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THE CYLINDER HOMOMORPHISM ASSOCIATED TO QUINTIC
FOURFOLDS

James D. Lewis

§0. Introduction

Let X be a quintic fourfold (smooth hypersurface of degree 5 in P?),
and @, the variety of lines in X. According to [1], if X is generically
chosen, then Q, is a smooth surface. Let ®,: H,(2,, @)~ H,(X, Q) be
the “cylinder homorphism” obtained by blowing up each point on
vy € H,(2,, Q) to a corresponding line in X (thus sweeping out a 4 cycle
in X). This homomorphism was studied in [4], and in particular, viewing
®, on cohomology (viz Poincaré duality):

(0.1) THEOREM: ([4; (4.4)]). Let X be generic, w € H"'( X, Q) the Kdihler
class dual to the hyperplane section of X. Then ®,: H?*(Q2,, Q)—
H*(X, Q)/Qw A w is an epimorphism.

For relatively elementary reasons (see (5.5)), it is also true that ®,:
H?*(2y, Q)— H*(X, Q) is an epimorphism for generic X. This paper is
devoted to the answering of the following question:

(0.2) What is the kernel of ®,?

In order to satisfactorily answer (0.2), some terminology has to be
introduced. The family of hypersurfaces { X, }, c p~ of degree 5in P° is a
projective space of dimension N =251. Let UC P" be the open set
parameterizing the smooth X,, U, C U the open subset corresponding to
those X for which Q, is a smooth, irreducible surface. Let A € U, be a
polydisk centered at 0 €A, X=X, and for any v €A, define j:
@y = 11,02y, to be the inclusion morphism. Now LI, . ,2, is topo-
loglcally equlvalent to AXQy (see [7]) for any given v € A, and there-
fore there is an isomorphism j* o (ji¥)™': H%(2,, Q) - H*(Qy, Q).

(0.3) DEFINITION:
() Hy'(Qy, Q= {y € HQ, Q| JjF > () '(v) € H (2, Q)
forall veA}.
(i) H3(2y, Q) = orthogonal complement of H)}(Q,, Q) in
H*(Q2y, Q).
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defined as follows (see (3.1) for a precise definition): (0.5) Let /. be the
line corresponding to x € . Define D(x)={yeQ,|y+x &I NIl +#
0}. It is proven (see (2.5)) that for generic X, D(x) is a finite set for
generic x € Q.

Our theorem is: (X generic)

(0.6) THEOREM:
(i) i preserves the subspaces defined in (0.3)(1)&(ii); moreover i:
HX(Qy, Q)— HZ(Qy, Q) is an isomorphism.
(ii) There is a s.e.s.:

i P,
0— (i+119-1)HZ(2y, Q) > H (2, Q) - Prim*( X, @) - 0,

where i and I are respectively the inclusion and identity morphisms.
(i) D (Hy ' (2y, Q)= Qu A w.

(0.7) COROLLARY:

o,

H(2y, Q) - Prim*( X, Q)
il 1 X119
o,

H(2y, Q) — Prim‘(X, Q)

is sign commutative.

Much of the techniques of this paper are borrowed from an interesting
paper by Tyurin ([6]).

§1. Notation

(i) Z = integers, Q = rational numbers, C = complex numbers

(i) X is a quintic fourfold, P is complex, projective M-space.

(i) If Y is a projective, algebraic manifold, then H”?(Y) is
Dolbeault cohomology of type (p, p) and H??(Y, K)=H?”?(Y)N
H?P(Y, K), where K=127, Q.

(iv) Prim stands for primitive cohomology.

(v) There are 2 senses to the word “generic” in this paper. We say
that X is generic if it is a member of a family { X,}, ., satisfying a
given property, and where W C PV is a Zariski open subset. The other
use of the word “generic” is where X satisfies a given property that is
transcendental in nature, and in this case the word generic will be
prefixed by “transcendental”.
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(vi) Let Y C P ™ be given as in (iii) above, G = Grassmannian of lines
in PM. For x € G, let I be the corresponding line in P ™. The variety of
lines in Y, denoted by Q, is defined as follows: @, = {x€ G|/, C Y }.

(vii) Given Y as in (iii) and S C Y an algebraic subset. Then dim S =
max{dim of irreducible components of S}, and codim,S=dim Y —
dim S.

§2. The variety of lines in X

Let Y CP" be a generic hypersurface of degree d, and assume 2n —d —
5 > 0. An immediate consequence of [1] is:

(2.1) THEOREM: Q, is smooth and irreducible, of dimension 2n —d — 3.
There are two noteworthy cases to consider:

(2.2) COROLLARY: Given X a generic quintic fourfold, and Z a generic
fivefold of degree 5 in P®, then:

(i) Qy is a smooth, irreducible surface and

(ii) Q, is a smooth, irreducible fourfold.

An argument identical to one given in [6; p. 38] yields:

(2.3) PROPOSITION: Given Z as in (2.2). Then through a generic point of Z
passes 5! lines.

Before stating the main result of this section, we introduce the following
notation: Let c € Qy, I, C X the corresponding line.

24 Qy .={yeQy|l,NnI.#0}.We prove:

(2.5) THEOREM: Let X be generic.
(i) dim Q, .= 0 for generic c € Q.
(ii) Let ¢ € Q, be generic. Then for any y € l_, there is at most one line
l, C X other than I, passing through y.

PrROOF: We start by letting X be any degree 5 hypersurface in P>, and
x € X. If we let [X,, X;, X5, X;, X,, Xs] be the homogeneous coordi-
nates defining P°, then X admits as its defining equation F=0, F€
C[X,, ..., X5] a homogeneous polynomial of degree 5. Now after applying
a projective transformation, there is no loss of generality in assuming
x=[0,0,0,0,0,1]. In this case F takes the form: F= X?F, + XJF, +
X2F, + X,F, + F;, where F,€ C[X,,..., X,] is homogeneous of degree i.
We now convert to affine coordinates by setting x, = X,/X,, i=0,...,4.
Define f,= F,/X;. and note that f,€ C[x,,...,x,] is homogeneous of
degree i. Likewise, set f=F/X?, and note that f=f, +f, +f,+ f, + fs.
In affine coordinates x =(0, 0, 0, 0, 0), therefore any line /, passing
through x must be of the form /, = {ta|t € C}, where a € C* is non-zero.
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It follows that

l,cX o fi(ta)+---+f(ta)=0 forall ¢
ie. e tfi(a)+ - +tf;(a)=0 forall¢
e fila)= - =f(a)=0.

The upshot of this argument is that the lines in X passing through x
correspond to the zeros of f,,..., f; in P*. Note that for generic x € X,
no such line exists. Let V(i) be the vector space of homogeneous
polynomials of degree i in C[x,,...,x,], and set V=V(1)® ... ® V(5).
It is clear from our construction that X determines a point v € P(V),
conversely, any v € P(V') determines X so that x € X.

(2.6) Every v € P(V) determines an algebraic set S(v) defined as the
zeros of f,,..., fs in P*. Define V, = {ve P(V)|dim S(v)>0}.If ve
P(V) is given so that dim S(v)=0, then define #S(v) to be the
cardinality of S(v) as a set. For i = 2, 3 define V, = {v € V, |dim S(v)>1
or #S(v)>i}, and set V= {v e V; |dim S(v)>1}. We need the fol-
lowing;:

(2.7) LemMaA: codimp, )V, =i, for i=1, 2, 3 & codimp,, )V > 5.

PrROOF: Let V' =V(j)® --- ®V(5)CV, for j=1,...,5, and P(V’')C
P(V) the corresponding projective subspaces. Note that for v € P(V),
S(v)=zeros of { f,..., fs} in P*. We will prove (2.7) case-by-case:

(a) codimg,, V; = 1: It follows from general principles ([5; (3.30)]) that
v € P(V?)= S(v)#p, so for such v, choose any y € S(v). Clearly { f; €
P(¥(1))| fi(¥) =0} cuts out a codimension 1 subspace of P(¥(1)), hence
codimp,\V, =1.

(b) codimg,,V,=2: Let v€ V? be given so that dim S(v)=0 and
#S(v)>2. Let y;, y, € S(v) with y, # y,. Then { f; e P(V(1)) | f1( 1) =
f1(»,) =0} cuts out a subspace of codimension 2 in P(¥(1)). Statement
(b) now follows from:

(2.8) SUBLEMMA: {v€P(V'?)|dim S(v)> 1} has codimension >3 in
P(V?).

ProoOF: If v € P(V?), then dim S(v)>1 and equal to 1 for generic v.
Define H={(y, v)eP*XP(V?)|y< S(v)}, and let q,, g, be the
canonical projections in the diagram below:

H
4 / \qz
|p4

P(V?) 2.9
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Note that the fibers of g, are projective spaces, all of which are
projectively equivalent to each other; moreover ¢, (and g, ) are surjective,
hence H is irreducible. In addition ¢; '(v) = S(v), and by our construc-
tion, the generic fiber of ¢, is a smooth, irreducible curve of degree 60
(Bezout’s theorem). Let K= {v &€ P(V*)|dim S(v)> 2}. Then by con-
sidering the morphism g,, it follows that codimp ,+ K> 2, (in fact
codimg K >3). If v€P(V?) is given so that dim S(v)=1, then
elementary reasoning implies { f, € P(V(2))| f, vanishes on a component
of S(v) of dimension 1} is of codimension > 3 in P(V(2)). On the other
hand if v € P(V?) is given so that dim S(v) > 2, then one constructs a
diagram analogous to (2.9), replacing P(V?) by P(V*), modifying H
accordingly, and applying a similar reasoning as above to conclude
codimg v K > 3, hence (2.8).

(¢) codimp,\V,=3: If vE V? is generically chosen, then #S(v)=>5!
(bezout’s theorem), moreover no 3 points in S(v) are collinear. If y,, y,,
y3 € S(v) are distinct, then {f, € P(V(1)| fi(y))=/i(y)=fi(y:)=0}
is a subspace of codimension 3in P(V(1)). The case that v € V2 is given
so that dim S(v)>1 is taken care of by (2.8). There remains the
possibility that v € V? is given so that dimS(v)=0 and that some
collinearity (of 3 points) exists. For this to happen, v would have to
belong to a proper subvariety, of V2, and one can easily argue that
statement (c) still holds.

(d) codimg V> 5: A construction similar to the proof of (2.8) implies
{veP(V?)|dim S(v)> 2} is of codimension > 5 in P(V'?). Now sup-
pose v € P(V?) is given so that dim S(v)=1. Then { f, € P(V(1))| f,
vanishes on a dimension 1 component of S(v)} is of codimension > 2 in
P(V(1)). We now apply (2.8) to conclude statement (d), and the proof of
2.7.

(2.10) Conclusion of the proof of (2.5)

Recall at the beginning of the proof a choice of x € P> which determines
P(V), V,, V5, Vs, V,, where P(V) corresponds to those X C P> for
which x € X. To indicate that our choice of x determines P(}), we will
relabel things with the obvious meaning as P(V,), V; ., V5 ., V3 ., V3. ..
Now define W=11,.psP(V,), W=U,cpV,, for i=1, 2, 3, Wy=
L, cpsVp . Itis easy to verify that W, W,’s, W all have the structure of
an algebraic variety, moreover by (2.7):

(2.11) codim , W, =i for i =1, 2, 3 and codim,, Wy > S.
Recall the statement just preceeding (2.6), that for any X and x € X, X
determines a point v, € P(V,). Therefore X determines a fourfold X, C
W given by the formula X,, =11, yv,. For generic X € P>, dim{ X, N
W,}=4—i, and X, N Wy=0. Translating this in terms of Q,, (2.5)
clearly holds.

Q.E.D.
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§3. The incidence and cylinder homomorphisms

Let D,cQ,XQ, be given by the formula: D, = {(x,, x,)€Q, X
Qull, Nl #0 & x,#x,}. It is clear from the definition that
{x, D,(x)} =9, .. Throughout this section X will be assumed to be
generic.

(3.1) DEFINITION: The incidence correspondance D C £, X Q  is defined
to be: D=D,.

Note that codimg .o D =2, therefore the fundamental class of D
defines a cocycle [D]€ H*(2, X 2, Q). Now the component of [ D] in
H*(2y, Q)® H* (2, Q), via the Kinneth formula H*(Q,x Q,, Q)=
$5+q=4H”(Qx, Q)® HY(Qy, Q), induces a morphism i: H*(Q,, Q) -
H?*(Qy, Q), where we use the fact H*(Q, Q)* = H*(2,, Q) (Poincaré
duality).

(3.2) DErINITION: The homomorphism i: H*(2,, Q) — H*(2y, Q) is
called the incidence homomorphism.

The morphism i factors into a composite of 3 other morphisms given
as follows:

(3.3) Let
(1) p: D — Q, be the projection onto the first factor,
(i) j: X Q, > Q, X Q, the morphism which permutes the factors,
ie. j(x;, x,)=(x,, x;). Note that j(D)=D.
Then:

(3.4) PROPOSITION: i =p, o jo p*

PrOOF: Use the fact that the correspondence defined by p, o j o p* in
Q, X Q, is precisely D.

(3.5) The cylinder homomorphism

We will be constantly referring to the following diagram:

P(X)___ 2 o (P(X))

i 7
g)"( Px Q‘X
iy J2
P
\P( z)—%z z
Px 0

9, & %, (3.6)
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where, Z is a smooth degree 5 hypersurface in P®, for which XC Z is a
(smooth) hyperplane section

P(X)={(c,x)eQyxX|x€l}
P(Z)={(c,z2)eQ,xZ|z€l}

p (resp. p,) is the projection of P(X) (resp. P(Z)) onto the first
factor

¢ (resp. @) is the projection of P(X) (resp. P(Z)) onto the second
factor

X=¢;'(X), px=0, . X=X, py=p, : X>Q,

iy, iy, i3, J,, J, are inclusion morphisms.
The same reasoning given in [2; p. 81] implies the following:

(3.7) PROPOSITION (see [4]):
(i) P(X), P(Z) are P! bundles over 2, and Q, respectively.
(ii) P(X), P(Z), X, Qy, Q, are smooth and irreducible.
(iii) All morphisms in (3.6), except for inclusions, are surjective.
(iv) deg ¢, =deg ¢, =5
(v) py is birational and induces: X = blow up of Q, along Q.

(3.8) REMARKS:

(i) (2.2 implies the smoothness and irreducibility for @, and Q.

(i1) (3.7) (iv) is a consequence of (2.3).

As will be discussed in §4, the threefold (P (X)) has a 2-dimensional
singular set. Let S be a generic hyperplane section of ¢(P(X)). One
should expect S to be singular. The next result is a direct consequence of
(2.5), together with the definitions of P(X), p, ¢:

(3.9) PROPOSITION: @ is a birational morphism, moreover ¢ induces a
birational map Q, = S.

(3.10) DerINITION: The cylinder homomorphism ®,: H*(Q,, Q)—
H*(X, Q) is given by: @, =, 4 © @y ° p*.

Let I: H?*(Qy, Q)—> H?(Qy, Q) be the identity morphism, €
HY\(X, Z) the Kihler class defined in (0.1). The next result ties in a
relationship between i and ®,.

(3.11) PROPOSITION: ®,({(i +119-)HX(Qy, @)})=0 in H*(X, Q)/
QuwAw

PrOOF: The proof of (3.11) is formally identical to the proof of lemma 6
in [6; p. 42] where
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(a) Z and deg ¢, = 5! replace X, and deg ¢ in [6].

(b) the cycles are even dimensional.

(c) the weak Lefschetz theorem applied to the inclusions Z C P®&j,:
X — Z implies j3¥(H*(Z, Q)= Quw A w.

(d) 119=5!-1.

§4. The numerical characteristic of the surface 2,

Let ¢,: D, - X be the morphism defined by the formula: ,(x,, x,)=
l.nl, € X Then i, extends to a rational map y,: D — X, moreover
deg xpO—Z by (2.5)(ii). Let I'=D/{j} with quotient morphism 4:
D — T'. There is a factorization of ¢:

D—¥% X
w\ / k @.1)
r

where k is a birational map onto its image, (D). This factorization will
be useful in the next section where we consider an analogue to the
fundamental computational lemma in [6; p. 45]. Note that the fibers of ¢
in (3.6) are a discrete over every point in ¢( P( X)), moreover #¢~'(x)>2

over ¥,(D,) and #¢ '(x)=1 over ¢(P(X))— ¥,(D,), where # in-
cludes multiplicity. By applying Zariski’s Main theorem to o, it is clear

that sing(@(P(X)))=¢,(D,). On the other hand, ¥,(D;) = ¢o(D),
therefore, taking into account the result (2.5)(ii), we can summarize the
above discussion in:

(4.2) PROPOSITION: sing(@(P(X)))=yy(D), moreover through a generic
point of sing(p(P(X))) passes exactly 2 lines in X.

So far we have only focused on the number of lines passing through a
given point in o(P(X)). We now turn our attention to the problem of
determining the number of lines meeting a generic line in X. This number
will be denoted by N,, and bears the title of this section, namely, recall the
definition of p in (3.3)(i):

(4.3) DerFINITION: The numerical characteristic N, of 2, is given by:
N, = deg p.

(4.4) ReMARK: This definition is borrowed in part from [6; p. 40].

There is another ingredient we want to introduce, but before doing so,
we recall from the Lefschetz theorem applied to X C P° that H?(X, Z)
=Zw. Let [p(P(X))] be the fundamental class of ¢(P(X))in H?*( X, Z).
Then there is a positive integer d for which [@(P(X))]= dw. Geometri-
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cally, d is the degree of the hypersurface in P° cutting out @(P(X)) in
X. A partial generalization of Fano’s work (see [6; p. 40]) implies d and
N, are related by the simple:

(4.5) PROPOSITION: d — N, < —2.

PROOF: The proof is essentially borrowed from lemma 5 in [6; p. 40], but
there are important differences accounting for the changes in statements
between (4.5) and [6]. Let /=P, P?, X be generically chosen in P>, so
that /c X NP3, and that S, =P*N X is a smooth quintic surface. The
adjunction formula for S, € P? implies Q5 = O (1), where Q5 is the
canonical sheaf of .S;. Note that / is the only line in S, since a generic
hyperplane section of X contains only a finite number of lines ([1]), and
S, is cut out by a generic P3. If H is a generic hyperplane in P>
containing /, then HN S, =/ + C,, where C, is a smooth and irreducible
curve. Note from the above expression for QF that Q5 =0 (HN S;) =
Os (I + C;). Now taking intersections: 1= (/-H)ps=(/-(H- S)))s, =/
“(I+ Gy))s, (Where - = N), consequently (/- Cy)s, =1 -1 2. On the other
hand, the adjunction formula applied to / C S, implies: —2 = (/- (/+ (H
-So)s,=!*+1, hence /*= -3, afortiori (/-C))s,=4. Next SN
e(P(X)=1+C,~d(H-S,)=dl+dC,, hence C,~ (d—1)/+dC,
therefore (C, - 1)s, = (d—1)*+d(I- C))s,=d+ 3. Now ¢~ '(¢(P(X))
NSy)=1+ ¢ '(C,) where ¢ '(C,) is no longer regarded as a global
section of the fibering p: P(X)— Q, as in [6], but rather as a section of
p over a curve in 2, where we use the aforementioned fact that / is the
only line in S. Then among the points of intersection in C,-/ is a
possible point of intersection of / with ¢~ !(C,), and the remaining points
are the intersections of / with ar most the other lines in X meeting /.
Therefore (C, - I)5, < Ny + 1, afortiori d + 3 < N, + 1, which proves (4.5).
Let H, be the hypersurface of degree d which cuts out ¢(P(X))C X,
and let / C X be any line. Since / C X, we have (H, ° [)ps=((H,- X)-1) 4.
Furthermore d = (H, - [)ps, moreover H; N X = ¢(P(X)). In summary:

(4.6) PROPOSITION: d = (@(P(X)) o).
This concludes §4.
§5. The fundamental computational lemma (F.C.L.)

In this section we will arrive at a version of the F.C.L. in [6] for ®,:
H,(Q,, Q)— H,(X, Q) where ®, is studied on the homology level via
Poincaré duality. As in §4, X will be a generic quintic. Now recalling the
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diagram in (4.1) together with (4.2), there is a diagram:

Q, X2y

U

N

2, I sing(o(P(X)) 51)

Define Iy = { y €' | k is regular at y & k(y) €& sing(sing ¢(P(X)))}.
Clearly T, is smooth and Zariski open in I'. Next define D, =~ '(I}),
2,= D — D,, and note that j(Dy)= D, and Z, is closed in D. Note that
S =p(Z,)C Ry is closed and of codimension > 1. Define Qy (=, — Z.
We can desingularize the diagram in (5.1) to:

D
VAN
Q, T,

where all maps are morphisms, and D, I' are smooth. Diagrams (5.1) &
(5.2) are analogous to the diagrams on p. 46&47 in [6], indeed we have
even tried to retain similar notation. Let iy: & (< Q, be the inclusion,
and set H,(Qy, Q)s =iy «(H,(Ry 0, Q) C Hy(2y, Q). We can now
state:

(5.2)

(5.3) THeoreM (F.C.L): Let v,, v,€ H,(Ry, Q)s. Then (Dy(v,):
Du(v2))x = (d— No)(7; - Yz)sz,( + (i 'Yz)szx-

PrOOF: Except for dimensions of cycles in question, the proof of (5.3) is
formally identical to the proof of the F.C.L. in [6; p. 45], which begins on
p. 46 of [6], and involves the integral invariants N,, and d of (4.6).

(5.4) For the remainder of this section, we will occupy ourselves with the
problem of reformulating (5.3) so as to not involve the particular
algebraic cycle 2 c Q.

We will now fulfill a promise made earlier:

(5.5) ProPOSITION: ®,: H?*(Q,, Q) > H*(X, Q) is surjective.

PROOF: We will use the notation following (0.2) where AC U, is a
polydisk centered at 0 € A, X=X, €1, ., X,. Let i: X, > LI, ., X, be
the inclusion morphism. Let X be transcendentally generic. Now because
A is uncountable, any y € H>?( X, Q) will have a horizontal displace-
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ment in LI, .,H*(X,, Q) which is also of Hodge type (2,2), i.e.
i* o (i%)"Y(y)€ H*?*(X,, Q) for all v € A. However it is a general fact
(using Lefschetz pencils) that such y € Qw A w, hence X transcenden-
tally generic = H>%(X,Q)=Qu A w. This means that the only alge-
braic cocycle in H*( X, Q) is a @ multiple of w A w. Since ®, preserves
algebraicity, clearly @, is surjective for transcendental X. Now it can be
easily seen that the cylinder homomorphisms ®, ,: H?*(2,C)—
H*(X,, C) piece together to form a morphism ®: 11, \H*(2x,C)—
L1, oH*(X,, C) of (trivial) analytic vector bundles over A. From the
above discussion @ is fiberwise surjective on a uncountable dense subset
of A, hence by analytic considerations, must be surjective over A. Q.E.D.

Let ky:Z = Q, be the inclusion. Our next result is:

(5.6) PROPOSITION:

YE Hz(Qx, Q) |(Y'k0, *(a))QX= 0}

H)(Qy, Q)5 =
22y, Q)5 { forall a € H,(Z, Q)

PROOF: It follows from [3; ch. 27] that there is a commutative diagram:
(for our purposes H?(§, C) will be viewed as deRham cohomology)

k*
HX(Qy, Q) > HX(Z, Q)
Dy | N D, In
il).‘ ft
Hz(Qx,o, Q) - Hz(ﬂx, Q) - HZ(QX, Qx,o) 5.7

where D, and D, are respectively Poincaré and Alexander duality. Now
for

Y€ H (2, Q), fuly)

— 0wkt ° D,(1)=0

cpfk D,(y)=0 foralla€ H,(Z, Q)

0. x(@)
o (v ko +(@))g,=0 forall a€ H,(Z, Q).

Now recall the Lefschetz (1, 1) theorem which states that H"(Qy, Z)
is generated by the fundamental classes of algebraic curves in Q,. We
introduce the following notation:
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(5.8) DEFINITION:
(i) The transcendental cohomology, HZ(2y, Q), is given by:
Hi(Qx, Q)= {y€ H* (R, Q) |y A H"'(Ry, @)=0}.
(i) Hé(ﬂx’ Q) = Dp(H,(82y, Q)5).

(5.9) COROLLARY: H2(R,, Q)C HZ(2y, Q).

PrOOF: Compare (5.6) to (5.8)(1).

According to (5.9), it is clear that one can formulate a version of (5.3)
for cocycles in HZ(Qy, @), however there is another subspace in
HZ(2y, Q) which contains H7?(2y, Q) and best suits our purposes.
Recall the definition of H}'!(R,, Q) in (0.3). There is an equivalent
definition of H}!(Q,, @) using the notation in the proof of (5.5) and the
Lefschetz (1, 1) Theorem.

(5.10) DEFINITION:

algebraic cocycles | a horizontal
y€ H*(Q2y,Q) | deformation of y in
. 1,1 —
(i) Hi'(Qy, Q)= 11 HZ(QXF, Q) is
veA

algebraic

(ii) H}g(QX’ Q)= {Y €EH*(Qy, Q) |y AHy ' (Qy, Q) =0}~

(5.11) ReMARKS: From the general theory of Hilbert schemes,
H}'(Qy, Q) is independent of the choice of polydisk A C U,
dim H3;'(Qy, @) is constant over v € U,, and Hy'(Qy, Q)=
H"“'(Q,, Q) for transcendentally generic X.

(5.12) PROPOSITION: HZ(Ry, @) C HE(2y, Q)C H(Ry, Q).

PrOOF: The inclusion HZ(Qy, Q)C HZ(Ry, Q) is obvious from the
definitions, moreover is an equality for transcendentally generic X
((5.11)). Next as X varies, i.e. v € U, varies, 2 also varies algebraically,
hence [Z]€ H}'(R, Q), therefore the second inclusion follows from
(5.6), (5.8)(i1)&(5.10)(ii).

(5.13) REMARKS:
(i) The well known properties of the pairing H?(2y, C) X H*(2y, C)
S C imply H*(Qy, Q)= H}(2y, Q)@ H;'(2y, Q) is an orthogo-
nal decomposition under A.
(i) As X varies, i.e. v€ U, varies, the incidence correspondence
D c Q, X Q also varies algebraically. Therefore i( H}'(2y, Q))C
H}Y(Qy, Q).
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We need the following:
(5.14) LemMaA: @, (H2(Qy, Q)) C Prim*( X, Q).

PrROOF: Let H,, H, be generic hyperplanes in P°, X,=H, N H,N X,
Y, =X, Ng(P(X)). Note that [X,]J=wAw€EH>*(X,Z), and Y, is a
curve in S = H, Ne(P(X)). By (3.9), Y, induces a corresponding curve
C, in Q,, given by the formula C, = p, o ¢*(Y,). Since Y, varies alge-
braically as X varies, clearly [C,]€ H}'(2y, Q). Now let y € H,(2y, Q)
be given so that D,(y) € H3(Qy, Q). From the techniques of the proof
of (5.6), it is clear that y can be chosen to be supported on Q,-supp(C,).
Therefore, on the cycle level, @,(y)N Y, =0, hence (O, (v)- X,) = 0. By
translating this in terms of cohomology, ®.(H2(2,, @) AwA w=0.
But Aw: H® X, Q) H¥ X, Q) is an isomorphism, hence
O (HXQy, Q) Aw=0,ie O (H Ly, Q))C Prim*( X, Q). QE.D.
There is another needed result:

(5.15) LEMMA: Let v,, v, € Hy(Qy, Q). Then (iv,-v,)o, = (V1 iY2)e,-

PrROOF: Using the notation of (5.2), together with the definition of j,
there is a commutative diagram:

D—->D (5.16)

where J is biregular, and g is a birational morphism. Define p=p o g:
D—Q,. It is easy to verify that the correspondence defined by
Px © Ju © P* is the same as py © j o p* = D, hence py o Jy © p* =i. Now
by applying the projection formula 3 times we have: (Note j* = j)

(im*12)a,=(Px° Je© P*(11)12) e,
=(v1-Px ° Ja° P*(12))e,
=(v1-iv2) e,
(5.17) COROLLARY: i(H3(Ry, Q))C H3(2y, Q).
PrROOF: Otherwise there exists v, € H3(Qy, Q), v, € H)' (2, Q) such

that i(v;) Ay, #0. But i(v;) Av,=7 Ai(y,) by (5.15)=0 by (5.13), a
contradiction.
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We can formulate (5.3) for H3(Q, Q):

(5.18) PROPOSITION: Given v,, v, € Hy,(Qy, Q) with Dp(v,), Dp(v,) in
H}%(QX’ Q). Then (Pu(v1) - Pu(72)) x = (d — No)(1; - Y2)e, +(ivy- Y2)e,-

Proor: Use (5.3) & (5.12).
Combining everything together so far we arrive at the final result of
this section:

(5.19) THEOREM. The following subspaces are the same:
(i) S= (7€ H}(Qy, Q)| 24(y)=0)

(i) S;={y € Hy(Qy, Q)|(d = No)y +i(y) =0}

(iii) S3=(i+119-1)H}(Q,, Q).
PrOOF: S, =S, follows immediately from (5.18) and (5.5). Next (3.11),
(5.14), (5.17) imply S; C S,. We first justify the claim: {ker(i +119-1)}
NS, =0.If ye ker(i +119-1)} N S,, then i(y)+119y=(d— N,)v +
i(y)=0, hence (119 —(d— N,))y=0, =y=0 by (4.5), which proves
the claim. Using the claim, it is clear that the homomorphism (i + 119 - I):
S, — S is injective, hence an isomorphism as S; C 5. (5.19) now follows.

§6. A quadratic relation and the proof of the main theorem

We now attend to the proof of the main theorem ((0.6)). Let r=d — N,
and set Q(i)=(rI+i)i+119-1)=i*+ 119+ r)i+r-119-1. We
prove:

(6.1) PROPOSITION:
(i) QUi): HR(Qy, Q) > HZ(Qy, Q) is the zero morphism.
(ii) i: HX(Qy, @)> H3(Q,, Q) is an isomorphism.

PROOF: Part (i) is an immediate consequence of (5.19). For part (ii), note
that i(y)= Q(i)y)=0=r-199y = 0, afortiori y = 0. Q.E.D.

Note that for any y € H}'(2, Q), ®.(y) has the property that under
a horizontal displacement in 11, . H*(X,, @), ®,(v) is still algebraic.
One concludes from the proof of (5.5) that ®,(y) € Qw A w. Therefore
O, (H}'(2y, Q)= Qu A w, hence:

(6.2) COROLLARY: ®,(HZ(2y, Q))=Prim*( X, Q).

PROOF: Use the above remark, (5.5)&(5.14).
Combining (6.2) with (5.19)&(6.1), we arrive at our main result.

(6.3) THEOREM:
(i) i respects the decomposition H?*(Qy, Q)= H}(Q,, Q)&
H}\(Qy, Q), moreover i: H3(2y, Q) — HX(Q,, Q) is an isomor-
phism.
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(ii) There is a s.e.s.:

0-(i+119-1)HZ(Qy, Q) > H3(2y, Q)
@,
- Prim*( X, Q) - 0.

(iii) P(H}' (24, Q) =Qu A w.
(6.4) COROLLARY: The diagram below:

o,
Hz(2y, @) - Prim*(X, Q)
il | x119

P,
H*(2y, Q) - Prim*(X, Q)

is sign commutative.

PROOF: Let y € H}(2y, Q). Then (i + 119-I)y € ker ®,, hence ®,(iy)
+119®,(v) = 0, which proves (6.4).
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