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In [5] we showed that the cokernel of the operator a/axn of a holonomic
Dn-module M is a holonomic 9,,-,-module if M is so-called xn-regular
(see definition 1.1 below).

In this paper we generalize this result to arbitrary xn-regular Dn-mod-
ules, which are not necessary holonomic. In fact we show that for the
category of x,,-regular Dn-modules d(M) ~ d(M) - 1, where M: =

M/~nM and ~n: = a/axn.
In [7] and [8] Kashiwara showed that ExtiD(M, JV) is a C-construct-

ible sheaf if all and JV are sheaves of holonomic D-modules. So in

particular its stalks are finite dimensional C-vectorspaces. His proofs
rests heavily on some purely analytic results. In section 2 we give an
algebraic proof of this finiteness by using the cokernel results (Corollary
1.7). In fact, since our proof is algebraic we can also treat the case of
formal power series at the same time (see Theorem 2.1).

In the remainder of this paper we use the following notations:
F4 * = the set of natural numbers, 1B1: = 1B1* U {0}.
n ~ N* .
k = a field of characteristic zero.
(J = (Jn the ring of formal (resp. convergent) power series in
Xl’...’ xn over k (resp. C).
D = Dn = (J[al,..., an ] is the ring of differential operators over (2,
where ~i: = ~/~xi. In particular we put a : = an-

On Dn we have the increasing filtration {Dn(03BD)}03BD where Dn(03BD) is the
set of differential operators of order  v. Then gr(D) ---- O[03B61,..., 03B6n], the
ring of polynomials in 03B61,...,03B6n with coefficients in (J. We identify these
two rings. If P ~ D, 03C3(P) ~ O[03B61,..., en] ] denotes the principal symbol of
P and if 2 is a left ideal in D then a( £J means the ideal in O[03B61,..., 03B6n]
generated by the elements 03C3(P), where P runs through 2.

Let M be a left D-module (all D-modules will be left D-modules).

M * : = the kernel of an : M ~ M.

M: = the cokernel of an : M ~ M i.e. M: = M/an M.

d ( M ) : = the dimension of M.

If R is a commutative ring dim R : = krull dim R.
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Let T be a k (resp. C)-derivation of (9 and m E M. Then

An element g e (9 is x"-regular if g(o, ... , 0, xn) ~ 0.
If A is an arbitrary ring M(A) denotes the category of left A-modules

of finite type. Finally, K*(~1,..., ~n| M ) denotes the Koszul complex of
the commuting operators ~1,..., an on M (see [1], Chap. 2, 4.13). The i ‘n
cohomology group of this complex is denoted by HiK(~1,..., al1l M ).
Finally, if m is an ideal in some ring A then r(m) is the radical ideal of
m, i.e. the set of all a E A such that a p E m.

§1. An estimate for the dimension of M

DEFINITION 1.1: A 22-module is called xl1-regular if there exists an 1 E ffl,
xn-regular such that Ef~(m) ~ M(O), all m E M. The category of xl1-reg-
ular 22-modules which satisfy the condition above for the element f is
denoted nR(f).

REMARK 1.2: Let M be a cyclic D-module i.e. M = Dm for some m E M.
Since for every derivation T of (9 and every P E Ç) E".( m) E M(O) implies
E03C4(Pm) ~ M(O) (cf. [2], Ch. II, prop. 1.3.2)) M belongs to nR(f) iff

Ef~(m) ~ M(O). In this case there exists r ~ N such that

Consequently (f03B6n)r ~ 03C3(L), where 2= Annp))m. So f03B6n ~ J(M): =
r(03C3(L)). So we proved for M = !&#x26;m:
(1.3) If M ~ nR(f), then f03B6n ~ J(M).

Observe that the converse of (1.3) does not hold: take M: = D2/(~22 -
~1). Then it is easy to see that M ~ 2R(f), for every f ~ O which is
x2-regular, however J(M) = (03B6n).

LEMMA 1.4: Let 0 ~ M1 ~ M ~ M2 ~ 0 be an exact sequence of left
!!2-modules. Then M E nR(f) iff Ml and M2 E nR(f).

PROOF: Obvious. cf [2], Ch. II, Lemma 1.8.

REMARK 1.5: Each holonomic 9Àmodule is xn-regular on some suitable
coordinates xl, ... , x". This can be seen as follows. In [4] we showed that
if M is a holonomic !!2-module, then M[g-1] ~ M(O[g-1]), for some
g ~ 0, g E m. Making a suitable coordinate transformation we can achieve
that g is xn-regular. But this implies that M is Xn-regular (cf. [5]).
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The main result of this section is

THEOREM 1.6: If M E M(D) is xn-regular and M =1= 0, then
(1) M E M(Dn-1).
(2) d(M) ~ d(M) - 1.

COROLLARY 1.7: If M is holonomic and xl1-regular, then M is holonomic.

PROOF: Let M ~ 0. Then Th. 1.6 gives M ~ M(Dn-1), whence d(M)  n
- 1 (cf. [1], Ch. 2, Th. 7.1 and Ch. 3, prop. 1.8). Also by Th. 1.6

d(M)  n - 1, implying d(M) = n - 1.

COROLLARY 1.8: If M is holonomic, then there exist coordinates Xl’ ..., xn
such that M is holonomic.

PROOF: Apply remark 1.5 and Cor. 1.7.

PROOF OF TH. 1.6 STARTED: (reduction to the case of a cyclic D-module).
Let 0 ~ M1 ~ M ~ M2 ~ 0 be exact. Then M1 ~ M ~ M2 is an exact

sequence of -9n-,-modules. It is easy to verify that the following holds:
If Ml, M2 E M(Cn -,), then M E M(en and if d(Mi)  d(Mi) - 1,

all 1  i  2, then d(M)  d(M) - 1.
Consequently, since M E M(D) an induction on the number of gener-

ators of M shows that it suffices to treat the case of a cyclic %module i.e.
M = Dm for some m ~ M.

Before we continue the proof of Th. 1.6 we recall Cor. 3 of [5]:

LEMMA 1.9: Let M = Ç)m be xn-regular. Then
(1) r is a good filtration on M, where F,: = fv + aMlaM and Iv =

Ç)(v)m, all v  0.
(2) M ~ M(Dn-1).

PROOF OF TH. 1.6 (FINISHED): Notations as in lemma 1.9, T : = (Irv)v,
: = {039303BD}03BD. Put L: = Ann2)m. Then

Furthermore, putting 03C8(x + fu-l) = x + IF, - + a M, all x ~ fu, all 03BD  0

we get a gr(Dn-1)-linear map from gr0393(M) onto gr0393(M) and one easily
verifies that 03B6ngr0393(M) ~ Ker 03C8.

So we get a surjective gr(Dn-1)-linear map from gr0393(M)03B6ngr0393(M)
onto gr0393(M). This implies
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Put

and

By lemma 1.9 we get d(M) = dim RII. Since 10 c I we get

d(M) = dim R/I dim R/I0 = dim R/R ~(J + (03B6n)).

Since by Gabber’s theorem J is an involutive 03B6-homogeneous ideal in
S theorem 1.6. fôllows from (1.3) and

LEMMA 1.10: Let f be an xn-regular element of O and let J be an involutive
03B6-homogeneous radical ideal in S satisfying f03B6n E J and J =1= S. Then

dim R/R~( J + (03B6n)) = dim S/J - 1.

PROOF: (1) Let J = p1 n ... ~pt, t ~ N be the decomposition of J in
minimal prime components. Then

So

We shall prove

whence

as desired. So it remains to prove (1.11).
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(2) Let 1  i  t and put p: = p,. Since f03B6n ~ J we distinguish two
cases

(i) f ~ p.
(ii) f ~ p. Then 03B6n ~ p (since f03B6n cz

Before we consider these two cases we need

LEMMA 1.12: p is involutive.

PROOF: Since ~ J~i pJ ~ p, there eixsts c ~ ~J ~ i pJ with c ~ p. Let a,

b ~p . We must show { a, b} ~ p (where {, } denotes the Poisson-
bracket on S). Obviously ac, bc E J. So {ac, bc} E J, since J is involu-
tive. The Poisson-bracket is a bi-derivation on S, so we get

a{c, b} c + a {c, c}b + c {a, b} c + c {a, c}b ~ p.

Since a, b ~  it follows that c2 {a, b] ~ p. Finally cep implies {a,
b} ~ p.

Case (i): Since f is xn-regular we have O/fO~M(On-1) implying
B: = S/p + (03B6n) ~ M(R). Put A : = R/R ~ (p + (03B6n)). Then A - B is a
finite and hence integral extension of noetherian rings and [9], Th. 20, p.
81 implies that dim A = dim B.

So it remains to prove that dim S’/p+(03B6n)=dim S/p - 1. First
observe that p is 03B6-homogeneous (since J is so). Hence p + (03B6n) ~ S, for
otherwise 1 E p + (tn) implying 1 E p, a contradiction. Finally we show
e p, which then gives dim B = dim S/p - 1.

Let 03B6n ~ p. By lemma 1.12 ~(f) = {03B6n, f} ~ p (since f E .p ). Similarly
~2(f) = {03B6n ~(f)} ~ p. Repeating this argument we find ~d(f) ~ p
where d is the x,,-order of f (0, ... , xn ). Hence 1 E p, a contradiction. So
03B6n ~ p.

Case (ii) So f ~ p and tn E p. Put

Then p0 is an ideal in R and p0 + (tl1) + (xn) = p + (tl1) + (xn). So since
tn E p we have

We claim that p +(xn) ~ S This can be seen as follows. Since J is

03B6-homogeneous, p is 03B6-homogeneous. Suppose 1 ~ p + (xn). Then 1 +
axn E p, for some a E S. Consequently 1 + a0xn ~ p, where a = ao + al
+ ... + ad is the development of a in 03B6-homogeneous parts. In particular
a o E (P. Hence 1 + a0xn ~p implies 1 E p, a contradiction. So



264

Consequenctly we will derive

For apply Krull’s theorem to the Noetherian integral domain A : = S/p
and the ideal m: = xn A. By (1.15) m ~ A, so we have ~ mq = (0), which
implies (1.16). Now we need.

LEMMA 1.17 : p n R = p 0.
Assume this lemma, then we get

Hence

dim R/p + (03B6n)) ~ R = dim S/p + (xn). (1.18)

By lemma 1.12 p is involutive. Consequently xn ~ p (if Xn E p, then
1 = xn} ~ p, a contradiction). Since by (1.15) p + (xn) ~ S we
derive

WritE

So by (1.18) and (1.19) we get (1.11) as desired.

PROOF oF LEMMA 1.17 : Obviously p n R c p 0. Now we show p0 c p n R.
Since 03BEn ~ p it suffices to prove

If a: = 03A3aixin ~ p, with ai ~ R, all i E 1B1, then a0 ~ p.

So let a E p. Then ao E p + xn S’, where S’: = O[03B61,..., 03B6n-1]. By induc-
tion on q we will prove

Consequently, since obviously S’ c S (1.16) gives a0 ~ p. So it remains to
prove (1.21). The case q = 1 is clear. Now assume

Then
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Since whence

Consequently xqnb0 ~ .p + xq+1nS’. Substitute this in (1.22) and we obtain
a0 ~ p + xq+1nS’ which proves (1.21), and this completes the proof of
Lemma 1.17.

§2. Finite dimensionality of some Ext-groups

The main result of this section is

THEOREM 2.1: Let M and N be holonomic left -12Lmodules. Then ExtlD(M,
N) are finite dimensional k-vectorspaces, all i. By methods due to

Kashiwara one can reduce the proof of this theorem to the case where
M = (9 (see the proof of theorem 4.8 in [8]).

This reduction uses the fact thatTorOl(M, N ) is holonomic if M and
N are holonomic (cf [1], Ch. 3, Th. 4.3). This result is an easy conse-

quence of the following companion of Cor. 1.7: if M is a holonomic

Dn-module, then M/xn M is a holonomic Dn-1-module (cf [1], Ch. 3, Th.
4.2). The proof of this last result essentially uses the existence of

b-functions (for 1 Su).

PROOF oF THEOREM 2.1: As remarked before it suffices to prove: if M is
a holonomic left D-module, then ExtiD(O, M) is a finite dimensional
k-vectorspace. Since by [1], Chap. 6, Prop. 2.5.1

where HlDR(M) is the i th cohomology group of the DeRham complex of
M, theorem 2.1 follows from

PROPOSITION 2.2: Let M be a holonomic left D-module. Then HlDR(M) is
a finite dimensional k-vectorspace, all i.

The proof of Prop. 2.2 is based on Cor. 1.8 and théorème (iii) of [3]
which states that the ~n-kernel M * of a holonomic en-module is a

holonomic Dn-1-module.
_

If n = 1, then HO(M) = M* and H’(M) = M. So for n = 1, prop. 2.2
is clear.

PROOF OF PROP. 2.2: By induction on n. By Cor. 1.8 we can choose
coordinates x1,..., x,, for 0 such that M is a holonomic left Dn-1-mod-
ule. Also by [3] théorème (iii) M * is a holonomic Dn-1-module. By [1],
Chap. 2, Prop. 4.13 we have an exact sequence of k-vectorspaces
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Hence our proposition follows immediately from this sequence by apply-
ing the induction hypothesis to M * and M.

§3. Miscellaneous results

Let M be a holonomic D-module. As observed before, we showed in [3]
that M* is a holonomic Dn-1-module. So we did not assume any
xn-regularity condition on M. However, if according to Remark 1.5 we
have coordinates x,, .... xn such that M[g-1] ~ M(O[g-1]), where g E (9
is xn-regular, then we can prove that M* is either zero or a free

On-1-module of finite rank. The precise result is

PROPOSITION 3.1: Let M be a D-module such that M[g-1] ~ M(O[g-1])
for some xn-regular’ element g E (9 of order d. Then M* is either zero or

M* ~ (9: -l’ as Cn - -modules, for some r E N *.
Observe that we do not need to assume that M is a D-module of finite

type in Prop. 3.1. This is partially explained by

LEMMA 3.2: Let M be a D-module such that M[g-1] = 0, for some
xn-regular g E (9 of order d. Then M * = 0.

To prove Prop. 3.1 and Lemma 3.2 we use the following crucial result
of [3].

LEMMA 3.3: Let M be a D-module and let m1,..., m sEM *. Il a1m1
+ ... + asms = 0, then a1Jm1 + ... + asJms = 0, all j ~ N (if a ~ O, then
a = 03A3aJxjn, aJ ~ On-1).

COROLLARY 3.4: If al is xn-regular ( of order d), then m ~ On-1m2
+ ... +On-1ms(read m1 = 0 ifs = 1).

PROOF: Apply Lemma 3.3 to j = d.

PROOF OF LEMMA 3.2: Let m E M * . Then g qm = 0, some q E N*. Now
apply Cor. 3.4 with s = 1 and al = gq.

PROOF OF PROP. 3.1: Put

Then M(T:g) is a D-module satisfying M(T : g)[g-1] = 0, whence
M(T : g)* = 0, by Lemma 3.2. Consider the exact sequence

Since M has no g-torsion M is a submodule of [g-1] ~ M[ g-1 ]. This
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last module is holonomic since it belongs to M(O[g-1])(cf [2], Ch. 3,
Prop. 3.4). Consequently the submodule M is also holonomic so in

particular we have M E M(D). From (*) we deduce

Using M(T : g)* = 0 we find the exact sequence

Since  ~ M(D) we have * ~ M(Dn-1) (by théorème i) of [3]).
Whence M* ~ M(Dn-1). So it suffices to prove

for then we get M * ~ M(On-1) and hence our proposition follows from
7.1, Chap. 5 of [1].

Proof of (**). Let m E~ M* ~ M. Since M[g-1] ~ M(O[g-1]) there
exists h E F4 such that

Since gives

But this implies (**) which completes the proof of Prop. 3.1.

In the next proposition we will give an explicit description of H’(M)
in terms of the zerd’ DeRham group of a holonomic Dn-i-module.

Let M be a holonomic 2iJn-module. Then arguing as in remark 1.5
there exist coordinates x1,..., xn of 0 and an xn-regular element g ~ O
such that M[g-1] ~ M(O[g-1]). Since this implies that M is x,,-regular
Cor. 1.7 gives that M/~nM is a holonomic 2iJn-I-module. Now we can
repeat this argument to the holonomic Dn-1-module M/an M. So there
exists coordinates YI,...,Yn-1 of On-1 and an yn-1-regular element
0394n-1 ~ On-1 such that (M/~nM)[0394-1n-1] ~M(On-1[0394n-1]). Observe that
this new coordinates do not change xn . We finally arrive at

PROPOSITION 3.5: Let M be a holonomic 2iJn-module. Then there exist

coordinates xl, ... , x,, of (f) and elements On, 0394n-1,..., 03941 E O, where Oh
is an xh-regular element of oh such that
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In the next proposition we consider the situation of prop. 3.5 and give
an explicit description of H’(M). The precise result is

PROPOSITION 3.7: Let x,, 0 l be as om Prop. 3.5. Let n  2. Then

PROOF: By [1], Chap. 2, prop. 4.13 we have an exact sequence

By Prop. 3.1 M * is either zero or isomorphic to Orn-1. In both cases
HlK(~1,...,~n-1|M*) = 0 if i  1. So we conclude

So if n = 2 we are done. Now let n &#x3E; 2. If i = 1 we are done by (3.8). So
let i  2. We use induction on n. The hypothesis on M immediately gives
the same hypothesis on the Dn-1-module M. So the induction gives

Combining this with (3.8), our proposition follows.
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