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Abstract

It is shown that the space of approximate fibrations from a compact Hilbert cube manifold
to a compact polyhedron is locally n-connected for every non-negative integer n.

1. Introduction

This paper is concerned with deforming certain parameterized families of
maps between a Hilbert cube manifold (i.e., a Q-manifold) M and a
polyhedron B to parameterized families of approximate fibrations. When
M and B are compact this results in showing that the space of approxi-
mate fibrations from M to B is locally n-connected for each non-nega-
tive integer n.

Approximate fibrations were introduced by Coram and Duvall [8] as a
generalization of both Hurewicz fibrations and cell-like maps. Since then
approximate fibrations have been studied by several authors (see [5], [9],
[13], [19]) and have found numerous applications in geometric topology.

Here is our main result (see Theorem 7.1).

THEOREM: Let B be a polyhedron, let n ~ 0 be an integer, and let a be an
open cover of B. There exists an open cover P of B so that if M is a
Q-manifold and f: MXjn - B X I n is a fiber preserving map such that Ir:
M - B is a 03B2-fibration for t in I n and an approximate fibration for t in aI n,
then there is a fiber preserving map : M  In - B X I n such that l is an

approximate fibration a-close to ft for t in I n and  |M  ~In = f | M X ~In.

The n = 0 case of this theorem has previously been proved by Chap-
man [2, Theorem 1]. The shell of our proof is the same as Chapman’s and
we refer the reader to [2] for most of the common details. In order to
make Chapman’s program work in our parameterized setting we have
developed a parameterized form of engulfing (Section 4). The key in-
gredient for this engulfing is a sliced lifting property for parameterized
families of 8-fibrations (Section 2). Another difference with [2] is that in
the wrapping up construction (Section 5) we encounter non-compact
Q-manifolds parameterized by submersions to In. Hence, we are forced
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to recast some basic fibered Q-manifold theory in a new setting (Section
3). A relative version of our main result is also obtained (see Section 7).
This relative version has been useful in the study of controlled simple-ho-
motopy theory [18].

Many authors have studied local properties of spaces of certain types
of maps. Of particular relevance here are the theorems of Ferry [14],
Torunczyk [21], and Haver [15]. Ferry and Torunczyk proved that the
homeomorphism group of a compact Q-manifold is an ANR, while
Haver proved a theorem which implies that the space of cell-like maps
from a compact Q-manifold to itself is weakly locally contractible (and
therefore, locally n-connected for each n &#x3E; 0). Our main result implies
the following (see Section 7):

COROLLARY: Let M be a compact Q-manifold and let B be a compact
polyhedron. Then the space of approximate fibrations from M to B endowed
with the compact-open topology is locally n-connected for each n ~ 0.

It is shown in Section 7 that the same result holds for the space of
cell-like maps and the space of monotone approximate fibrations. The
results of this paper have recently been used in [17] to show that the
space of Hurewicz fibrations and the space of bundle projections from a
compact Q-manifold to a compact polyhedron are locally n-connected
for every n &#x3E; 0. Whether any of these spaces of maps are locally
contractible remains an open question.

This paper is organized as follows. Section 2 consists of preliminaries
on approximate fibrations. A key result there shows that families of
£-fibrations parameterized by finite dimensional polyhedra have a certain
sliced lifting property. The restriction to finite dimensional parameter
spaces is the main reason we are unable to prove stronger results on

spaces of approximate fibrations (for example, local contractibility). The
sliced lifting property has been useful in [17] and [18]. Section 3 mentions
the basic Q-manifold theory for submersions. It may be of interest to
note that our techniques prove that if M is a foliated Q-manifold with
model 1 n whose leaves (in the leaf topology) are also Q-manifolds, then
there is a leaf-preserving homeomorphism h: M  Q ~ M arbitrarily
close to projection.

Section 4 contains the parameterized engulfing results. These have
been key ingredients in [17] and [18]. Once the engulfing technique is
established, the rest of the proof of the main result follows rather

mechanically from the proof of Chapman’s theorem [2, Theorem 1]. This
procedure is outlined in Sections 5 and 6. The main result and its
corollaries are stated and proved in Section 7.

Most of our notation and definitions are standard. Except for the
various function spaces which we consider, all spaces are locally compact,
separable and metric. We use Rn to denote euclidean n-space and Bn to
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denote the n-cell [ - r, r]n ~ Rn. The circle is denoted by S 1 and the
n-torus is Tn = S X ... X S (n times). The standard n-cell is In = [0, 1]n
and its (combinatorial) boundary is ajn. If X is a space and A c X, then
we use both A and int(A) to denote the topological interior of A in X.
The closure of A in X is denoted by cl( A ). If X is a compact space, then
c(X) denotes the cone over X. That is, c(X) = X  [0, + ~]/ ~ , where
- is the equivalence relation generated by ( x, 0) - ( x’, 0) for all x, x’ in
X. Similarly, (X) = X  [0, + ~)/ ~ denotes the open cone over X,
and for any r in [0, + oo ] let cr(X) = X  [0, r)/ ~ and c0r(X) = X 
[0,r)/-.

This paper is a revision of part of the author’s doctoral dissertation
written at the University of Kentucky under the direction of T.A.

Chapman [16].

2. Preliminaries on approximate fibrations

This section contains some basic facts about the various types of fibra-
tions that will be needed in the sequel. A key result is Theorem 2.4 which
says that a family of 8-fibrations parameterized by a finite dimensional
polyhedron has a certain sliced c-lifting property.
We begin with some definitions. A map f : E - B (i.e., a continuous

function) is proper provided f-1(C) is compact for all compact subsets
C of B. If a is an open cover of B, then a proper map f: E - B is said to
be an a-fibration if for all maps F: Z X [0, 1] - B and g: Z - E for

which fg = Fo, there is a map G : Z X [0, 1] - E such that Go = g and fG
is a-close to F (that is, given any (z, t) ~ Z  [0, 1] ] there is a U ~ 03B1

containing both fG(z, t) and F(z, t)). If C c B and a is an open cover
of B, then a proper map f: E ~ B is said to be an a-fibration over C
provided the condition above is satisfied when the maps F: Z X [0, 1] ~ B
are required to satisfy F( Z X [0, 1]) c C. If E &#x3E; 0, then we also use E to
denote the open cover of B by balls of diameter E. Thus, we speak of
~-fibrations.
A proper map f : E ~ B is an approximate fibration provided it is an

a-fibration for each open cover a of B. We only consider approximate
fibrations which are defined between ANRs, i.e., absolute neighborhood
retracts for metric spaces. The following lemma is used repeatedly.

LEMMA 2.1: Let B be an ANR and let C be a compact subset of B with a
compact neighborhood C. For every a &#x3E; 0 there exists a /3 = /3( a, C, C, B)
&#x3E; 0 such that if E &#x3E; 0 and f : E - B is an £-fibration over C, then f has the
following lifting property : given maps F: Z X [0, 1] ~ C c B and g: Z ~ E
such that fg is /3-close to Fo, there exists a map G: Z X [0, 1] ~ E such that
Go = g and fG is ( a + ~)-close to F.

For a proof of Lemma 2.1, see [8, Proposition 1.2] or [9, Lemma 1.1].
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Those two papers should also be consulted for other basic results on

approximate fibrations.
We now define the key sliced lifting property that will be established

in Theorem 2.4.

DEFINITION 2.2: Let E, B, and X be spaces and let C c B. A map f :
E  X ~ B  X is said to be fiber preserving (f.p.) if pX f = Px where p,
denotes projection to X. If E &#x3E; 0 and f : E  X ~ B  X is a proper f.p.
map, then we say f is a sliced £-fibration over C X X if f satisfies the
following sliced £-lifting property over C X X:

if f: Z  [0, 1]  X ~ C  X ~ and g: Z  X ~ E  X are f.p.
maps such that fg = Fo, then there exists a f.p. map G: Z X [0, 1] X X -
E X X such that Go = g and fG is c-close to F.

If C = B, then f is called a sliced ~-fibration.
We will need the following lemma for the proof of Theorem 2.4.

Recall from the introduction that all spaces in this paper are metric.

LEMMA 2.3: Let E  X ~ B  X be a proper f . p. map where E and B are
ANRs. Let C be a compact subset of B and let C be a compact neighbor-
hood of C in B. Let E &#x3E; 0 and suppose for each x in X f, = f | E  {x}: E
= E X {x} ~ B  { x } = B is an £-fibration over C. For every a &#x3E; 0 there
is an open cover U of X such that if Xo is any subset of X contained in some
member of U, then f 1 E X Xo : E  Xo - B X Xo is an ( « + £ )-fibration
over C X Xo.

PROOF: Given the hypothesis above, choose /3 = 03B2(03B1/3, C, C, B) by
Lemma 2.1. Choose the open cover U so that the diameter of any
member of U is less than a/3 and so that fx is /3-close to fy over C
whenever x and y are elements of a common member of U.

Let Xo be a subset of X contained in some member of U. Let maps F:
Z  [0, 1] ~ C  X0 and g: Z ~ E  X0 be given such that fg = Fo.
Since the diagram

/3-commutes over C where x E Xo is fixed, the choice of 03B2 implies the
existence of a map G : Z X [0, 1] ~ E such that Go = pE g and f ,,G is

((03B1/3) + ~)-close to PEF. Define H: Z  [0, 1] ~ E  X0 by H( z, t) =
(G(z, t), pxg(z». Then H is seen to be an ( a + ~)-lift of F.

THEOREM 2.4: Let C be a compact subset of the ANR B and let C be a
compact neighborhood of C in B. Let n be an integer. For every £ &#x3E; 0 there
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exists a 03B4 &#x3E; 0, 8 = 03B4(~, n, C, C, B), such that if E is an ANR, X is an
n-dimensional polyhedron, and f : E X X ~ B X X is a proper f . p. map
such that fx is a 8-fibration over C for each x in X, then f is a sliced
E-fibration over C X X.

PROOF: The proof is by induction on n. The theorem is clearly true for
n = 0 by taking 03B4(~, 0, C, C, B) = E . Assume n &#x3E; 0 and that the theorem
is true for n - 1. Let E &#x3E; 0 be given and choose 03B2 = 03B2(~/4, C, C, B ) by
Lemma 2.1. Let 8 = 8(E, n, C, C, B) = min{~/8, 03B4(03B2, n - 1, C, C, B)}.
Let f : E  X ~ B  X be given as in the hypothesis. By Lemma 2.3 we
can consider X to have such a fine triangulation that if a is any simplex
of X, then f | E  03C3: E  03C3 ~ B  03C3 is an (E/4)-fibration over C  03C3.

Note that PBf |E  03C3: E  03C3 ~ B is also an (E/4)-fibration over C. We
also assume that f,, is (E/2)-close to fy over C whenever x and y are in
a.

Given f.p. maps F: Z X [0, 1] X ~ 6 C X X c B X X and g: Z X X -
E X X such that fg = Fo, the inductive assumption implies the existence
of a f.p. map G: Z  [0, 1]  Xn-1 ~ E  Xn-1 such that G0 = g|Z 
Xn-1 and fG is /3-close to F|Z  [0, 1]  Xn-1 (here Xn-1 denotes the
denotes the ( n - 1 )-skeleton of X). Define g: [Z X [0, 1] ]  Xn -1] ~ [Z X
{0}  X] ~ E  X by |Z  [0, 1]  Xn-1 = G and g(z,0, x)=g(z, x).
Let Q be an n-simplex of X and note that the pair (Z X [0, 1] X a, [Z X
[0, 1]  ~03C3] ~ [X  {0}  03C3]) is homeomorphic to the pair (Z  [0, 1] 
I n, Z X {0} X In). Hence, there exists a map : Z X [0, 1] X a - E X a
such that Pa |[Z  [0, 1]  ~03C3]~[Z  {0}  03C3] =  | and pBf03C3 is ( E/2)-
close to PBF 1. (Po is not assumed to be f.p..) Define Ê: Z X [o, 1] X X -
E X X by PI Z X [0, 1]  03C3 = Fa whenever Q is an n-simplex of X and
|Z  [0, 1]  Xn-1 = G. Finally, define H: Z X [0, 1] X X - E x X by
H(z, t, x) = ( pE F( z, t, x), x). Then H is seen to be the desired sliced
E-lif t of F.

Next we discuss a technical variation of the definition of an £-fibration
which we call an ( E, 03BC)-fibration. A proof of Proposition 2.6 below can
easily be given using as a model the proof of Proposition 2.2 in [2].
Therefore, the details of this argument are omitted.

DEFINITION 2.5: Let C and K be subsets of the ANR B with K c C and
let E &#x3E; 0 and IL &#x3E; 0. A proper map f: E - B is said to be an ( E, ,u )-fibra-
tion over (C, K) if given maps F: Z X [0, 1] ~ C c B and g: Z - E with
fg = Fo, then there is a map G: Z X [0, 1] ~ E such that Go = g, fG is
E-close to F, and fG F-1(K) is 03BC-close to F| 1 F- 1 (K).

PROPOSITION 2.6: Let B be an ANR and let ~ K V ~ C ~ U ~ B where C
and K are compact and U and V are open in B. For every E &#x3E; 0 there exists
a 03B4 &#x3E; 0 such that for every IL &#x3E; 0 there exists a v &#x3E; 0 so that the following
statement is true:
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if f : E ~ B is a 03B4-fibration over U and a v-fibration over V, then f is an
( E, 03BC)-fibration over (C, K).

We leave it to the reader to formulate and prove a version of Theorem

2.4 for ( E, 03BC)-fibrations. The reader should also have no problem in
showing that E-fibrations, sliced E-fibrations, ( E, ,u)- fibrations, and sliced
( E, 03BC)-fibrations all have an appropriate stationary (or regular) lifting
property (see [8] where this is done for approximate fibrations).

3. Basic Q-manifold theory in a submersive setting

The Hilbert cube Q is represented by the countable infinite product of
closed intervals [ -1, 1]. A space M is a Hilbert cube manifold or

Q-manifold if it is locally homeomorphic to open subsets of Q. Our
reference for Q-manifold theory is Chapman’s book [1] which should be
consulted by the reader unfamiliar with the basic machinery of Q-mani-
folds including the notion of Z-sets.
We will need some basic results from Q-manifold theory para-

meterized by submersions. If 03C0: E ~ B is a proper submersion for which
the fibers 03C0-1(b), b ~ B, are Q-manifolds, then 7r is actually a bundle
projection. This is proved in [20] with [12] supplying the necessary
deformation theorem (see also [7]). In this case adequate parameterized
theories can be found in [3, Section 2], [6], [14, Section 4], and [21,
Appendix 2]. Unfortunately, we will encounter in the sequel submersions
whose fibers are non-compact Q-manifolds, and it is that fact which

makes this section necessary. However, we will be working on compact
pieces of the submersion and the following theorem due to Siebenmann is
the main tool which allows us to deal with this situation (again, see [12]
for a major ingredient).

PROPOSITION 3.1: ([20, Corollary 6.15]). Let 7r: E - B be a submersion

such that 03C0-1(b) is a Q-manifold for each b in B and let C c E be a
compactum such that 03C0(C) is a point. Then there exist an open neighbor-
hood F of C in 03C0-1(03C0(C)), an open neighborhood N of ir (C) in B, and a
product chart ~: F X N - E about F for 17.

The following definition is a slight generalization of that given in [14]
for sliced Z-sets in products.

DEFINITION 3.2: Let 77: E - B be a submersion and let K be a closed
subset of E. Then K is said to be a sliced Z-set if for every open cover U
of E there is a map f: E ~ EBK such that f is U-close to id and ’Tf1 = qr.

The following proposition characterizes compact sliced Z-sets in cer-
tain submersions. The reader can prove this by using Proposition 3.1 and
the characterization result from [6].



137

PROPOSITION 3.3: Let ir: M - B be a submersion where B is a polyhedron
and 7r - (b) is a Q-manifold for each b in B and let K C M be compact.
Then K is a sliced Z-set if and only if K ~ ’Tf-1( b) is a Z-set in ’Tf-1( b) for
each b in B.

The experienced reader should have no trouble in formulating and
proving versions (parameterized by a submersion) of a mapping replace-
ment theorem, a sliced Z-set unknotting theorem, a collaring theorem for
sliced Z-set submanifolds, and a stability theorem. In each case the idea
is to use the analogous result from one of the bundle versions mentioned
above. Those results can be used locally by Proposition 3.1.

4. Parameterized engulfing

In this section we establish the key engulfing results used in the sequel.
These results are stated as Theorems 4.3 and 4.4. Lemma 4.1 contains the
basic geometric engulfing move used in the proof of Theorem 4.3.

Throughout this section B and Z denote ANRs where Z X R is an

open subset of B. Projection onto Z is denoted by p and projection onto
R by P2. Let n ~ 0 be a fixed integer and let C be a (possibly empty)
closed subset of aI".

DATA FOR LEMMA 4.1: Let Z be compact. Let 03B1+: In ~ [0, 1], 03B1_:

In ~ [ -1, 0], and p: 1 [ -1, 0] be maps satisfying the following
conditions :

(i) 03B1-1+(0) ~ 03B1-1-(0) ~ ~In,
(ii) p = 0 on a neighborhood of 03B1-1+(0) U a-1-(0),
(iii) a- (t)  p(t) for each t E InB03B1-1-(0).
We now define four subsets of Z X R X In c B X In. Let E =

{(z, x, t) |a_(t) ~ x ~ 03B1+(t)}, E- - {(z, x, t) |03B1_(t) = x}, E +
{(z, x, t,) 1 a+(t) = x}, and X = {(z, x, t)| 03B1_(t) ~ x ~ p(t». Note that
X C E and BdE = E - U E+.

Finally, let Y be a compact subset of E which misses E+ and
Z X R X [03B1-1-(0) U 03B1-1+(0)].

LEMMA 4.1: For every E &#x3E; 0 there exists a 8 &#x3E; 0 such that if M is a
Q-manifold and f : M  [0, 1] X In ~ B X I" is a f . p. map which is a sliced
8-fibration over Z X [ - 2, 2] X I", then there is a f . p. homeomorphism u:
M X [0, 1]  In ~ M X [0, 1]  In such that

(i) f-1(Y) n (M X (01 X In) C uf-1(X),
(ii) u is supported on f-1(int E),

(iii) there is a f . p. homotopy us: id ~ u, 0 ~ s ~ 1, which is supported on
f-1(int E) and which is a (p1f)-1(~)-homotopy over Z X R X In.

PROOF: Let NI be a compact neighborhood of 03B1-1-(0) U 03B1-1+(0) in In
such that Y misses Z X R X NI and such that p = 0 on Nl. Choose a



138

Figure 1.

compact neighborhood N2 of 03B1-1-(0) ~ 03B1-1+’(0) in I " such that N2 c int
NI. Choose maps 03B2+: In ~ [0, 1] and 03B2_: In ~ [-1, 0] with the follow-
ing properties:

(i) 03B2-1+(0) = N1, 03B2-1-(0) = N2,
(ii) 03B2+(t)  03B1+(t) for t ~InB03B1-1+(0), 03B1_(t)  03B2_(t) for t ~InB

a - 1 (0);
(iii) Y ~ {(z, x, t) ~ Z  R  In| x  03B2+(t)};
(iv) 03B2_(t)  03C1(t) for t ~InBN2.
See Figure 1 for a picture of the situation when Z = {point} and

n = 1.

Choose a f.p. isotopy gs: Z X R  In ~ R X I", 0 ~ s ~ 1, which slides
the graph of /3 + over to the graph of 03B2_. More specifically, we require gs
to satisfy the following properties:

(i) go = id;
(ii) g, affects only the R-coordinate of any point;
(iii) gs|Z  R  N2 = id;
(iv) g, is supported on a compact subset K of int E;
(v) gl(z, /3+(t), t) = (z, 03B2_(t), t) for each (z, t) ~ Z X In.
Now given a Q-manifold M and a f.p. map f : M X [0, 1]  In ~ B X I"

which is a sliced 8-fibration over Z X [ - 2, 2]  In, define a f.p. homo-
topy gs : M X [0, 1] J  In ~ B X y, 0 ~ s ~ 1, so that gs = gs  f on f-1(Z
 R  In) and gs = f on (M  [0, 1]  In)Bf-1(Z  R  In). Since f is a

sliced 8-fibration over Z  [-2,2]  In, there is a f.p. homotopy GS :
f-1(Z  [-2, 2]  In) ~ M  [0, 1]  In such that Go = id, fGs is 8-close
to s| 1 for each s, and Gs is stationary with respect to s| f -1(Z X [ - 2, 2]
XIn)

Observe that Gs|[f-1(Z X [ - 2, 2] X In) ~ ( M  {0} X In)] extends via
the identity to a map G’;: M  {0}  In ~ M  [0, 1]  In. Using [6,
Theorem 4.1] we can approximate G’1 by a f.p. embedding 1: M X (0)
 In ~ M  [0, 1]  In possessing the following properties:

(i) 1(M  (0)  In) is sliced Z-set;
(ii) G 1 is supported on f-1(K)~(M  {0} X ll1);
(iii) 1(f-1(int E) ~ (M  {0}  In)) ~ f-1(int E).
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We can further assume that G1 is so close to G1| 1 that 1 is f.p.
homotopic to G1| 1 via maps satisfying conditions (ii) and (iii).

Using sliced Z-set unknotting [6, Theorem 5.1] we can find a f.p.
isotopy us : Mx [0, 1] ]  In ~ M  [0, 1]  In, 0 ~ s ~ 1, so that u o = id,
uj G1(M X {0} X In) = -11, and US 1 (MX [0, 1] X In)Bf-1(int E) = id.
It is now easy to see that ul satisfies the conclusion of the lemma. It only
remains to observe that we can assume ut is a (p1f)-1(~)-homotopy
over Z X R X In . This is because of the control on the f.p. isotopy us
given by [6, Theorem 5.1].

ADDENDUM TO LEMMA 4.1: Let F be a compact Q-manifold such that
FXBCM and f|F  B  (01 Xln: FXBX {0}  In ~ B  In is pro-

jection. Extend gs: Z X R X In ~ Z  R X In via the identity to a f. p.
homeomorphism gs: B  In ~ B X ln, 0 ~ s ~ 1. Then the f . p. homotopy
us: M X [0, 1]  In ~ M X [0, 1]  In, 0 ~ s ~ 1, can be chosen to addition-
allysatisfy us |F  B  {0}  In = idF  -1s, 0 ~ s ~ 1.

PROOF: We indicate here how to modify the proof of Lemma 4.1 in order
to attain the added condition on Us. Since s| F X B X fol X I n = f 0 (id F
X s) for 0 ~ s ~ 1 and F X B X {0} is collared in M  [0, 1], it can be
assumed that G’s |F X B X tol X In = (id F X s) for 0 ~ s ~ 1. Using the
full strength of [6, Theorem 4.1], the f.p. embedding GI: M  {0} X In ~
M X [0, 1 X I n can be chosen so that G11 |F  B X tol X I n = (id F X 1)
and the homotopy from G’ to 1 is rel F X B X tol X In . After a

reparameterization of the homotopy from G’0 to 1, one simply uses a
strong relative version of sliced Z-set unknotting to produce us: M 
[0, 1]  In ~ M  [0, 1]  In, 0 ~ s ~ 1, with the desired properties.

DATA FOR LEMMA 4.2: Let Z be compact. Let al : 1" [ -1, 1] and a2:
In _ [0, 1] denote maps such that 03B11(t)  03B12(t) for each t E In and

03B1-11(-1) = a21(0) = C. Let r( ai ) = «z, x, t) E Z X R X In |x ~ 03B11(t)}.
See Figure 2.

LEMMA 4.2. For every E &#x3E; 0 there exists a 03B4 &#x3E; 0 such that if M is a
Q-manifold and f : M  In ~ B  In is a f . p. map which is a sliced

03B4-fibration over Z X [ - 2, 2] X l 11, then there is a f. p. homeomorphism h:
M  In ~ M  In such that

(i) h |M X C is the identity,
(ii) f-1(0393(03B11)) C hf-1(Z  (- 00, 0] X In),

(iii) there is a f. p. homotopy hs: id ~ h, 0  s  1, which is a

(p1f)-1(~)-homotopy over Z X R X ll1,
(iv) hs is supported on f-1{(z, x, t) ~ Z  R  In| - 0. 9 ~ x ~ 03B12(t),

t ~ InBC} for each 0 ~ s ~ 1.

PROOF. Given E &#x3E; 0, &#x26; &#x3E; 0 is chosen by Lemma 4.1 so that the two basic
engulfing moves described below can be made. Given a f.p. map f:
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Figure 2.

M X In ~ B X I" as in the hypothesis, choose a f.p. map k: M X [0, 1] X
In ~ M X I’ close to projection such that k| M X [0, 1] X C is projection
and k|M  [0, 1]  (InBC): M  [0, 1]  (InBC) ~ M  (InBC) is a

homeomorphism (see [14, Theorem 4.6]). It then follows that fk: M X
[0, 1] X In ~ B X In is also a sliced 8-fibration over Z X [ - 2, 2] X ll1. The
homeomorphism h will be defined as a composition h -

k · v · w · u · k·-1 where v, w, and u are constructed below.
Use Lemma 4.1 to produce a f.p. homeomorphism u: M X [0, 1] X In

~ M  [0, 1]  In such that ( fk )-1(0393(03B11)) ~ ( M  {0}  In) ~
u(fk)-1(Z  (-~, 0)  In) and u is supported on (fk)-1{(z, x, t ) E Z
 R  In| -0.5  x  03B12(t), t ~ InBC}.
Let S1 = (fk)-1{(z, x, t) ~ Z  R  In| -0.6  x  a1(t)} and let S2

= (fk)-1{(z, x, t) ~ Z  R  In|max(0, 03B11(t))  03B12(t)}. Use Lemma 4.1
again to produce a f.p. homeomorphism v : M X [0, 1] X In ~ M X [0, 1] ]
X I n such that S1 ~ (M  {1}  In) ~ 03BD-1 (S2) and v is supported on
(fk)-1{(z, x, t)Z  R  In| - 0.7  x 03B12(t), t ~ InBC}.

Let U = (fkv)-1{(z, x, t) ~ Z  R  In| max(0, 03B11(t))  x} and ob-
serve that if k is close enough to projection, then S1 ~ [03C0(U ~ (M  {1}
X In»] X [0, 1] where 77-: M X [0, 1] X In ~ M X I n is projection. Then w:
M X [0, 1]  In ~ M X [0, 1] X I n is a f.p. homeomorphism affecting only
the [0, 1]-coordinate of any point such that w[S1 Bu(fk)-1(Z X ( - oo , 0)
 In)] ~ U. The support of w is on (fk)-1{(z, x, t) ~ Z  R  In| -0.7

 x  03B12(t)}.
It is easily verified that h = k · v · w · u · k-1 satisfies the conclu-

sions of the lemma. The homotopy of the identity to h comes from
composing three homotopies of u, v, and w to the identity. The homo-
topies for u and v are provided by Lemma 4.1; the homotopy needed for
w comes from pushing along the [0, 1]-factor in M X [0, 1] X I n . D

ADDENDUM TO LEMMA 4.2: Let N1 and N2 be compact neighborhoods of C
in In such that N2 ~ int N1 and f( al) misses Z X [ - 0.5, + (0) X Nl .
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Choose maps /3+: In ~ [0, 1] and 03B2_ : In ~ ( - 0.5, 0] with the following
properties:

(i) 03B2-1+(0) = N1, 03B2  1(0) = N2;
(ii) 03B11(t)  /3 + (t) for each t E In;
(iii) 03B2+(t)  03B12(t) for each t ~ InBC.

Suppose we are given a f . p. isotopy gs : B X In ~ B X In, 0  s  1, such
that gs| Z X R X In satisfies the properties listed for gs in the proof of
Lemma 4.1 where now E = {(z, x, t) ~ Z  R  In| - 0.5  x  03B12(t)}.
Let F be a compact Q-manifold such that F X B is a Z-set in M and

f|F  B  In: F  B In ~ B  In is projection . Then the f . p. homeo-
morphism h : M  In ~ M  In can be chosen to additionally satisfy h |F X
B X In = id F X g11 1 and the f . p. homotopy h S: id = h, 0  s  1, can be
chosen to additionally satisfy hs |F X B X In = idF  g-1s, 0  s  1.

PROOF: Just three modifications need to be made in the proof of Lemma
4.2. First, choose the f.p. map k: M X [0, 1] X In ~ M X In to addition-
ally satisfy k 1 F X B  {0} X In : F  B  {0}  In ~ F  B X ll1 is the

identity. This is possible by [6, Theorem 4.1]. Secondly, choose the f.p.
homeomorphism u: M X [0, 1] X In ~ M X In and the f.p. homotopy us :
id ~ u, 0  s  1, so that Us |F X B X {0} X In = id X g-1s. This is possible
by the Addendum to Lemma 4.1. Finally, choose the f.p. homeomor-
phism v : M X [0, 1]  In ~ M X [0, 1]  ll1 and the f.p. homotopy vs :
id = v, 0  s  1, so that Vs |M  {0} X In is the identity. To see that this
is possible, recall that v is provided by Lemma 4.1 and reexamine its
proof.

With these modifications it is now easy to see that h =

k 0 v 0 wou 0 k-1 satisfies the conclusion of the addendum. 1:1

DATA FOR THEOREM 4.3 : Let Z be compact and let 03B8: R X In ~ R  In

be a f.p. homeomorphism with the following properties:
(i) 03B8|R X C is the identity;
(ii) x  p203B8(x, t) for each x E R and t E ll1;
(iii) 0 is supported on [ -1, 1] ]  In.
Let 03B8’: B X In ~ B X In denote the f.p. homeomorphism which ex-

tends id z X 0 via the identity.
For each x E R , let f(O, ) = {(z, x, t) ~ Z  R  In| x  p203B8(, t)}.

THEOREM 4.3: For every ~ &#x3E; 0 there exists a 03B4 &#x3E; 0 such that if M is a
Q-manifold and f : M  In ~ B X In is a f . p. map which is a sliced

03B4-fibration over Z X [ - 2, 2] X ll1, then there is a f. p. homeomorphism à:
M  In ~ M  In such that

(i) | M X C is the identity,
(ii) f is E-close to 0’1,

(iii) 0 is supported on 1-1(Z X [-1, 1]   In),
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(iv) there is a f. p. homotopy s : id = à, 0  s  1, which is a

(p1f)-1(~)-homotopy over Z X R X In and is supported on f-1( Z
[-1, 1]  (InBC)).

Moreover, if we are additionally given a compact Q-manifold F such that
F X B is a Z-set in M and f |F  B  In: F  B  In ~ B  In is projec-
tion, then  can be chosen so that à F X B X ll1 = id F X 0’ and the
homotopy Õs, 0  s  1, can be chosen so that p1s|F X Z X R X ll1 = p j 1
for 0  s  1.

PROOF: Let ~ &#x3E; 0 be given. Choose a partition -1 = x0  x1  x2 
...  xm-1  xm = 1 of [ -1, 1] so fine that the interval [p203B8(x1-2, t ),
p203B8(xl, t)] has diameter less than E/2 for each i = 2, 3,..., m and t ~ In.
Then 8 &#x3E; 0 is chosen according to Lemma 4.2 so that each of the m - 1
engulfing moves described below can be performed.

Given a Q-manifold M and a f.p. map f : M  In ~ B  In which is a
sliced 8-fibration over Z X [ - 2,2] X ln, we proceed to define f.p. homeo-
morphisms à’: M X I" - Mx ll1 and 0’: R X I" - R X ll1. Choose com-
pact neighborhoods NI and N2 of C in In such that N2 c int N1 and such
that 0393(03B8, xl-1) misses Z  [1/2(xl-1 + xl), + ~)  N1 for i = 1, ... , m
- 1. For i = 1, ... , m - 1 choose maps 03B2’+: In ~ [xl, + ~) and 03B2l-:
In ~ (1/2(xl-1 + xl), xl] such that (03B2l+)-1(xl) = N1, (03B2l_)-1(xl) = N2,
and p203B8(xl - 1, t)  03B2’+(t)  p203B8(xl, t ) for each t ~ InBC. See Figure 3.
Now 0’: R X In ~ R X In is defined to be the f.p. homeomorphism

which is supported on {(x, t ) E R X I" |/2(xl-1 1 + x, )  x 
P2f) (x l’ t ), t ~ InBN2} and which slides the graph of 03B2l_ over to the

graph of 03B2l+; that is, 03B8l(03B2l-(t), t) = (03B2l+(t), t ) for each t E I n. Let 0’:
B X In~ B X In denote the f.p. homeomorphism which extends idZ X 03B8l
via the identity. There is an obvious f.p. isotopy 0,’: id ~ f)1, 0  s  1, and
idZ  03B8ls extends via the identity to ls: id ~ l, 0  s  1

According to Lemma 4.2 for each i = 1,..., m - 1 there exists a f.p.
homeomorphism 6h M  In ~ M  In such that

(i) ÕI 1 M X C is the identity,
(ii) f-1(0393(03B8, xl-1))~lf-1(Z  (~, xl]  In),

Figure 3. ’
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(iii) 0’ is supported on f-1(0393(03B8, xl))Bf-1(Z  (- ~, xl-1]  In),
(iv) there is a f.p. homotopy ls: id ~ 0’, 0  s  1, which is a (p1f)-1

(~/2m)-homotopy over Z X R X In and which is supported on

Moreover, if F is a compact Q-manifold such that F X B is a Z-set in
M and f |F X B X In: F X B  In - B  In is projection, then ÕI can be
chosen so that l| F  B  In = idF  l and ls can be chosen so that
ls| F  B  In = idF  ls, 0  s  1.

Consider the following compositions:

It follows from the construction that 0393(03B8, xl-1) ~ (Z X (-00, x, ]  In)
~ 0393(03B8, xl) and f-1(0393(03B8, xl1)) ~ f-1(Z  (- ~, xl]  In) ~
f-1(0393(, x, )) for i = 1, 2,..., qg. From this it follows that 0 is E-close to 0
and f is E-close to B’ f . Also s: id = 0, 0  s  1, is a (p1f)-1(~)-homo-
topy over Z X R X I n. Since 0 F X B X In = id F X 0, we must modify B
to get the required à.

Since F X B is a Z-set in M, there is a collar about F X B in M. Thus,
we can consider F X B X [0, 2) as an open subset of M with F x B and
F  B  {0} identified. Let 4,: M - M be an embedding which is

supported on F X B X [0, 1.5] and just pushes M in along the collar so
that 03C8 (f, b, 0) = ( f , b, 1) for ( f , b ) E F X B. There is a f.p. isotopy H,:
03B8 ~ 03B81 · 03B82  ...  om-l, 0  s  1, which is supported on [-1, 1]  (InB
C). If the partition -1 = xo  xl  ... 

 x. = 1 is fine, then Hs, 0  s 
1, is a small isotopy. Let HS: B X In ~ B X In, 0  s  1, denote the f.p.
isotopy which extends idZ X H, via the identity. Define the f.p. homeo-
morphism à: M  In ~ M  In as follows. First, let |[MB(F  B 
[0, 1))]  In = (03C8  idIn) · 03B8 · (03C8-1  idIn). Then, for ( f , b, u, t) ~ F 
B  [0, 1]  In, let (f, b, u, t) = (f, PEliu(b, t), u, t ) where PE de-

notes projection onto B. By making the collar on F X B short in M, it
can be seen that à is close to Õ and satisfies the conclusions of the
theorem. The appropriate f.p. isotopy s: id = à, 0  s  1, comes by first
using the isotopy s: id = 0, 0  s  1, and then using the collar coordi-
nate and the definition of à to get an isotopy from à to à.

We arè now ready to state without proof a generalization of Theorem
4.3. Theorem 4.4 differs from Theorem 4.3 in two aspects. First, Z is no
longer required to be compact and second, we replace the product
M  In by a submersion 03C0: M _ I n.
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DATA FOR THEOREM 4.4: Let : Z - [0, + cc) be a proper map and for
each r  0 let Zr = -1([0, r]) and Z’ = -1([r, + oc». Let r: R X In
~ R X I", r  0, be a f.p. isotopy with the following properties:

(i) Or is the identity for r  1;
(ii) Or |R X C is the identity for r  0;
(iii) X  p2r(x, t) for each (r, x, t) in [0, + ~) X R X In;
(iv) Or is supported on [ -1, 1] X I" for r  0.

Define 0: Z X R X In ~ Z X R X In by 03B8(z, x, t) = ( z, 03B8~(z)(x, t)). Then
0 is a f.p. homeomorphism supported on Zl X [ -1, 1] X (InB C) which
extends via the identity to a f.p. homeomorphism 0’: B X In ~ B X In.

THEOREM 4.4: For everye &#x3E; 0 there exists a 03B4 &#x3E; 0 such that for every IL &#x3E; 0

there exists a P &#x3E; 0 so that the following statement is true:
If M is a Q-manifold, -17: M - I" is a submersion with Q-manifold

fibers, f : M - B X 1 n is a proper f . p. map such that ft : 03C0-1(t) ~ B is a
03B4-fibration over Z3 X [ - 3, 3] and a v- fibration over ( Z3 B Zl/3) X [ - 3, 3] 
for each t in ln, then there is a 1. p. homeomorphism 0: M - M such that

(i)  1 w-l( C) is the identity,
(ii) f is E-close to 03B8’f,

(iii) f is ii-close to 03B8’f over Z2/3 X R X ln,
(iv) à is supported on f-1(Z1 X [-1, 1]  In),
(v) there is a f . p. isotopy s : id à, 0  s  1, which is a (p1f)-1(03BC)-

homotopy over Z X R X I n and a (p1f)-1(03BC)-homotopy over Z X R
 In and which is supported on 1-1(ZI X [ -1, 1]  (InB C)).

Moreover, if we are additionally given a compact Q-manifold F and a
sliced Z-embedding g: F X B X In - M such that 7rg is projection and fg is
projection, then à can be chosen so that âg = id F X 0’ and the homotopy Os,
0  s  1, can be chosen so thatp p1sg = p1 for 0  s  1.

REMARKS ON PROOF: The proof proceeds along the general lines of the
proof of Theorem 4.3. In proving the appropriate lemmas analogous to
lemmas 4.1 and 4.2 only two significant changes need to be made besides
the general extra care that must be taken in defining maps and homo-
topies in order to allow for the extra degree of freedom in the Z-direc-
tion. First, one must invoke the remarks made in Section 2 in order to
conclude that f has the appropriate sliced (03B4, 03BD)-lifting property. Sec-
ond, one must replace the standard Q-manifold apparatus by the sub-
mersion results developed in Section 3.

5. Parameterized wrapping

In this section we present a parameterized version of Chapman’s con-
struction for wrapping up 8-fibrations around SI. For notation let B and
Z denote ANRs where Z X R is an open subset of B. Let : Z ~ [0, + (0)
be a proper map and for r in [0, + ~) define Zr = -1([0, r ]) and
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Zr = ~-1([r, + ~)). Let n  0 be an integer. The map p 1 denotes projec-
tion onto Z, P2 projection onto R, and P3 projection onto In. Finally, let
e: R ~ S1 be the covering projection defined by e(x) = exp(03C0ix/4)
(thus e has period 8). This notation will be used throughout this section.

THEOREM 5.1: For everye &#x3E; 0 there exists a 03B4 &#x3E; 0 such that for every IL &#x3E; 0
there exists a v &#x3E; 0 so that the following statement is true:

if M is a Q-manifold and f : M  In ~ B X I n is a proper f . p. map
which is a sliced 03B4-fibration over Z3 X [ - 3, 3] Xjn and a sliced 03BD-fibration
over (Z3B Z113) X [ - 3, 3] X I n, then there is a Q-manifold M, a submer-
sion 03C0: M_jn with Q-manifold fibers, a f . p. map f :  ~ Z2.5 X SI X I n
such that fl: 03C0-1(t) ~ 2.5 X S1 is an £-fibration over Z2 X S

1 and a

03BC-fibration over (Z2B2/3)  S1 for each t in In, and a f. p. open

embedding 03C8: f-1(1 X (-1, 1)  In) ~  for which the following di-
agram commutes:

Moreover, if we are additionally given a compact Q-manifold F such that
F  B is a Z-set in M and f 1 F X BX In : F  B  In ~ B  In is projec-
tion, then we can additionally conclude that there is a sliced Z-embedding g:
F  2.5  S1 In ~  for which g: F  2.5  S1  In ~ 2.5  S1  In
is projection and for which the following diagram commutes:

PROOF OF THEOREM 5.1: Let 0,: R  In ~ R X In, 0  r  + ~ , be the
f.p. isotopy such that for 0  r  2.7 Or is the f.p. PL homeomorphism
supported on [ - 2.4, 2.4] X ¡n with the property that 0,(x, t ) = ( x + 4, t )
for -2.2  x  -1.8 and t ~ I n. For 2.7  r  2.8, Or is phased out to
the identity so that Or = id for r  2.8.’Define 0: Z  R  In ~ Z  R  In

by 8( z, x, t) = ( z, ~(z)(x, t )). By engulfing (Theorem 4.8) there is a f.p.
homotopy h,: id = h1, 0  s  1, on M X I" where h1: M X In ~ M X I "
is a f.p. homeomorphism such that fh 1 is 8’-close to 03B8f over Z x R X In,
and fhl is Y’-close to Of over ZI/2 X R X In, and the homotopy is

supported on f-1(Z3 X [ - 3, 3] X I n ) (Theorem 4.8 also gives some con-
trol on the size of the homotopy which we will need.) Here, 8’ and v’ are
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small if 03B4 and v are small, respectively. Moreover, if we are given a
compact Q-manifold F as in the hypothesis, then we may assume that
h1|F  Z  R  In = idF  03B8 and p1hs|F  Z  R  In = p1 for 0  s 
1.

Let Y = h1f-1(Z2.7 X (- ~, -2] X In)Bf-1(Z X (- 00, -2) X In),
E_ = Y ~ f-1(Z  {-2}  In), and E+ = h1f-1(Z2.7  {-2}  In). Let
- be the equivalence relation on Y generated by the rule: if y is in

Y ~ f-1_(Z2.7  {-2}  In), then y ~ h1(y). Let M = Y/ ~ and let q:
Y - M denote the quotient map. The proof of the first assertion is

straightforward.

ASSERTION 1: The relation - induces an upper semi-continuous decom-

position of Y.

ASSERTION 2: There exists a map a: Y ~ Z such that

(i) 03B1(y) = a( y’) if y ~ y’,
(ii) 03B1|[f-1(Z  [-2, 1.99]  In)~ Y] = p1f|,

(iii) a is 8’-close to p f |Y,
(iv) a is v’-close to p1f| Y over Zr1 where rI is fixed so that 1/2  rI 

2/3.

PROOF : Define a homotopy gs:[f-1(Z X [ - 2, 1.99] X In) ~ Y] ~ E + ~ Z,
0  s  1, by gs|[f-1(Z  [-2, 1.99]  In)~Y] = p1f| and gsIE+=
p1fh1-sh-11| E+. Note that go extends to PIf 1: Y ~ Z. By the homotopy
extension property there is an extension gs : Y ~ Z of gs such that

go = P1f|. Using the estimated homotopy extension property (see [4])
and the control on the homotopy hs, we may assume that the homotopy
gs is controlled in the PIf direction. Then define a = gl.

ASSERTION 3: If we are given the compact Q-manifold F as in the

hypothesis, then the map a of Assertion 2 can be chosen so that a ( F X Z
 R  In) ~ Y = p1 f 1 =pl.

PROOF: In the proof of Assertion 2 extend gs to (F X Z X R X In) ~ Y
by setting gs = p1f| = p 1 on this set. This is well-defined because

Plfhl-sh11lFX Z X R X In ==Pl.

ASSERTION 4: There is a map 03B2: Y ~ [ - 2, 2] such that
(i) 03B2(E_) = - 2,
(ii) /3 ( E +) = + 2,

(iii) 03B2|[f-1(Z  [-2, 1.99]  In) ~ Y] =P2f 1,
(iv) /3 is 03B4’-close to p2f|,
(v) /3 is v’-close to p2f| 1 on f-1(Zr1 X R X In) ~ Y,

(vi) if F is a compact Q-manifold given as in the hypothesis, then

03B2|(F  Z X R X In) ~ Y = p2f 1 =P2-
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PROOF: Define a homotopy gs : ([f-1(Z X [ - 2, 1.99] X In) U ( F X Z X R
X In)] ~ Y) ~E+ ~ R, 0  s  1, as follows: first gs|[f-1(Z X [ - 2, 1.99]
 In) ~ ( F  Z  R  In)] ~ Y = p2f| . On E+ define g, so that go 1 E,
= p2 f 1 and as s goes from 0 to 1, g, shrinks P2f(E+) to +2 so that
g1(E+) = + 2. Note that this can be done so that it does not conflict with
the definition of gs|(F  Z  R  In) ~ Y. Now go extends to p2 f|:
Y - R and so we may use the estimated homotopy extension property to
extend gs to gs : Y - R. Let r: R ~ [ - 2, 2] be the retraction such that
r((-~, -2]) = -2 and r([ + 2, + ~)) = + 2. Then define /3 = rgl. This
completes the proof of Assertion 4.

Identify SI 1 with the quotient space [-2, 2]/{-2,2} and let u:

[ - 2, 2] SI 1 be the quotient map. Do this in such a way that u| [ -1, 1] ]
= e |[-1, 1].

Define f: M ~ z X S1 X In by (q(y)) = (03B1(y), u/3(y), p3(y)) for y
in Y. This map is well-defined. Let  = -1(2.5 SI X I n ) and let f : ~ i2.5 X SI X In denote the restriction of f to M. Define 77:  ~ In
by 03C0(q(y)) =p3(y) for y in q-1() c Y.

ASSERTION 5: iT:  ~ In is a submersion.

PROOF: First let y e E_ such that q( y) E M. Thus fq( y) E Z2.5 X S1  In
and from this we may conclude that y ~ f-1(2.5  {-2}  In). Let

U = h1f-1(2.6  (- ~, -1.8)  In)Bf-1(Z  (-~, 1.8]  In). Define

q’ : U- M by q’ = q on un Y and q’ = qh 1 1 on UB Y. Note that q’ is
an open embedding and q(y) ~ q’(U). Let U = Un (q’)-1(). Then Û
is an open subset of M  In and q’ 1 U:  ~  is an open embedding
onto a neighborhood of q(y) such that 03C0q’| = p3. It follows that there
are product charts about q( y) for 03C0.

Next let y ~ Y such that q(y) ~ MBq(E_ ). Since q(y) ~ ), we
have y ~ f-1(2.55 X [-3, 3] X I n ). Since q(y) is not in q(E_ ), we have
y ~ V = h1f-1(2.6  (- ~, -2]  In). And
q |V: V - M is an open embedding. By setting V = V ~ q-1() we get
product charts about q(y) for 03C0 by using q|:  ~ M. This completes
the proof of Assertion 5.

Notice that the proof of Assertion 5 shows that M, as well as 03C0-1(t)
for each t in I*, is a Q-manifold.

It is left to the reader to show that / has the appropriate fibration
properties. For more details see [2, Section 4] or [16, Section 4].

6. Handle lemmas

In this section we state two handle lemmas needed for the results in
Section 7. Since these lemmas are formally proved by applying our
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engulfing and wrapping results of Sections 4 and 5 in the same manner
that Chapman establishes his handle lemmas in [2, Section 5], we give no
further remarks here on their proofs. The reader is referred to [2] or [16]
for more details.

For notation B and X will denote ANRs where X is compact. Let

n  0 be an integer and let C be a closed subset of ajn which is collared
in I". (The possibility that C is empty is not ruled out.) More generally,
our results would hold true if it were only assumed that C has a radial
neighborhood in In(i.e., an open neighborhood U of C such that UB C
is homeomorphic to K X R in such a way that C U K X ( oc, r] are
closed neighborhoods for all r in R).

PROPOSITION 6.1: Suppose m is a positive integer and Rm  B is an open
embedding. For every E &#x3E; 0 there exists a 03B4 &#x3E; 0 such that if IL &#x3E; 0, M is a

Q-manifold, and f: M  In ~ B X In is a proper f. p. map such that f is a
sliced 8-fibration over Bm X In and Ir is an approximate fibration for each t
in C, then there is a proper f. p. map f : M  In ~ B X ll1 which is a sliced

03BC-fibration over Bî X In and which is f . p. £-homotopic to f rel[(M X In)B
f-1(m3 X ln)] U [M C].

Moreover, if we are additionally given a compact Q-manifold F such that
F  B is a Z-set in M and f 1 F X B X In : F  B  In ~ B  In is projec-
tion, then we can additionally conclude that  |F X B X I" is projection and
that the homotopy from f to f is rel F X B X In. 

THEOREM 6.2: Suppose m  0 is an integer and (X) X Rm  B is an open
embedding. For every E &#x3E; 0 there exists a 8 &#x3E; 0 such that for every ,u &#x3E; 0

there exists a v &#x3E; 0 so that the following statement is true:
if M is a Q-manifold and f : M X In ~ B X In is a proper 1. p. map such

that f is a sliced 8-fibration over c3(X) X Bm3 X In and a sliced 03BD-fibration
over [c3(X)B1/3(X)] X Bm X In and Ir is an approximate fibration for
each t in C, then there is a proper f . p. map f : M  In ~ B X In which is a

sliced ,u-fibration over cl (X) X Bî  In and which is f. p. E-homotopic to f
rel [(M X In)Bf-1(2/3(X)  Bm3  In)] U [M  C].

Moreover, if we are additionally given a compact Q-manifold F such that
F  B is a Z-set in M and f |F  B  In: F  B  In ~ B  In is projec-
tion, then we can additionally conclude that  |F X B  In is projection and
that the homotopy from f to f is rel F X B X In. E]

7. The main results

In this section we state our main result on deforming a parameterized
family of £-fibrations to a parameterized family of approximate fibra-
tions (Theorem 7.1). It will follow from this that the space of approxi-
mate fibrations from a compact Q-manifold to a compact polyhedron is
uniformly LCn for every n  0.
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The proof of Theorem 7.1 can be derived from the handle lemmas of
Section 6 using the same procedure as in [2, Section 6].

THEOREM 7.1: Let B be a polyhedron, n  0 an integer, and C a closed
subset of ~In which is collared in ll1. For every open cover a of B there
exists an open cover /3 of B so that if M is a Q-manifold and f :
Mx In - B X In is a proper f. p. map such that ¡; is a /3-fibration for each
t in In and an approximate fibration for each t in C, then there is a proper
f. p. map f : M X I" - B X In such that ft is an approximate fibration
a-close to Ir for each t in In and l = ¡; for each t in C.

Moreover, if we are additionally given a compact Q-manifold F such that
F X B is a Z-set in M and f 1 F x B X In : F  B  In ~ B  In is projec-
tion, then we can additionally conclude that  |F X B X In is projection. 0

One should notice that Theorem 7.1 remains true when it is only
assumed that C has a radial neighborhood in In. (See the introduction to
Section 6.)

If X is a space (not necessarily locally compact) and n  0 is an

integer, then X is said to be locally n-connected (written LCn) if for each
x in X and each subset U of X containing x, there exists an open subset
V of X containing x such that V c U and any map f : ~In+1 ~ V extends
to a map f: In+1 ~ U.

COROLLARY 7.2: If M is a compact Q-manifold and B is a compact
polyhedron, then the space of approximate fibrations from M to B endowed
with the compact-open topology is LCn for each non-negative integer n.

PROOF: Recall that since M and B are compact the compact-open
topology coincides with the uniform topology. We consider B to have a
fixed metric. Let E &#x3E; 0 and n  0 be given and choose /3 = 03B2(~/3) &#x3E; 0 by
Theorem 7.1 with C = ajnll so that any f.p. map f : M  Inll + B X In+1

with Ir an approximate fibration for each t in ~In+1 and ft a /3-fibration
for each t in In+1 is f.p. (~/3)-homotopic rel M  ~In+1 to a f.p. map :
M  In+1 ~ B X In+l 1 such that t is an approximate fibration for each t
in In+1. Now choose 0  y  E/3 so that any map to B which is y-close
to an approximate fibration is a /3- fibration.

Choose 8 &#x3E; 0 so that if f: M  ~In+1 ~ B  ~In+1 1 is any f.p. map
with the property that for each s, t in ajn+l fs is 03B4-close to Ir, then there
exists a f.p. extension g: M X In+1 ~ B X In+1 

1 of f such that gs is

y-close to gt for all s, t in In+1.
To complete the proof we claim that if f: M X ~In+1 ~ B X ~In+1 is

a f.p. map such that fs is 03B4-close to ft for all s, t in ~In+1 1 and ft is an

approximate fibration for each t in ~In+1, then there exists a f.p.
extension f : M  In+1 ~ B X In+1 1 of f with the property that ls is
E-close to ft for all s, t in In+1 and Ir is an approximate fibration for
each t in In+ 1. This is obvious from the choices made above. 0
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REMARK 7.3: A (possibly non-locally compact) metric space ( X, d ) is
said to be uniformly LCI1 if for every E &#x3E; 0 there exists a 8 &#x3E; 0 such that

every map f : ~In+1 ~ X with the diameter of f(~In+1) less than 5
extends to a map f : In+1 ~ X with the diameter of (In+1) less than E .

If in the statement of Corollary 7.2 we fix a metric for B, then the proof
shows that the space of approximate fibrations from M to B endowed
with the uniform topology is uniformly LCn for each non-negative
integer n.

REMARK 7.4: If the proof of Theorem 7.1 is examined, it will be seen that
we can replace B by Rm with the standard metric and replace the open
covers by positive numbers so that the statement remains true. Then the
proof of Corollary 7.2 shows that the space of approximate fibrations
from a (noncompact) . Q-manifold M to Rm endowed with the uniform
topology (induced by the standard metric on Rm ) is uniformly LCn for
each non-negative integer n.

We now turn our attention to special types of approximate fibrations.
A closed subset of an ANR X is cell-like if it is contractible in any
neighborhood of itself. A proper map f: E - B between ANRs is
cell-like provided f-1(b) is cell-like for each b in B. A cell-like map is
also an approximate fibration. A map f : E - B is monotone provided
f-1(b) is connected for each b in B.

In [13] it is shown that if f: E -B is an approximate fibration
between connected ANRs, then f-1(b) is shape equivalent to the homo-
topy fiber of f such each b in B. From this it follows that if f, g: E ~ B
are homotopic approximate fibrations between (not necessarily con-
nected) ANRs and b is in B, then f-1(b) is shape equivalent to g-1(b).
For example, if f, g: E - B are homotopic approximate fibrations and f
is cell-like, then g is cell-like. Or, if f, g: E ~ B are homotopic
approximate fibrations and f is monotone, then g is monotone. With
these facts in mind the following two corollaries follow immediately from
Corollary 7.2.

COROLLARY 7.5: If M is a compact Q-manifold and B is a compact
polyhedron, then the space of cell-like maps from M to B endowed with the
compact-open topology is LCn for each non-negative integer n.

COROLLARY 7.6: If M is a compact Q-manifold and B is a compact
polyhedron, then the space of monotone approximate fibrations from M to B
endowed with the compact-open toplogy is LCn for each non-negative
integer n.
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