COMPOSITIO MATHEMATICA

C.BRUCE HUGHES

Spaces of approximate fibrations on Hilbert
cube manifolds

Compositio Mathematica, tome 56, n°2 (1985), p. 131-151
<http://www.numdam.org/item?id=CM_1985__56_2 131_0>

© Foundation Compositio Mathematica, 1985, tous droits réservés.

L’acces aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique ’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

NuMbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=CM_1985__56_2_131_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Compositio Mathematica 56 (1985) 131-151.
© 1985 Martinus Nijhoff Publishers, Dordrecht. Printed in The Netherlands.

SPACES OF APPROXIMATE FIBRATIONS ON HILBERT
CUBE MANIFOLDS

C. Bruce Hughes

Abstract

It is shown that the space of approximate fibrations from a compact Hilbert cube manifold
to a compact polyhedron is locally n-connected for every non-negative integer n.

1. Introduction

This paper is concerned with deforming certain parameterized families of
maps between a Hilbert cube manifold (i.e., a Q-manifold) M and a
polyhedron B to parameterized families of approximate fibrations. When
M and B are compact this results in showing that the space of approxi-
mate fibrations from M to B is locally n-connected for each non-nega-
tive integer n.

Approximate fibrations were introduced by Coram and Duvall [8] as a
generalization of both Hurewicz fibrations and cell-like maps. Since then
approximate fibrations have been studied by several authors (see [5], [9],
[13], [19]) and have found numerous applications in geometric topology.

Here is our main result (see Theorem 7.1).

THEOREM: Let B be a polyhedron, let n > 0 be an integer, and let o be an
open cover of B. There exists an open cover 8 of B so that if M is a
O-manifold and f: M X I" — B X I" is a fiber preserving map such that f,:
M — B is a B-fibration for t in I" and an approximate fibration for t in 01",
then there is a fiber preserving map f: M X I" — B X I" such that [, is an
approximate fibration a-close tof, for t in I" and f | M X 1" = f | M X dI".

The n =0 case of this theorem has previously been proved by Chap-
man [2, Theorem 1]. The shell of our proof is the same as Chapman’s and
we refer the reader to [2] for most of the common details. In order to
make Chapman’s program work in our parameterized setting we have
developed a parameterized form of engulfing (Section 4). The key in-
gredient for this engulfing is a sliced lifting property for parameterized
families of 8-fibrations (Section 2). Another difference with [2] is that in
the wrapping up construction (Section 5) we encounter non-compact
Q-manifolds parameterized by submersions to I". Hence, we are forced
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to recast some basic fibered Q-manifold theory in a new setting (Section
3). A relative version of our main result is also obtained (see Section 7).
This relative version has been useful in the study of controlled simple-ho-
motopy theory [18].

Many authors have studied local properties of spaces of certain types
of maps. Of particular relevance here are the theorems of Ferry [14],
Torunczyk [21], and Haver [15]. Ferry and Torunczyk proved that the
homeomorphism group of a compact Q-manifold is an ANR, while
Haver proved a theorem which implies that the space of cell-like maps
from a compact Q-manifold to itself is weakly locally contractible (and
therefore, locally n-connected for each n > 0). Our main result implies
the following (see Section 7):

COROLLARY: Let M be a compact Q-manifold and let B be a compact
polyhedron. Then the space of approximate fibrations from M to B endowed
with the compact-open topology is locally n-connected for each n > 0.

It is shown in Section 7 that the same result holds for the space of
cell-like maps and the space of monotone approximate fibrations. The
results of this paper have recently been used in [17] to show that the
space of Hurewicz fibrations and the space of bundle projections from a
compact Q-manifold to a compact polyhedron are locally n-connected
for every n>0. Whether any of these spaces of maps are locally
contractible remains an open question.

This paper is organized as follows. Section 2 consists of preliminaries
on approximate fibrations. A key result there shows that families of
e-fibrations parameterized by finite dimensional polyhedra have a certain
sliced lifting property. The restriction to finite dimensional parameter
spaces is the main reason we are unable to prove stronger results on
spaces of approximate fibrations (for example, local contractibility). The
sliced lifting property has been useful in [17] and [18]. Section 3 mentions
the basic Q-manifold theory for submersions. It may be of interest to
note that our techniques prove that if M is a foliated Q-manifold with
model 1" whose leaves (in the leaf topology) are also Q-manifolds, then
there is a leaf-preserving homeomorphism 4: M X Q - M arbitrarily
close to projection.

Section 4 contains the parameterized engulfing results. These have
been key ingredients in [17] and [18]. Once the engulfing technique is
established, the rest of the proof of the main result follows rather
mechanically from the proof of Chapman’s theorem [2, Theorem 1]. This
procedure is outlined in Sections 5 and 6. The main result and its
corollaries are stated and proved in Section 7.

Most of our notation and definitions are standard. Except for the
various function spaces which we consider, all spaces are locally compact,
separable and metric. We use R” to denote euclidean n-space and B" to
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denote the n-cell [—r, r]" € R". The circle is denoted by S! and the
n-torusis T" = S' X ... X S! (n times). The standard n-cellis I" = [0, 1]"
and its (combinatorial) boundary is 0/". If X is a space and A4 C X, then
we use both 4 and int(A4) to denote the topological interior of 4 in X.
The closure of 4 in X is denoted by cl(A4). If X is a compact space, then
¢(X) denotes the cone over X. That is, ¢(X)= XX [0, + 0]/~ , where
~ is the equivalence relation generated by (x, 0) ~ (x’, 0) for all x, x" in
X. Similarly, & X)= XX [0, + )/~ denotes the open cone over X,
and for any r in [0, + o] let ¢,(X)=XX[0, r)/~ and cQ,(X)= X X
0,1)/~.

This paper is a revision of part of the author’s doctoral dissertation
written at the University of Kentucky under the direction of T.A.
Chapman [16].

2. Preliminaries on approximate fibrations

This section contains some basic facts about the various types of fibra-
tions that will be needed in the sequel. A key result is Theorem 2.4 which
says that a family of 8-fibrations parameterized by a finite dimensional
polyhedron has a certain sliced e-lifting property.

We begin with some definitions. A map f: E — B (i.e., a continuous
function) is proper provided f~'(C) is compact for all compact subsets
C of B. If « is an open cover of B, then a proper map f: E — B is said to
be an a-fibration if for all maps F: ZX[0,1]— B and g: Z— E for
which fg = F;, there is a map G: Z X [0, 1]— E such that G, = g and fG
is a-close to F (that is, given any (z, t)€ Z X [0, 1] there is a U€ «
containing both fG(z, t) and F(z, t)). If CC B and « is an open cover
of B, then a proper map f: E — B is said to be an a-fibration over C
provided the condition above is satisfied when the maps F: Z X [0, 1]—> B
are required to satisfy F(Z X [0, 1)) c C. If e¢> 0, then we also use € to
denote the open cover of B by balls of diameter €. Thus, we speak of
e-fibrations.

A proper map f: E — B is an approximate fibration provided it is an
a-fibration for each open cover a of B. We only consider approximate
fibrations which are defined between ANRs, i.e., absolute neighborhood
retracts for metric spaces. The following lemma is used repeatedly.

LEMMA 2.1: Let B be an ANR and let C be a compact subset of B with a
compact neighborhood C. For every a > 0 there exists a B = B(a, C, C, B)
> 0 such that if ¢ >0 and f: E — B is an efibration over C, then f has the
following lifting property: given maps F: Z X [0,1]>CCBandg: Z—E
such that fg is B-close to F,, there exists a map G: Z X [0, 1] = E such that
Gyo=g and fG is (a + €)-close to F.

For a proof of Lemma 2.1, see [8, Proposition 1.2] or [9, Lemma 1.1].
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Those two papers should also be consulted for other basic results on
approximate fibrations.

We now define the key sliced lifting property that will be established
in Theorem 2.4.

DErINITION 2.2: Let E, B, and X be spaces and let C C B. A map f:
E X X — B X X is said to be fiber preserving (f.p.) if pyf=p, where p,
denotes projection to X. If ¢>0 and f: EX X — B X X is a proper f.p.
map, then we say f is a sliced e-fibration over C X X if f satisfies the
following sliced e-lifting property over C X X:

if f1 ZX[0,1]1XX—>CXXCBXXand g: ZXX— EXX are f.p.
maps such that fg = F,, then there exists a f.p. map G: Z X [0, 1] X X —
E X X such that G, =g and fG is e-close to F.

If C= B, then f is called a sliced e-fibration.

We will need the following lemma for the proof of Theorem 2.4.
Recall from the introduction that all spaces in this paper are metric.

LEMMA 2.3: Let EX X — B X X be a proper f.p. map where E and B are
ANRs. Let C be a compact subset of B and let C be a compact neighbor-
hood of C in B. Let € >0 and suppose for each x in X f,=f|EX {x}: E
= EX {x)}— BX {x}=Bis an efibration over C. For every a >0 there
is an open cover U of X such that if X, is any subset of X contained in some
member of U, then f|EX X,: EX X,— BX X, is an (a+ €)-fibration
over C X X,.

PrROOF: Given the hypothesis above, choose 8= B(a/3, C, C, B) by
Lemma 2.1. Choose the open cover U so that the diameter of any
member of U is less than a/3 and so that f, is B-close to f, over C
whenever x and y are elements of a common member of U.

Let X, be a subset of X contained in some member of U. Let maps F:
ZX[0,1]>CX X, and g: Z— EX X, be given such that fg=F,.
Since the diagram

PE=Proj

EXX, —
/ £

Pp=Proj
BXX, —

B-commutes over C where x € X, 1s fixed, the choice of B implies the
existence of a map G: Z X [0, 1]— E such that G,=p,g and fG is
((e/3) +€)-close to ppF. Define H: ZX[0,1]-> EX X, by H(z, t)=
(G(z, t), pxg(z)). Then H is seen to be an (a + ¢€)-lift of F.

THEOREM 2.4: Let C be a compact subset of the ANR B and let C be a
compact neighborhood of C in B. Let n be an integer. For every € > 0 there
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exists a >0, 8 =8(¢, n, C, C, B), such that if E is an ANR, X is an
n-dimensional polyhedron, and f: EX X — BX X is a proper f.p. map
such that f. is a 8-fibration over C for each x in X, then f is a sliced
e-fibration over C X X.

PROOF: The proof is by induction on n. The theorem is clearly true for
n =0 by taking 8(¢, 0, C, C, B)=¢. Assume n > 0 and that the theorem
is true for n — 1. Let € > 0 be given and choose B=B(e/4, C,C, _B) by
Lemma 2.1. Let § = 8(e, n, C, C, B)—mm{e/8 8(B, n—1,C, C, B)}.
Let f: EX X — B X X be given as in the hypothesis. By Lemma 2.3 we
can consider X to have such a fine triangulation that if o is any simplex
of X, then f|EXo: EXo— BXo is an (e/4)-fibration over C X o.
Note that pyf|E X 0: EX o — B is also an (¢/4)-fibration over C. We
also assume that f, is (¢/2)-close to f, over C whenever x and y are in
a.

Given f.p. maps F: ZX[0,1]XX—>CXXCBXXand g: ZXX—>
E X X such that fg = F;, the inductive assumption implies the existence
of a fp. map G: ZX[0,1]X X" ' > EX X"~ ! such that G,=g|Z X
X" 'and fG is B-close to F|Z X [0, 1] X X"~ ! (here X"~ ! denotes the
denotes the (n — 1)-skeleton of X). Define g: [Z X [0, 1] X X" 'U[Z X
{0} X X]>EXX by g|ZX[0,1]X X" '=G and g(z, 0, x)=g(z, x).
Let o be an n-simplex of X and note that the pair (Z X [0, 1] X g, [Z X
[0, 1] X do]U[X X {0} X o]) is homeomorphic to the pair (Z X [0, 1] X
I", Zx {0} XI"). Hence, there exists a map I:"a: ZX[0,1]X0—=> EXo
such that F, |[Z X [0, 1]Xd6]U[Z X {0} Xo]=g| and p,fF, is (¢/2)-
close to p,F|. (F, is not assumed to be f.p..) Define F: Z X [0, 1] X X —
EX X by F|Zx[0,1]xX o = F, whenever ¢ is an n-simplex of X and
F|Z x]o0, I]x X" ' = G. Finally, define H: ZX[0,1]X X —> EX X by
H(z, t, x)=(pgF(z, t, x), x). Then H is seen to be the desired sliced
e-lift of F.

Next we discuss a technical variation of the definition of an e-fibration
which we call an (e, p)-fibration. A proof of Proposition 2.6 below can
easily be given using as a model the proof of Proposition 2.2 in [2].
Therefore, the details of this argument are omitted.

DEFINITION 2.5: Let C and K be subsets of the ANR B with K C C and
let € >0 and p> 0. A proper map f: E — B is said to be an (e, p)-fibra-
tion over (C, K) if given maps F: Z X [0,1]-> CC B and g: Z - E with
fg = F,, then there is a map G: Z X [0, 1] = E such that G, =g, fG is
e-close to F, and fG|F (K) is p-close to F|F~'(K).

PROPOSITION 2.6: Let B be an ANR andlet KC VC Cc UcC B where C
and K are compact and U and V are open in B. For every € > 0 there exists
a 8> 0 such that for every u> 0 there exists a v >0 so that the following
statement is true:
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if f: E — B is a é-fibration over U and a v-fibration over V, then f is an
(e, p)-fibration over (C, K).

We leave it to the reader to formulate and prove a version of Theorem
2.4 for (e, p)-fibrations. The reader should also have no problem in
showing that e-fibrations, sliced e-fibrations, (€, u)-fibrations, and sliced
(e, p)-fibrations all have an appropriate stationary (or regular) lifting
property (see [8] where this is done for approximate fibrations).

3. Basic Q-manifold theory in a submersive setting

The Hilbert cube Q is represented by the countable infinite product of
closed intervals [—1,1]. A space M is a Hilbert cube manifold or
Q-manifold if it is locally homeomorphic to open subsets of Q. Our
reference for Q-manifold theory is Chapman’s book [1] which should be
consulted by the reader unfamiliar with the basic machinery of Q-mani-
folds including the notion of Z-sets.

We will need some basic results from Q-manifold theory para-
meterized by submersions. If #: E — B is a proper submersion for which
the fibers 7~ '(b), b € B, are Q-manifolds, then = is actually a bundle
projection. This is proved in [20] with [12] supplying the necessary
deformation theorem (see also [7]). In this case adequate parameterized
theories can be found in [3, Section 2], [6], [14, Section 4], and [21,
Appendix 2]. Unfortunately, we will encounter in the sequel submersions
whose fibers are non-compact Q-manifolds, and it is that fact which
makes this section necessary. However, we will be working on compact
pieces of the submersion and the following theorem due to Siebenmann is
the main tool which allows us to deal with this situation (again, see [12]
for a major ingredient).

PROPOSITION 3.1: ([20, Corollary 6.15]). Let a: E — B be a submersion
such that =~ '(b) is a Q-manifold for each b in B and let CCE be a
compactum such that =w(C) is a point. Then there exist an open neighbor-
hood F of C in = (w(C)), an open neighborhood N of w(C) in B, and a
product chart ¢: F X N — E about F for m.

The following definition is a slight generalization of that given in [14]
for sliced Z-sets in products.

DEFINITION 3.2: Let #: E— B be a submersion and let K be a closed
subset of E. Then K is said to be a sliced Z-set if for every open cover U
of E thereis a map f: E — E\ K such that f is U-close to id and =f = 7.

The following proposition characterizes compact sliced Z-sets in cer-
tain submersions. The reader can prove this by using Proposition 3.1 and
the characterization result from [6].
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PROPOSITION 3.3: Let m: M — B be a submersion where B is a polyhedron
and 7w~ '(b) is a Q-manifold for each b in B and let K C M be compact.
Then K is a sliced Z-set if and only if KN\ 7~ '(b) is a Z-set in =~ '(b) for
each b in B.

The experienced reader should have no trouble in formulating and
proving versions (parameterized by a submersion) of a mapping replace-
ment theorem, a sliced Z-set unknotting theorem, a collaring theorem for
sliced Z-set submanifolds, and a stability theorem. In each case the idea
is to use the analogous result from one of the bundle versions mentioned
above. Those results can be used locally by Proposition 3.1.

4. Parameterized engulfing

In this section we establish the key engulfing results used in the sequel.
These results are stated as Theorems 4.3 and 4.4. Lemma 4.1 contains the
basic geometric engulfing move used in the proof of Theorem 4.3.

Throughout this section B and Z denote ANRs where Z X R is an
open subset of B. Projection onto Z is denoted by p, and projection onto
R by p,. Let n>0 be a fixed integer and let C be a (possibly empty)
closed subset of 07".

DATA FOR LEMMA 4.1: Let Z be compact. Let a,: I"—[0,1], a_:
I"->[—1,0], and p: I"—>[—1,0] be maps satisfying the following
conditions:

() a;'O)UaZl(0)caIm,

(i) p =0 on a neighborhood of a7!(0)Ua='(0),

(iii) a_(t)<p(t) for each t € I"\ a~}(0).

We now define four subsets of ZXRXI"CBXI". Let E=
{(z, x, H]a_()<x<a, ()}, E_={(z, x, t)|a_()=x}, E,=
{(z, x, t,)|a (t)=x}, and X={(z, x, t)|a_(?)< x < p(t)}. Note that
XCE and BdE=E_UE,.

Finally, let Y be a compact subset of E which misses E, and
ZXRX[aZ'(0)Ua'(0)].

LEMMA 4.1: For every €>0 there exists a 8 >0 such that if M is a
Q-manifold and f: M X [0, 11X 1" —» B X I" is af.p. map which is a sliced
8-fibration over Z X [—2,2] X 1", then there is a f.p. homeomorphism u:
M X [0, 1] XI" - M X [0, 11X I" such that
@) [T YN (M X (0} XTI") Cuf (X)),
(ii) u is supported on f~'(int E),
(iii) thereis a f.p. homotopy u: id = u, 0 < s <1, which is supported on
f~\(int E) and which is a (p,f)”'(¢)-homotopy over Z X R X I".

PROOF: Let N, be a compact neighborhood of aZ!'(0)Ua'(0) in I”
such that Y misses Z X R X N; and such that p=0 on N,. Choose a
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Figure 1.

compact neighborhood N, of aZ!'(0)Ua;'(0) in I" such that N, C int
N;. Choose maps B,: I"—[0,1] and B_: I" - [—1, 0] with the follow-
ing properties:

(i) BI'0)=N,, BZ1(0)=Ny;

(i) B,(t)<a,(t) for teI"\a;'(0), a_(t)<B_(t) for telI"\

aZ'(0);

(ili) YC {(z, x, ) EZXRXI"|x < B,(1))};

@iv) B_(t)<p(t) for t € I"\ N,.

See Figure 1 for a picture of the situation when Z = {point} and
n=1.

Choose a f.p. isotopy g,: ZX RX I" - R X I", 0 <s <1, which slides
the graph of B, over to the graph of 8_. More specifically, we require g
to satisfy the following properties:

(i) g =1id;

(i1) g, affects only the R-coordinate of any point;

(i) g,|ZX R X N, =id;

(iv) g, is supported on a compact subset K of int E;

) g(z, B.(2), t)=(z, B_(2), t) for each (z, t)E Z X I".

Now given a Q-manifold M and a f.p. map f: M X [0, 1]XI" > BX1I"
which is a sliced 8-fibration over Z X [—2, 2] X I", define a f.p. homo-
topy g0 M X[0,1]XI">BXI",0<s<1,sothat g, =g o fon f 1(Z
XRXI")and g, =fon (M X[0,1]XI")\f (ZXRXI"). Since f is a
sliced §-fibration over Z X [—2,2]XI", there is a f.p. homotopy G,:
FNZX[=2,2])xI") > M X[0, 1] X I" such that G, = id, fG, is 8-close
to g, | for each s, and G, is stationary with respect to g,| f/~'(Z X [—2, 2]
X I

Observe that G, |[f'(Z X [—2,2]XI")N (M X {0} X I")] extends via
the identity to a map G/: M X {0} XI"—> M X[0,1]xI". Using [6,
Theorem 4.1] we can approximate G| by a f.p. embedding G,: M X {0}
XI"— M X[0, 1] X I" possessing the following properties:

(i) G,(M x {0} X I") is sliced Z-set;

(ii) G, is supported on f~'(K)N(M X {0} x1");

(iii) G,(f (int E)Nn(M X {0} X I"))C f~(int E).
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We can further assume that G, is so close to G,| that G, is f.p.
homotopic to G, | via maps satisfying conditions (ii) and (iii).

Using sliced Z-set unknotting [6, Theorem 5.1] we can find a f.p.
isotopy u,;: M X [0, 1]><1"—)M><[0 11X 1", 0<s<1, so that u,=1d,
u |G (M X {0} XI")y= Gy, and u,|(M X [0, 1]><I")\f‘ (int E)=
It is now easy to see that u, satisfies the conclusion of the lemma. It only
remains to observe that we can assume u, is a (p,f)”'(¢)-homotopy
over Z X R X I". This is because of the control on the f.p. isotopy u,
given by [6, Theorem 5.1].

ADDENDUM TO LEMMA 4.1: Let F be a compact Q-manifold such that
FXBCMand fIFXBX{0}XI" FXBX{0}XI"—>BXI" is pro-
jection. Extend g;: ZX RXI"—Z X RXI" via the identity to a f.p.
homeomorphism g: BXI"— BXI", 0<s<1. Then the f.p. homotopy
u;: MX[0,1]XI"—> M X[0,1]1X1",0 < s <1, can be chosen to addition-
ally satisfy u | FX BX {0} xI"=1id X g;', 0<s< 1.

ProoOF: We indicate here how to modify the proof of Lemma 4.1 in order
to attain the added condition on u,. Since g,| FX BX {0} X I"=f o (id
Xg)for0<s<1land FXBX {0} is collared in M X [0, 1], it can be
assumed that G/ |FX BX {0} XI"=(idzX g,) for 0 <s < 1. Using the
full strength of [6, Theorem 4.1], the f.p. embedding G,: M X {0} X I"

M X [0, 1] X I" can be chosen so that G, |FX B X {0} X I" = (id X g,)
and the homotopy from G} to G, is rel Fx B X {0} XI". After a
reparameterization of the homotopy from Gj to G,, one simply uses a
strong relative version of sliced Z-set unknotting to produce u;: M X
[0, 1] XI" > M X[0,1] X I", 0 < s <1, with the desired propertles

DATA FOR LEMMA 4.2: Let Z be compact. Let o;: 1" = [—1, 1] and a,:

— [0, 1] denote maps such that () <a,(z) for each r€I" and
o (-1 =a5'(0)=C. Let I'(a))={(z, x, t)EZXRXI"|x< (1)}
See Figure 2.

LEMMA 4.2. For every €>0 there exists a 8 >0 such that if M is a
Q-manifold and f: MXI"—>BXI" is a f.p. map which is a sliced
8-fibration over Z X [—2,2]X 1", then there is a f.p. homeomorphism h:
M X 1" — M X 1" such that
(1) | M X C is the identity,
(i) £~ (T(ey)) C hf~N(Z X (=00, 0] X I"),
(iii) there is a f.p. homotopy h;: id=h, 0<s<]1, which is a
(p1f) " "(€)-homotopy over Z X R X I",
(iv) h, is supported on f~'{(z, x, 1)EZXRXI"|—0.9 <x < a,(t),
t€I"\C} foreach 0 <s<1.

PrROOF. Given € > 0, § > 0 is chosen by Lemma 4.1 so that the two basic
engulfing moves described below can be made. Given a f.p. map f:
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J
A
A
(]

[ S S

Figure 2.

M X I"— BXI" as in the hypothesis, choose a f.p. map k: M X [0, 1] X
I" — M X I" close to projection such that k| M X [0, 1] X C is projection
and k|M x[0,1]X(I"\C): M X[0,1]X(I"\C)—> M x (I"\C) is a
homeomorphism (see [14, Theorem 4.6]). It then follows that fk: M X
[0, 1] X I" = B X I" is also a sliced 8-fibration over Z X [—2, 2] X I". The
homeomorphism 4 will be defined as a composition #h =
kovowouok ! where v, w, and u are constructed below.

Use Lemma 4.1 to produce a f.p. homeomorphism u: M X [0, 1] X I"
- M X [0, 1] X I" such that (fk) "(I'(ey)) N (M X {0} X I")C
u(fk)""(Z X (—o0,0)XI") and u is supported on (fk) {(z, x, 1) € Z
XRXI"-05<x<a,(t), teI"\C}.

Let S, =(fk) (2, x,1)€EZXRXI"|—0.6<x<a(t)} and let S,
=(fk) " Y(z, x, t)€ Z X R X I" |max(0, a;(?)) < a,(¢)}. Use Lemma 4.1
again to produce a f.p. homeomorphism v: M X [0, 1] XI" - M X [0, 1]
X I" such that §; N (M X {1} xI")c v !(S,) and v is supported on
(fK) " Y(z, x, DZXRXI"|—0.7<x<ay(t), t€I"\C}.

Let U= (fkv) '{(z, x, t)€ ZX R X I"|max(0, a,(t))<x} and ob-
serve that if k is close enough to projection, then S; C [#(U N (M X {1}
X I1"))]1 X[0, 1) where 7: M X [0, 11X I" - M X I" is projection. Then w:
M X[0,1]XI"—> M X[0,1]X " is a f.p. homeomorphism affecting only
the [0, 1]-coordinate of any point such that w[S;\ u(fk)~(Z X (— o0, 0)
X I")]C U. The support of w is on (fk) ((z, x, ) €EZXRXI1"|-0.7
<x<a(0)})

It is easily verified that A=k o v o w o u o k™! satisfies the conclu-
sions of the lemma. The homotopy of the identity to 4 comes from
composing three homotopies of u, v, and w to the identity. The homo-
topies for u and v are provided by Lemma 4.1; the homotopy needed for
w comes from pushing along the [0, 1]-factor in M X [0, 1] X I". O

ADDENDUM TO LEMMA 4.2: Let N, and N, be compact neighborhoods of C
in 1" such that N,Cint N, and T'(a;) misses Z X[—0.5, + )X N;.
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Choose maps B,: I"—[0,1] and B_: I" — (—0.5, 0] with the following
properties:
() B7'(0)=N,, BZ0)=N,;

(1) a;(t)<PB.(t) foreacht€1";

(iii) B, (¢) < a,(t) for each t € 1"\ C.
Suppose we are given a f.p. isotopy g;: BX 1" > BXI", 0<s<1, such
that g |Z X R X I" satisfies the properties listed for g, in the proof of
Lemma 4.1 where now E={(z, x, t)€E ZX RXI"|—-0.5 <x < a,(¢)}.
Let F be a compact Q-manifold such that FX B is a Z-set in M and
fIFXBXI". FXBXI"— BXI" is projection. Then the f.p. homeo-
morphism h: M X 1" — M X 1" can be chosen to additionally satisfy h| F X
BXI"=id X g;! and the f.p. homotopy h: id=h, 0<s<1, can be
chosen to additionally satisfy h,| FX BXI"=id-x g ', 0<s<1.

PROOF: Just three modifications need to be made in the proof of Lemma
4.2. First, choose the f.p. map k: M X [0, 1]XI" - M X I" to addition-
ally satisfy k|FX BX {0} XI": FXBX {0} XI"—> FXBXI" is the
identity. This is possible by [6, Theorem 4.1]. Secondly, choose the f.p.
homeomorphism u: M X [0, 1] XI" - M X I" and the f.p. homotopy u,:
id=u,0<s<1,sothat u | FX BX {0} XI"=id X g, '. This is possible
by the Addendum to Lemma 4.1. Finally, choose the f.p. homeomor-
phism v: M X[0, 1]X1"—> M X [0, 1]XI" and the f.p. homotopy v:
id=wv,0<s<1,so that v | M X {0} X I" is the identity. To see that this
is possible, recall that v is provided by Lemma 4.1 and reexamine its
proof.

With these modifications it is now easy to see that h =
k o vewouo k!satisfies the conclusion of the addendum. O

DATA FOR THEOREM 4.3: Let Z be compact and let §:R X [" > R X I"
be a f.p. homeomorphism with the following properties:

(1) 0| R X C is the identity;

(i) x < p,0(x, t) for each xR and t € I";

(iii) @ is supported on [—1, 1] X I".

Let §: BXI"— BXI" denote the f.p. homeomorphism which ex-
tends id ; X 8 via the identity.

Foreach x€ R, let I'(0, X)= {(z, x, t) EZX RXI"|x <p,0(X, 1)}.

THEOREM 4.3: For every € >0 there exists a 8 >0 such that if M is a
Q-manifold and f: MXI"— BXI" is a f.p. map which is a sliced
8-fibration over Z X [—2, 21X I", then there is a f.p. homeomorphism 8:
M XI"—> M X I" such that
G) 6 | M X C is the identity,
(ii) f0 is e-close to 0'f,
(i) 0 is supported on f~Y(Z X [—1, 1]xI"),
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(iv) there is a f.p. homotopy 6: id=80, 0<s<1, which is a
(p1f) " "(€)-homotopy over Z X R X I" and is supported on [~ (Z
X[=1, 1] X (I"\C)).

Moreover, if we are additionally given a compact Q-manifold F such that
FXBisaZ-setin Mand f|FXBXI": FXBXI"— BXI" is projec-
tion, then O can be chosen so that 6| FX BXI"=id. X8’ and the
homotopy 8,, 0 <s <1, can be chosen so that p,0,|F X ZxX RX 1" =p,

for 0<s< 1.

PrOOF: Let €>0 be given. Choose a partition —1=x,<x, <x, <

. <X,_;<x,=1of [-1,1] so fine that the interval [ p,0(x,_,, 1),
p,0(x,, t)] has diameter less than ¢/2 for each i=2,3,...,m and t € I".
Then & > 0 is chosen according to Lemma 4.2 so that each of the m — 1
engulfing moves described below can be performed.

Given a Q-manifold M and a f.p. map f: M X ["— B X I" whichisa
sliced é-fibration over Z X [—2,2] X I", we proceed to define f.p. homeo-
morphisms §: M X " — M x I" and 8': Rx 1" — R X I". Choose com-
pact neighborhoods N, and N, of C in I"” such that N, C intN, and such
that I'(8, x,_;) misses ZX[1/2(x,_, +x,), +0)X N, for i=1,....,m
—1. For i=1,...,m—1 choose maps B': I"—>[x, +o) and B":
I" > (1/2(x,_, +x,), x,] such that (B) '(x,)= Ny, (B) '(x,)= Ny,
and p,0(x,_,, t)<B'(t)<p,b(x,, t) for each t € I"\ C. See Figure 3.

Now §': RXI"— RXI" is defined to be the f.p. homeomorphism
which is supported on {(x, )€ R X I"|1/2(x,_; +x,)<x <
p.0(x,, t), t€I"\N,} and which slides the graph of B' over to the
graph of B'; that is, 8(8(¢), t)=(B'.(¢), t) for each r& I". Let 0"
B X I"— BX1I" denote the f.p. homeomorphism which extends id , X 6"
via the identity. There is an obvious f.p. isotopy 6/: id =8, 0 < s < 1, and
id, X 8/ extends via the identity to §/: id=0', 0 <s< 1

According to Lemma 4.2 for each i=1,..., m — 1 there exists a f.p.
homeomorphism : M X I" - M x I" such that

(i) §'| M X C is the identity,
@) £ (T8, x,_ ) SO N(Z X (=00, x,]XI"),

c
; ) M,
1 1
i
X B, X exi_l 1,] 6x;
R +

Figure 3. -
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(iii) ' is supported on f~(T(, x )\f™'(Z X (= o0, x,_,]XI"),
(iv) there is a f.p. homotopy 8": id = 8", 0 < s <1, whichisa (p,f)"
(e/2m)-homotopy over Z X R X I" and which is supported on

[ /71T, x )\SN(Zx (=00, x, ] xI")|\(Mx C).

Moreover, if F is a compact Q-manifold such that F X B is a Z-set in
Mand f|FXBXI": FXBXI"— BXI" is projection, then ' can be
chosen so that §'| Fx BX I"=id.X 6" and 6 can be chosen so that
G/|FXBXI"=id.x8,0<s<1

Consider the following compositions:

g=01°02° 00’"71 —0!' o P2 o ogm71
G=0"8 of" ' and §=8c82c ... 0§

It follows from the construction that I'(4, x,_,)C 0(Z X (— oo, x, ] X1™)
C F(ﬂ x,) and f (T8, x,)Cf (ZX (-0, x]XI")C
fur (8, x,))fori=1,2,..., m. From this it follows that 6 is e-close to
and f8 is e-close to 0'f. Also §:id=0,0<s<1, isa(pf)” !(¢)-homo-
topy over ZX R X I". Since 6| FX B X I"=id, X 8, we must modify §
to get the required 4.

Since F X B is a Z-set in M, there is a collar about F X B in M. Thus,
we can consider F X B X [0, 2) as an open subset of M with F X B and
FXx B X {0} identified. Let ¢: M — M be an embedding which is
supported on F X B X [0, 1.5] and just pushes M in along the collar so
that ¢ (f, b, 0)=(f, b, 1) for (f, b)E€ F X B. There is a f.p. isotopy H,:
0=6"00%0 ... 08" 0<s<1,whichissupported on[—1, 1] X (I"\
C). If the partition ~1=x,<x, < ... <x, =1isfine, then H,0 <s <
1, is a small isotopy. Let H: BX I"— Bx 1", 0 <s < 1, denote the f.p.
isotopy which extends id ; X H, via the identity. Define the f.p. homeo-
morphism §: M X I"— M X I" as follows. First, let 8|[M\ (F X B X
[0, ID]XI" = (¢ Xid,.) e 8 o (Y~ ' Xid,.). Then, for (f, b, u, t)E F X
BXx[0,1]x1I", let 8(f, b, u, t)=(f, pgH,(b, t), u, t) where p, de-
notes projection onto B. By making the collar on F X B short in M, it
can be seen that # is close to § and satisfies the conclusions of the
theorem. The appropriate {.p. isotopy 6:id =6, 0 <s <1, comes by first
using the isotopy 6,: id =8, 0<s<1, and then using the collar coordi-
nate and the deflmtlon of 67 to get an isotopy from & to 4.

We areé now ready to state without proof a generalization of Theorem
4.3. Theorem 4.4 differs from Theorem 4.3 in two aspects. First, Z is no
longer required to be compact and second, we replace the product
M X I" by a submersion 7: M — I".
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DATA FOR THEOREM 4.4: Let ¢: Z — [0, + 00) be a proper map and for
each r>01let Z,=¢"'(0, r]) and Z"=¢ '([r, + 0)). Let §: RXI"
— RXI" r>0, be a f.p. isotopy with the following properties:
(i) 8, is the identity for r > 1;

(ii) 8.| R X C is the identity for r > 0;

(iii) x < p,0,(x, t) for each (r, x, ¢)in [0, + 0) X R X I";

(iv) 8, is supported on [—1, 1]x I" for r > 0.
Define §: ZXRXI">ZXRXI" by 8(z, x, t)=(z, 6—?¢(Z)(x, t)). Then
8 is a f.p. homeomorphism supported on Z; X [—1, 1] X (/"\ C) which
extends via the identity to a f.p. homeomorphism §’: B X I" - B X I".

THEOREM 4.4: For every € > 0 there exists a 8 > 0 such that for every p> 0
there exists a v > 0 so that the following statement is true:

If M is a Q-manifold, @m: M — I" is a submersion with Q-manifold
fibers, f: M — B X 1" is a proper f.p. map such that f,: 7~ (t)—> Bis a
b-fibration over Zy X [—3, 3] and a v-fibration over (Z;\ Z, ;) X[—3, 3]
for each t in I", then there is a f. p. homeomorphism §: M — M such that

(i) 8|7~ 1(C) is the identity,

(i) f8 is e-close to 0'f,

(ili) f0 is p-close to 8'f over Z*/* X R X I",

(iv) @ is supported on f1(Z, X [—1, 1]XI"),

(v) thereisaf.p. isotopy 8,:id =8, 0 <s <1, whichis a (p,f) " '(p)-

homotopy over Z X R X I" and a ( p,f)~'(p)-homotopy over Z X R
X I" and which is supported on f~(Z, X [—1, 1] X (I"\ C)).

Moreover, if we are additionally given a compact Q-manifold F and a
sliced Z-embedding g. F X B X I" — M such that wg is projection and fg is
projection, then 8 can be chosen so that 8g = id . X 8’ and the homotopy 6,,
0 <s <1, can be chosen so that p,6,g=p, for 0<s< 1.

REMARKS ON PrOOF: The proof proceeds along the general lines of the
proof of Theorem 4.3. In proving the appropriate lemmas analogous to
lemmas 4.1 and 4.2 only two significant changes need to be made besides
the general extra care that must be taken in defining maps and homo-
topies in order to allow for the extra degree of freedom in the Z-direc-
tion. First, one must invoke the remarks made in Section 2 in order to
conclude that f has the appropriate sliced (6, v)-lifting property. Sec-
ond, one must replace the standard Q-manifold apparatus by the sub-
mersion results developed in Section 3.

5. Parameterized wrapping

In this section we present a parameterized version of Chapman’s con-
struction for wrapping up 8-fibrations around S'. For notation let B and
Z denote ANRs where Z X R is an open subset of B. Let ¢: Z — [0, + o)
be a proper map and for r in [0, +o0) define Z,=¢ ([0, r]) and
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= ¢~ !([r, + )). Let n > 0 be an integer. The map p, denotes projec-
uon onto Z, p, projection onto R, and p, projection onto I”. Finally, let
e: R—S' be the covering projection defined by e(x)= exp(7ix/4)
(thus e has period 8). This notation will be used throughout this section.

THEOREM 5.1: For every € > 0 there exists a 8 > 0 such that for every p.> 0
there exists a v > 0 so that the following statement is true:

if M is a Q-manifold and f: M XI"— BXI" is a proper f.p. map
which is a sliced 8-fibration over Z, X [—3, 31X 1" and a sliced v-fibration
over (Z, \21/3) X[-3,3]x1I", then there is a Q-manifold M, a submer-
sion m: M — I" with Q- mamfoldftbers af.p. mapf: M — 225 X StxI"
such that f: = '(t)— Z25 X S is an efibration over Z, X S' and a
p-fibration over (Z \Zz/;) X S for each t in 1", and a f.p. open
embedding : ! (Z1 X (—=1,1)XI"y—> M for which the following di-
agram commultes:

.7 .
M—— > 7, X S'XI"
v id X e X id 1
. /1.
FUZ X (=1, 1)XI") > Z, x (-1, 1)XI"

Moreover, if we are additionally given a compact Q-manifold F such that
FXBisaZ-setin Mand f|FXBXI": FXBXI"— BXI" is projec-
tion, then we can additionally conclude that there is a sliced Z-embedding g:
FX ZysX S'X I" > M for which fg: FX Z,s X S'X1" > Z, X S' X I"
is projection and for which the following diagram commutes:

o g ~
FXZys XS'XI" ——ow— M

idxexid? Ty
FXZ X(-1,)XI"Cf Y (Z,X(—1,1)xI")

PROOF OF THEOREM 5.1: Letﬂ RXI"> RXI", 0<r< + 0, be the

f.p. isotopy such that for 0 <r<2.7 8, is the f.p. PL homeomorphism
supported on [ 24,24 x1" w1th the property that 8,(x, t)=(x + 4, t)
for —22<x< —1.8 and t€ I". For 2.7<r<2.8, 6, is phased out to

theidentitysothat 6, =idfor r>28.Define§: ZXRXI"—>ZXRXI"
by 0(z, x, t)=(z, §¢(Z)(x, t)). By engulfing (Theorem 4.8) there is a f.p.
homotopy A, id =h;,0<s<1,on M XI" where hj: MXI">MXI"
is a f.p. homeomorphism such that fh, is 8’-close to f over Z X R X I",
and fh, is »’-close to @f over Z/2X R X I", and the homotopy is
supported on f~1(Z, X[—3, 3] X I") (Theorem 4.8 also gives some con-
trol on the size of the homotopy which we will need.) Here, 8’ and v’ are
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small if 8 and » are small, respectively. Moreover, if we are given a
compact Q-manifold F as in the hypothesis, then we may assume that
hi|FXZXRXI"=idpX 0 and p,h |FXZXRXI"=p, for0<s<
1.

Let Y=hfY2Z,; X(—00, =2]XI")\f N(ZX (-0, =2)XI"),
E =YNfNZX{=-2}xI"), and E,=h,f(Z,, X {—2} XI"). Let
~ be the equivalence relation on Y generated by the rule: if y is in
YNf(Zy, X {—2)}XI"), then y~h,(y). Let M=Y/~ and let ¢:
Y - M denote the quotient map. The proof of the first assertion is
straightforward.

ASSERTION 1: The relation ~ induces an upper semi-continuous decom-
position of Y.

ASSERTION 2: There exists a map o: Y — Z such that
D) a(y)=a(y)ify~y,
(i) a|[/ (ZX[~2,1.9]XI") N Y]=p,f],
(iii) a is 8’-close to p,f Y,
(iv) ais v'-close to p,f|Y over Z" where r, is fixed so that 1/2 <r, <
2/3.

PROOF: Define a homotopy g.:[f~(Z X [—2,1.9]XI")NY]UE,— Z,
0<s<1, by g|[f (ZX[-2,1.99%XI")nY]=p,f| and g |E,=
p.fhy_,hy ' | E,. Note that g, extends to p,f|: Y — Z. By the homotopy
extension property there is an extension g;: Y —Z of g, such that
8o =p:f|. Using the estimated homotopy extension property (see [4])
and the control on the homotopy 4, we may assume that the homotopy
g, is controlled in the p, f direction. Then define a = g,.

ASSERTION 3: If we are given the compact Q-manifold F as in the
hypothesis, then the map a of Assertion 2 can be chosen so that o|(F X Z
XRXI")NY=p,f|=p,.

PROOF: In the proof of Assertion 2 extend g, to (FXZXRXI")NY
by setting g,=p,f|=p, on this set. This is well-defined because
pufhy_ i |FXZXRXI"=p,.

ASSERTION 4: There is a map B: Y — [—2, 2] such that
(i) B(E_)= -2,
(i) B(E,)= +2,
@iii) BIf(ZX[-2,19XI")NY]=p,f],
@iv) B is &-close to p, f |,
(v) Bisv'-closetop,f| onf " (Z"XRXI")NY,
(vi) if F is a compact Q-manifold given as in the hypothesis, then
BIFXZXRXI"YAY=p,f|=p,.
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PrOOF: Define a homotopy g,: ([fN(ZX[—2,1.99]XI")U(FX ZXR
XI"NY)UE,— R,0<s<1,as follows: first g |[f~(Z X[—2, 1.99]
XI"YU(FXZXRXINNY=p,f|. On E_ define g, so that g,|E
=p,f| and as s goes from O to 1, g, shrinks p,f(E,) to +2 so that
g:(E.)= +2. Note that this can be done so that it does not conflict with
the definition of g |[(FXZXRXI")NY. Now g, extends to p,f|:
Y = R and so we may use the estimated homotopy extension property to
extend g, to g.: Y > R. Let r: R—[—2, 2] be the retraction such that
r((—oo, =2])= —2 and r([+2, +))= +2. Then define 8 = rg,. This
completes the proof of Assertion 4.

Identify S' with the quotient space [—2,2]/{—2,2} and let u:
[—2,2]— S! be the quotient map. Do this in such a way that u|[—1, 1]
=e|[-1,1].

Define f: M — Z X S' X 1" by f(q(y))= (a(y), uB(»), p3(y)) for y
in Y. This map is well-defined. Let M=f" (Z25 X §'X I") and let f:
M — Z,x S' X I" denote the restriction of f to M. Define 7: M — I"

by 7(q(y))=ps(y) for y in ¢~ (M)C Y.

ASSERTION 5: 7: M — I" is a submersion.

PRrOOF: Firstlet y € E_ such that g(y) € M. Thus fg(y) € Z, X S'xI"
and from this we may conclude that y € f (Z,, X {—=2}X1I"). Let
U=h,f" (ZZGX( o0, —1. 8)><I")\f‘1(Z><( 00, 1.8] X I"). Define
qg:U->Mbyqg=qonUNY and ¢’ =qgh; ' on U\'Y. Note that g’ is
an open embedding and ¢(y) € q'(U). Let U= UN(g’)~'(M). Then U
is an open subset of M X I" and ¢’|U: U— M is an open embedding
onto a neighborhood of g(y) such that mq’|U = p,. It follows that there
are product charts about g(y) for =.

Next let yEY such that g(y)€ M\ g(E_). Since g(y)€ M), we
have ye ! (Z255 X [—3, 31X I"). Since g(y) is not in g( E_), we have
yeV=hf" (Zys X (=00, =2)XI" )\f“(ZX( o0, —2]XI"). And
q|V: V— M is an open embedding. By setting V=Vnqg (M) we get
product charts about g(y) for = by using ¢ |¥: ¥ - M. This completes
the proof of Assertion 5.

Notice that the proof of Assertion 5 shows that M, as well as 7~ !()
for each ¢ in I", is a Q-manifold.

It is left to the reader to show that f has the appropriate fibration
properties. For more details see [2, Section 4] or [16, Section 4].

6. Handle lemmas

In this section we state two handle lemmas needed for the results in
Section 7. Since these lemmas are formally proved by applying our
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engulfing and wrapping results of Sections 4 and 5 in the same manner
that Chapman establishes his handle lemmas in [2, Section 5], we give no
further remarks here on their proofs. The reader is referred to [2] or [16]
for more details.

For notation B and X will denote ANRs where X is compact. Let
n > 0 be an integer and let C be a closed subset of d/" which is collared
in I". (The possibility that C is empty is not ruled out.) More generally,
our results would hold true if it were only assumed that C has a radial
neighborhood in 1" (i.e., an open neighborhood U of C such that U\ C
is homeomorphic to KX R in such a way that CU K X (— oo, r] are
closed neighborhoods for all  in R).

PROPOSITION 6.1: Suppose m is a positive integer and R™ — B is an open
embedding. For every € > 0 there exists a 8 > 0 such that if n>0, M isa
Q-manifold, and f: M X 1" — B X I" is a proper f.p. map such that f is a
sliced 8-fibration over B}' X I" and f, is an approximate fibration for each t
in C, then there is a proper f.p. map f: M X 1" — B X I" which is a sliced
p-fibration over BY" X 1" and which is f. p. e-homotopic to f rel[(M X I")\
fTUBr X IMU[M X C].

Moreover, if we are additionally given a compact Q-manifold F such that
FXBisaZsetin Mand f|FXBXI". FXBXI"— BXI" is projec-
tion, then we can additionally conclude that f | F X B X I" is projection and
that the homotopy from f to fis rel FX BXI". O

THEOREM 6.2: Suppose m > 0 is an integer and ¢( X)X R™ = B is an open
embedding. For every € > 0 there exists a 6 > 0 such that for every u >0
there exists a v > 0 so that the following statement is true:

if M is a Q-manifold and f: M X I" — B X 1" is a proper f.p. map such
that f is a sliced 8-fibration over c;( X)X By X I" and a sliced v-fibration
over [c3(X)\¢é, ,3( X)X By X I" and f, is_an approximate fibration for
each t in C, then there is a proper f.p. map f: M X I" — B X I" which is a
sliced p-fibration over c¢;( X)X BY" X I" and which is f.p. e-homotopic to f
rel [(M X I")\f_l(éz/3(X) X B X I")]U[M X C].

Moreover, if we are additionally given a compact Q-manifold F such that
FXBisaZsetin Mand f|FXBXI". FXBXI"— BXI" is projec-
tion, then we can additionally conclude that f | F X B X I" is projection and
that the homotopy from f to fis rel FX BX1". O

7. The main results

In this section we state our main result on deforming a parameterized
family of e-fibrations to a parameterized family of approximate fibra-
tions (Theorem 7.1). It will follow from this that the space of approxi-
mate fibrations from a compact Q-manifold to a compact polyhedron is
uniformly LC" for every n > 0.
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The proof of Theorem 7.1 can be derived from the handle lemmas of
Section 6 using the same procedure as in [2, Section 6].

THEOREM 7.1: Let B be a polyhedron, n >0 an integer, and C a closed
subset of d1" which is collared in 1". For every open cover a of B there
exists an open cover B of B so that if M is a Q-manifold and f:
M X I"— B X1I" is a proper f.p. map such that f, is a S-fibration for each
t in 1" and an approximate fibration for each t in C, then there is a proper
f.p. map f: MXI"— BXI" such that f, is an approximate fibration
a-close to f, for each t in I" and f,= f, for each t in C.

Moreover, if we are additionally given a compact Q-manifold F such that
FXBisaZ-setin Mand f|FXBXI": FXBXI"— BXI" is projec-
tion, then we can additionally conclude that f | F X B X I" is projection. O

One should notice that Theorem 7.1 remains true when it is only
assumed that C has a radial neighborhood in ”. (See the introduction to
Section 6.)

If X is a space (not necessarily locally compact) and n>0 is an
integer, then X is said to be locally n-connected (written LC") if for each
x in X and each subset U of X containing x, there exists an open subset
V of X containing x such that ¥ C U and any map f: 91"*! - V extends
toamap f: I"*!' - U.

COROLLARY 7.2: If M is a compact Q-manifold and B is a compact
polyhedron, then the space of approximate fibrations from M to B endowed
with the compact-open topology is LC" for each non-negative integer n.

PROOF: Recall that since M and B are compact the compact-open
topology coincides with the uniform topology. We consider B to have a
fixed metric. Let ¢ > 0 and n > 0 be given and choose B8 = B(¢/3) > 0 by
Theorem 7.1 with C = 31" *! so that any f.p. map f: M X I"*1 + Bx ["*!
with f, an approximate fibration for each ¢ in 91"*! and f, a B-fibration
for each ¢ in I"*! is f.p. (¢/3)- homotoplc rel M X 9I"*! to a f.p. map f:
M X I"*' - Bx I"*! such that £, is an approximate fibration for each ¢
in I"*!. Now choose 0 <y <¢/3 so that any map to B which is y-close
to an approximate fibration is a B-fibration.

Choose § >0 so that if f: M X3I"*! > BX3I"*! is any f.p. map
with the property that for each s, ¢ in dI"*! £, is 8-close to f,, then there
exists a f.p. extension gz M XI"*' > BXI"*! of f such that g, is
y-close to g, for all s, ¢ in I"*!,

To complete the proof we claim that if f: M X 3dI"*' - Bx3I"*! is
a f.p. map such that f, is 8-close to f, for all s, ¢ in dI"*! and f, is an
approximate fibration for each ¢ in 9/"*!, then there exists a f.p.
extension f: M XI"*!' > BXI"*! of f with the property that f, is
eclose to £, for all s, ¢t in I"*! and f is an approximate fibration for
each ¢ in I"*', This is obvious from the choices made above. O
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REMARK 7.3: A (possibly non-locally compact) metric space (X, d) is
said to be uniformly LC" if for every e > 0 there exists a § > 0 such that
every map f: 9I"*!' - X with the diameter of f(3I"*') less than §
extends to a map f: I"*! —» X with the diameter of f(I”"*") less than e.
If in the statement of Corollary 7.2 we fix a metric for B, then the proof
shows that the space of approximate fibrations from M to B endowed
with the uniform topology is uniformly LC" for each non-negative
integer n.

REMARK 7.4: If the proof of Theorem 7.1 is examined, it will be seen that
we can replace B by R™ with the standard metric and replace the open
covers by positive numbers so that the statement remains true. Then the
proof of Corollary 7.2 shows that the space of approximate fibrations
from a (noncompact). Q-manifold M to R™ endowed with the uniform
topology (induced by the standard metric on R™) is uniformly LC" for
each non-negative integer n.

We now turn our attention to special types of approximate fibrations.
A closed subset of an ANR X is cell-like if it is contractible in any
neighborhood of itself. A proper map f: E — B between ANRs is
cell-like provided f~!(b) is cell-like for each b in B. A cell-like map is
also an approximate fibration. A map f: E — B is monotone provided
f~Y(b) is connected for each b in B.

In [13] it is shown that if f: E — B is an approximate fibration
between connected ANRs, then f~!(b) is shape equivalent to the homo-
topy fiber of f such each b in B. From this it follows that if f, g: £ > B
are homotopic approximate fibrations between (not necessarily con-
nected) ANRs and b is in B, then f~!(b) is shape equivalent to g~ 1(b).
For example, if f, g: E — B are homotopic approximate fibrations and f
is cell-like, then g is cell-like. Or, if f, g: E— B are homotopic
approximate fibrations and f is monotone, then g is monotone. With
these facts in mind the following two corollaries follow immediately from
Corollary 7.2.

COROLLARY 7.5: If M is a compact Q-manifold and B is a compact
polyhedron, then the space of cell-like maps from M to B endowed with the
compact-open topology is LC" for each non-negative integer n.

COROLLARY 7.6: If M is a compact Q-manifold and B is a compact
polyhedron, then the space of monotone approximate fibrations from M to B
endowed with the compact-open toplogy is LC" for each non-negative
integer n.
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