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Let ( M m, g ) and ( N n, h ) be two compact Riemannian manifolds. Given
a C’-mapping (p of M into N, we define the energy density (~) to be
the trace of the induced tensor cp* h with respect to the metric g, which is
occasionally written as ~d~~2 by using the natural metric ~·~ on the
vector bundle T*M ~ ~-1 TN. Define the energy functional E(~) by

where d vg is the volume element of (M, g). If the functional E is

stationary at ~, then ~ is called harmonic. We denote by £(M, N ) the
set of all harmonic mappings of M into N. The purpose of this paper is
to study the energy spectrum {E(~) ~ R; ~ ~ X(M, N)} from a

quantitative view point.
In the special case that M = S’ (the circle), harmonic mappings are

nothing but closed geodesics in N, and the so-called Palais-Smale condi-
tion for the functional E guarantees that, for generic metrics on N, the
energy spectrum is a discrete set in R. Actually, several methods have
been developed to get quantitative behavior of the energy spectrum (see
for instance N. Hingston [9] and R. Gangolli [6]).
When dim M &#x3E; 1, not much is known on the structure of Yê(M, N ),

and the aspect of the energy spectrum might be possibly complicated
because we may no longer expect the P - S condition. Even the question
whether the spectrum E(T) is bounded from above or not is rather hard
to decide. But confining ourselves to manifolds N with non-positive
sectional curvature, we find that "a weak compactness property" holds, if
not the P - S condition, which enables us to prove discreteness of the
energy spectrum, and to get some information about asymptotics of
E(~) at infinity.

From now on we suppose that N is non-positively curved. As was
shown by Eells-Sampson [3] and P. Hartman [8], each connected compo-
nent of C0(M, N ), the space of continuous mappings, contains one and
only one component of X(M, N), and the functional E assumes
constant value on each component. Thus we may set, for each component
(M, N)
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One of main results in this paper is embodied in

THEOREM 1: There are positive constants cl, C2, depending only upon the
diameters .DM, DN, the volumes VM, VN and the lower limits pm, p, of the
Ricci curvature of M, N such that for any x &#x3E; 0,

In particular, the energy spectrum constitutes a discrete set in R.

We will observe in §1 that the constants cl and c2 can be explicitly
calculated in terms of D, V, p. Further, we will see in the course of proof
that if N is flat, the left hand side in the above inequality has polynomial
growth as x tends to infinity. In the case N is a flat torus, the exact
growth rate can be obtained. To state this, we denote by b1 = b1(M) the
first Betti number, A(M) the Albanese torus, that is, the torus

which carries the flat metric derived from the global inner product of
harmonic 1-forms on M. We will henceforth write f(x) ~ g(x) if

f(x)/g(x) ~ 1 as x ~ ~.

THEOREM 2: Let N be a flat torus. If we set

then

Another case which allows us to get precise information on the growth
rate is the following, essentially due to G.A. Margulis [18] and Parry-Pol-
licott [29].

THEOREM 3: Suppose that the sectional curvature of N is strictly
negative. Then there exist a positive constant h N such that

It turns out that the constant h N is the topological entropy of the
geodesic flow on the tangent unit sphere bundle of N. The following
estimate is known ([17]):
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where - A2 and - B 2 are the upper and lower limits of the sectional
curvature respectively. If N is a rank-one symmetric space, then one may
conclude that

where 03BC1  ···  03BCn-1 &#x3E; 03BCn = 0 are the eigenvalues of the curvature
operator: X ~ NR(X, 03BD)03BD, v being arbitrary unit tangent vector (see
[6],[25]).

It is known ([3]) that if the Ricci curvature of M is semi-positive
definite, then any harmonic mapping of M into N is totally geodesic. In
§4, we will see that if a component l ~ X(M, N) contains a totally
geodesic mapping, then all the mapping in W are totally geodesic.

As a byproduct of the proof of Theorem 1, we obtain a partial
generalization of Theorem 3.

THEOREM 4: Let 1( M, N ) be the space of totally geodesic mappings of M
into N. Suppose that the fundamental group 03C01(M, p) is generated by
homotopy classes of geodesic loops yl, 03B32,···, Yt at p with length of 03B3i  1.
Then

Especially,

We should point out that Theorem 1 is, in its nature, regarded as a
generalization of the results by H. Huber [10], H.C. lm Hof [11] and M.
Maeda [16] about geometric estimates of the order of the isometry group
acting on a non-positively curved manifold. In fact, combining Theorem
1 with the rigidity theorem in §4, we have the following which im-
mediately applies to the isometries of N since any isometry W is harmonic
andE(cp)=nVN.

THEOREM 5: Suppose that N is non-positively curved and the Ricci curva-
ture is negative at some point. Then for any x &#x3E; 0, the set of surjective
harmonic mappings cp: M - N with E(~)  x is finite, and the cardinarity
is estimated as in Theorem 1.

COROLLARY (see also §5): The number of isometries acting on the above N
has a bound expressed explicitly in terms of DN, VN and PN.
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We give here several notations which will be used later. For a

Riemannian manifold (M, g), let ( M, g) denote the universal covering
manifold. The distance function, the sectional curvature and the injectiv-
ity radius of M are denoted by dM, M Riem and iM respectively. We
further set

As usual, Br( p) will denote the closed ball of radius r with center p, and
D/dt will denote the covariant differentiation along a curve.

For information about the basic properties of harmonic mappings, see
Eells-Lemaire [4].
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§1. Proof of Theorem 1

Throughout this section, (M, g) is a compact Riemannian manifold and
( N, h ) is a non-positively curved compact manifold. We denote by A x the
set of components of W(M, N) containing some 99 such that

sup e(~)1/2  x (it is actually true that if T and 03C8 are harmonic and

homotopic, then e(03C8) ~ e(03C8)). We first estimate the cardinarity #Ax.
For this we recall Lemaire’s idea in [14] which was originally applied to
the finiteness theorem for harmonic mappings of uniform bounded
dilatation. Fix points po E M and q° E N, and also fix a fundamental
domain -q in N for the qr(N)-action on N such that q0 ~D ~DN(q0).
For each l ~ Ax, we take ~l ~ l with ~d~l~  x and a (unique) lifting
:  ~  of  with (p0) ~ D. We also take a homomorphism 03B4l:
03C01(M) ~ 03C01(N) satisfying l(03B3p) = 03B4l(03B3)l(p), which turns out to

depend only upon W. Since the natural bijection of the set of components
of C0(M, N) onto the set of conjugacy classes of homomorphisms of
03C01(M) into ’Tf1(N) coincides with the mapping: l the conjugacy class
of 03B4l, we find that the mapping

is injective.

LEMMA 1.1: Let E be arbitrary positive number. The fundamental group
7T, (M) is generated by some elements ’Tl’..., Tt such that d SI ( po, ’Tl p0) 
2(DM + t:).
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A proof of this easy lemma is found in [2] (Prop. 2.5.6).
We set

Since ~dl~  x, the set K is compact, and the set

is finite. Moreover, from the definition, it follows that 03B4l(T) ~ Sx for

any l ~ Ax, so that, noting 03B4l is characterized by the restriction 03B4l|T,
we have

To estimate #Sx and #T, we need the following general lemma.

LEMMA 1.2: Let Xk be a compact Riemannian manifold, and let xo E X.
Then, for any R &#x3E; 0,

provided that Px  0. If 03C1x  0, then the right hand side can be replaced by

In these inequalities, 03C9k-1 designates the volume of the unit sphere in the
k-dimensional Euclidean space.

PROOF: Let D be a fundamental domain in X such that Xo E !!) C
BDX(x0). If y runs over elements in 03C01(X) with d5,(xo, 03B3x0)  R, then

whence we have
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According to the volume comparison theorem due to Bishop-Crittenden
[1] and Gromov [7],

Volume

or

whence the lemma.
Note that if pM &#x3E; 0, then any harmonic mapping is constant, so we

suppose hereafter 03C1M  0. Applying the above lemma to the case X = M,
R = 2(DM + ~), we get

REMARK ([2]): If MRiem  - A2, A  0, then the fundamental group
’Tf1 (M) can be generated by

elements.
In order to estimate #Sx, we first notice that Kx ~ B2(DM + DN(q0),

hence for each 03C3 ~ S, taking some q E fÍ)x with 03C3q ~ Kx, we find

Using again Lemma 1.2, we have
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Combining (1.1) and (1.2) and letting E 10, we get

provided that pN  0. If pN = 0, or equivalently, if N is flat, then

Theorem 1 turns out to be a consequence of the following a-priori
estimate.

PROPOSITION 1.3: There exists a positive constant c depending only upon
DM, VM and PM such that, for every cp E£(M, N)

sup e(~)  cE(~).

REMARK: If we do not care for the dependence of the constant c on the
geometric terms, then the above is just the result proved by Eells-Samp-
son [3] and K. Uhlenbeck [27].

The case 03C1M  0 is easy because, this being the case, every harmonic
mappings 99 are totaly geodesic, and e((~) are constant functions on M.
Hence E(~) = TMe(~).
We suppose PM  0. The proof will be carried out along the same line

as Uhlenbeck [27], looking carefully at constants appearing in each step.
Let T ~X(M, N). We first observe

whence, for each p &#x3E; 1
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In view of [27], it remains only to estimate the Sobolev constant. But this
has been recently done by S. Gallot [5] and P. Li [15], that is,

for any Cl-function f on M, where in the case m &#x3E; 3, we set

In the case m = 2, we set

Therefore, repeating the argument in [27], we finally have

REMARK: One can use the argument in Eells-Sampson [3] to obtain a
bound on the constant c in Proposition 1.3. In doing this, however, it
seems difficult to eliminate the dependence on the injectivity radius im.
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We now proceed to the proof of Theorem 4. In the proof of Theorem
1, we replace T, Kx by

Noting that E(~) = VMe(~) for any T E.r( M, N), we find

We can make here use of the result by A. Manning [17] asserting that

whence the theorem.
So far we have considered the energy spectrum for the totality of

harmonic mappings (or totally geodesic mappings). It is natural to ask
what happens if we consider the spectrum for (p E£(M, N ) with a fixed
mapping rank. But in general it seems to be difficult even to decide
whether there are infinitely many harmonic mappings with high rank. As
for totally geodesic mappings we can in fact show a finiteness theorem
(see §4). Related with the problem is the following question: If N is a

locally symmetric space of non-positive curvature whose rank is r ( 1),
then is the following quantity positive?
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§2. Proof of Theorem 2

For a flat torus N, the harmonic maps are identified with n-tuples of
harmonic 1-forms with integral periods [3]; therefore counting the com-
ponents of A(M, N) reduces to counting the lattice points
Hom(H1(N, Z), H1 ( M, Z)) in the Euclidean space Hom(H1(N, R),
H1(M, R )). Thus we have

where we have used the facts.

LEMMA 2.1:

(i) For a lattice L in R k, 

PROOF oF (ii): Let {ei}, {f03B1} be bases for L, and L2 respectively. If we
form symmetric matrices

then (det Ai)1/2 = Volume(Rkl/Li), (det AI 0 A2)1/2 = Volume(R k, 0
Rk2/L1 ~ L2). Hence it suffices to verify that det(A1 ~ A2) =
(det A1)k2 (det A2)k1. But this is immediate since for any orthogonal
matrices Ul, U2,

thus the proof reduces to the case A, are diagonal.
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§3. Proof of Theorem 3

We let P = {P} be the set of all periodic orbits of the geodesic flow on
the tangent unit sphere bundle of N. If we identify gJ with the set of
prime geodesic cycles ( = images of closed geodesics), then the period of
P is the length of the corresponding geodescis. We set

It is known that if N has strictly negative curvature, then there is a
natural one-to-one correspondence

P  N ~ {l ~ X ( SI, N ) ; non null homotopic components},

where (P, k) ~ P  N corresponds to the component containing the
k-fold covering of the prime geodesic . According to Parry-Pollicott
[29], one can find a positive constant h such that

Note that if W corresponds to (, k), then E(l) = k2(period of p)2.
Therefore one has

where [ - 1 is the Gauss symbol, and E is a positive constant such that
(~)= 0. Substituting (3.1) into (3.2), we find
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which completes the proof.
As a corollary of Theorem 3, we have

PROPOSITION 3.1: If N is negatively curved, and if dim H1( M, R) &#x3E; 0,
then

PROOF: From the assumption, one can find a harmonic mapping (P:
M - S 1 such that the induced homomorphism ~*: 03C01(M) ~ Z is surjec-
tive. Note that, for such a ç, the mapping

yields an injection of the set of components of C0(S1, M) into that of
C°(M, N). Further, for any geodesic c: S’ - N, the composition c - T:
M ~ N is harmonic and E(c  ~) = E(c) · E(~), whence

which, in view of Theorem 3, completes the proof.

§4. Rigidities and finiteness

Let N be a complete Riemannian manifold with non-positive sectional
curvature, and let V be a subspace in Tq N. We set

which, thanks to non-positivity of curvature, turns out to be a subspace
in Tq N. We define integers n(q) and n ( N ) to be
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respectively. Hence, if dim W &#x3E; n(q), then W0 = (0). If N is negatively
curved at q E N, then n(q) = 1, and if the Ricci curvature is negative
definite at q, then n(q)  n - 1.

PROPOSITION 4.1: Let (p: M ~ N be a harmonic mapping. Suppose that
there exists a point p E M such that rank dcpp &#x3E; n(~(p)). Then cp is rigid
in the sense that there is no other harmonic mapping homotopic to cp. In

other words, the connected component of X(M, N) containing cp is the

singleton {~}.

COROLLARY 4.2: If the Ricci curvature of N is negative at some point, and
if (p: M - N is surjective harmonic mapping, then qq is rigid.

Indeed the Sard’s theorem asserts that there exists a point p E M such
that rank dwp = n and n(~(p))  n - 1.

PROOF OF PROPOSITION 4.1: (Compare the argument in [22]). Given
homotopic harmonic mappings cp, 03C8 E.Yt’(M, N), we can find a unique
section X E C~(~-1TN) satisfying 03C8(p) = Exp~(p) X(p). We set

Fixing an orthonormal basis {e1,···,em} in Tp M, we define surfaces 03B1J:
( - E, ~)  [0, 1] ~ N by setting

LEMMA 4.3: 

PROOF. This is an easy consequence of the second variation formula
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and the equalities

Since N is non-positively curved, the above lemma implies that

039403C1  0, so that p is constant, and

From the assumption, there exists a point p E M such that dim Im(d~p)
&#x3E; n(~(p)), whence 0 = X(p) ~ (Im d~p)0, or 03C1(p) = 0. This implies

Another consequence of the second variation formula is

PROPOSITION 4.4: Let qq: M - N be a totally geodesic mapping and 03C8 be a
harmonic mapping homotopic to ~. Then 03C8 is also totally geodesic.

PROOF: Let X E C~(~-1TN) be as in the proof of Proposition 4.1, and
let 03B3(s) be a geodesic in M with unit speed. We set

03B1(s, t) = Exp tX(y(s)).

In view of the proof of Proposition 4.1, we have

(In fact, the curvature condition guarantees that if R(X, Y)X, Y) = 0,
then R(X, Y)X = 0.) We wish to prove Dlas (~03B1/~s) ~ 0. Since D/as
(~03B1/~s) |(s,0) = 0, it is enough to show that Dlas (aalas) is parallel
along the curve: t ~ 03B1(s, t ). But this is immediate because
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A mapping cp: (M, g) - ( N, h ) is called weakly conformal if there is a
non-nagative function À on M such that cp*h = ag. The following gives a
version of the Franchis theorem (see for related results [12] [14] [20] [23]).

PROPOSITION 4.5: The set of weakly conformal harmonic mappings W with
rank T &#x3E; n ( N ) is finite.

REMARK. For dim M &#x3E; 2, any weakly conformal harmonic map is

homothetic (i.e., has À constaint).

PROOF. We are in the position to apply the argument in §1 and Proposi-
tion 4.1. It suffices to verify the uniform boundedness of the energy
density (~). Let (p be arbitrary weakly conformal harmonic mapping
with rank T &#x3E; n ( N ), and let po E M be a point at which e(~) attains the
maximum. We may suppose 03BB(p0)(~(1/m)e(~)(p0)) &#x3E; 0. Using (1.3),
we observe that

where SM = 03A3MRljglj is the scalar curvature, and {e1,···,em} is an

orthonormal basis of Tp0M. If we set h = 03BB-1/2d~(el), then h(fl, fJ) =
03B4lj, and

We note here that, in general, the quantity

depends only upon the subspace in T. N spanned by fl, ’ ’ ’ , fm E T. N.
Further, from the assumption m &#x3E; n(N), R is negative for any

{f1,···, fm}. Since R is continuous and attains the maximum - c2(  0)
on the compact manifold consisting of m-dimensional subspaces in T. N,
we obtain

at po, and hence at any point in M. This completes the proof.

COROLLARY 4.6: Suppose that the universal covering  is irreducible in the

de Rham decomposition, and that dim M &#x3E; n(N). Then the set of totally
geodesic mappings of M into N is finite.



168

This is easy since every T ~ T(M, N ) are conformal immersions (see
J. Vilms [30]).

REMARK: In conjunction with Royden [21], the argument in this section
leads to a finiteness theorem for holomorphic mappings (see [23]). Let M
and N be compact Kâhler manifolds. Suppose that the sectional curva-
ture of N is non-positive and the holomorphic sectional curvature is

bounded from above by a negative constant - K. Further assume 03C1M  0.
We denote by Hol(M, N )the set of holomorphic mappings of M into N.
It is a standard fact that any ~ ~ Hol(M, N) is harmonic, and if a

component %’ of X(M, N) contains a holomorphic mapping, then all
the mappings in W are holomorphic. According to [21], any cp E

Hol(M, N ) satisfies

where r is the rank of ~ over C. Hence # {l ~ Hol(M, N)} as well as
#{~ ~ Hol(M, N) ; rankoR~ &#x3E; n(N)} can be estimated by a geometric
constant (see §1).

§5. Another approach

This section will give another method to count the components of

X(M,N) which is more direct generalization of Maeda [16]. We retain
the notations in §1.

Given a positive number x, we choose, a, b &#x3E; 0 so that 0  z 

min(iN, iN/2x) and 0  b  iNI2 - ax. Take points p1,···, pt in M and
ql, ’ ’ ’ , qs in N such that

Choosing an element ~l with ~d~l~  x from each component l ~ Ax,
we set L = {~l}. We define a mapping 03A6: L ~ Map(T, S) as follows.
For p E L and i E T, we define j(i) to be the smallest j such that
~(pi) ~ Bb(qj). Then the mapping i ~ j(i) is the 03A6(~). We will show V
is injective. For this assume 03A6(~) = 03A6(03C8) =j(·). Take arbitrary point
p E M, and say p E Ba(pl). Then

whence we can construct a homotopy between ~ and 03C8 by using a
unique geodesic joining 03C8(p) and 03C8(p). This proves (p == 03C8.
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The estimation of #Ax, reduces, after all, to that of the cardinarity of
a ball covering.

LEMMA 5.1: Let X k be a compact Riemannian manifold, and let c  ix be
a positive number.

(i) There exist finite number of points p1,···, Pt E X such that

(ii) If the sectional curvature of X is non-positive, then the above (5.1)
can be replaced by

These are easy consequences of the volume comparison theorem and the
fact that if (c/2(Pl)}l=1,···,t is a maximal family of open balls which are
mutually disjoint, then UBC(Pl) = X.

COROLLARY 5.2: The number of components of isometry group acting on a
non-positively curved manifold N is not greater than

Indeed, in the above argument, we have only to set x = n, a = ’Nl4n
= b. See for related topic [28].
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