03A9X, 0).
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We need the following:

PROOF: Let Hl , H2 be generic hyperplanes in p5, XS = H1 ~ H2 ~ X,
YS = XS ~ ~(P(X)). Note that [XS] = 03C9 A 03C9 ~ H2,2(X, Z), and YS is a
curve in S = Hl ~~(P(X)). By (3.9), r, induces a corresponding curve
CI in 03A9X, given by the formula CI = p. - ~*(YS). Since YS varies alge-
braically as X varies, clearly [C1] ~ H1,1A(03A9X, Q). Now let y E H2(f2x, Q)
be given so that Dp(Y) E H2P(03A9X, Q). From the techniques of the proof
of (5.6), it is clear that y can be chosen to be supported on 03A9X-supp(C1).
Therefore, on the cycle level, 03A6*(03B3) n J: = 0, hence (03A6*(03B3)· XS)X = 0. By
translating this in terms of cohomology, 03A6*(H2P(03A9X, Q)) 039B 03C9 039B 03C9 = 0.
But 039B 03C9: H6(X, Q) ~ H8(X, Q) is an isomorphism, hence

03A6*(H2P(03A9X, Q))039B03C9 = 0, i.e. -D.(Hp2(2x, 0» c Prim4(X, Q). Q.E.D.
There is another needed result:

(5.15) LEMMA: Let 03B31, Y2 E H2(f2x, Q). Then (i03B31 · 03B32)03A9X = (YI iY2)Qx.

PROOF: Using the notation of (5.2), together with the definition of j,
there is a commutative diagram:

where j is biregular, and g is a birational morphism. Define p = p 0 g:
 ~ 03A9X. It is easy to verify that the correspondence defined by
*  J* 0 p* is the same as p*  j  p* = D, hence *  J* 0 p* = i. Now
by applying the projection formula 3 times we have: (Note y* = j*)

(5.17) COROLLARY: i(H2P(03A9X, Q)) ~ H2P(03A9X, Q).

PROOF: Otherwise there exists 03B31 ~ H2P(03A9X, Q), 03B32 ~ H1,1A(03A9X, Q) such
that i(03B31) A ’Y2 * 0. But i(yl) 039B y2 = Yl A i(Y2) by (5.15) = 0 by (5.13), a
contradiction.
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PROOF: Use (5.3) &#x26; (5.12).
Combining everything together so far we arrive at the final result of

this section:

(5.19) THEOREM. The following subspaces are the same:

PROOF: S1 = S2 follows immediately from (5.18) and (5.5). Next (3.11),
(5.14), (5.17) imply S3 c Sl . We first justify the claim: {ker(i + 119 . I)}
nS1 =0. If 03B3 ~ ker(i + 119 · I)} ~ S1, then i(y)+119y=(d-No)y+
i(03B3)=0, hence (119-(d-No»Y=0, ~ 03B3 = 0 by (4.5), which proves
the claim. Using the claim, it is clear that the homomorphism ( i + 119 · I ) :
S1 ~ S3 is injective, hence an isomorphism as S3 c SI. (5.19) now follows.

§6. A quadratic relation and the proof of the main theorem

We now attend to the proof of the main theorem ((0.6)). Let r = d - No,
and set Q(i) = (rI + i)(i + 119 · I) = i2 +(119+r)i+r-119·I. We
prove:

(6.1) PROPOSITION:

PROOF : Part (i) is an immediate consequence of (5.19). For part (ii), note
that i(03B3) = Q(i)(03B3) = 0 ~ r - 19903B3 = 0, afortiori y = 0. Q.E.D.

Note that for any y E H1,1A(03A9X, Q), 03A6*(03B3) has the property that under
a horizontal displacement in Uv E 0394H4(Xv, Q), 03A6*(03B3) is still algebraic.
One concludes from the proof of (5.5) that 03A6*(03B3) F= 0 w A w. Therefore
03A6*(H1,1A(QX, Q)) = Q03C9 A w, hence:

(6.2) COROLLARY: 03A6*(H2P(03A9X, Q)) = Prim4(X, Q).

PROOF: Use the above remark, (5.5)&#x26;(5.14).
Combining (6.2) with (5.19)&#x26;(6.1), we arrive at our main result.

(6.3) THEOREM:
(i) i respects the decomposition H2(03A9X, Q) = H2P(03A9X, Q) Et)

H1,1A(03A9X, Q), moreover i : H2P(03A9X, Q) ~ H;(gx, 0) is an isomor-
phism.
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( ii ) There is a s. e. s. :

(6.4) COROLLARY: The diagram below:

is sign commutative.

PROOF: Let y E H2P(03A9X, Q). Then ( i + 119 - I ) y E ker 03A6*, hence 03A6*(i03B3)
+ 119(D,(-y) = 0, which proves (6.4).
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