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Introduction

In Arnold’s survey article [4] he calls attention to a “strange duality”
among the 14 “exceptional unimodal” singularities of surfaces in C°.
Although a beautiful interpretation of this duality was given by Pinkham
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[47], it remains somewhat mysterious. In independent work in early 1982
the two authors discovered an extension of this duality embracing on one
hand series of bimodal singularities and on the other, complete intersec-
tion surfaces in C*® Following Nakamura [44,45], we related this to
Hirzebruch—Zagier duality of hyperbolic (alias cusp) singularities.

Our extension of the duality is described in section 5.2 (following
some remarks in sections 2.3 and 4.2). The duals of complete intersection
triangle singularities are not themselves singularities, but are virtual
(n= —1) cases of sequences (e.g. W; ,:n > 0) of bimodal singularities.
We associate to these well-defined Milnor lattices, and show that all
numerical features of Arnold’s strange duality continue to hold.

We also discovered some other symmetries between singularities re-
lated to the duality of hyperbolic singularities, embracing other Kodaira
singularities, too. So the appearance of pairs of bimodal exceptional
singularities with isomorphic Milnor lattices [16] turned out to be part of
a more extensive symmetry between singularities of in general different
embedding dimensions (see again section 5.2).

Therefore it seemed appropriate to consider the whole class of Kodaira
singularities. These are described below, and one of our objectives is to
extend to them as far as possible results known for the hypersurface
cases, and to seek alternative characterisations analogous to the many
known [14] for “rational double points”. A limited success is attained
here, but it does become clear that this class of singularities has many
beautiful properties.

The paper is divided into five sections. The first introduces Kodaira
singularities in general, and the second the strange duality. Next we
consider embeddings in euclidean space (and equations). Finally we
study the associated quadratic forms: first from the viewpoint of synthe-
sis from local data, and then from the Dynkin diagram approach.

1. Singularities of Kodaira type
1.1. Enumeration

Kodaira’s enumeration [31] of exceptional fibres in pencils of elliptic
curves shows intriguing parallels with other well-known lists (Lie groups
etc.). It was discovered ten years ago by Kulikov [32], Laufer [35] and
Reid [53] that the same exceptional sets E but with different neighbour-
hoods gave minimal resolutions for an important class of singularities.
These we shall call Kodaira singularities (see also [30]).

We recall Kodaira’s classification. The table given is adapted from [31,
p. 604, Table 1] and gives some insight into the structure of the classifica-
tion. In this table A4 is the local monodromy matrix of the elliptic
fibration. The cases are distinguished by the conjugacy class of A4 in
SL,(Z): we obtain all those with |tr 4| < 2, save for the restriction b > 0.
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Name Matrix A ¢ Type of 47! Value of j
1 0
Iy ( 0 ]) 1 Iy Regular
I, ( (1) bl) e - Pole of order b (b > 0)
-1 0
I3 ( 0 _]) 2 I Regular
13 (_(1) :f’) o - Pole of order b (b > 0)
1 1
I*
1 (_1 0) 6 I 0
" 0 —l)
11 ( 1 1 6 11 0
0 1
4 I+
111 (_1 0) 1
* 0 —1)
1 ( 1 0 4 48 1
0 1 R
v (_1 _1) 3 v 0
* -1 -1
1v ( 1 0 3 v 0

The order of A4 is denoted by c: it will reappear in section 3.4.
We now describe the exceptional fibres in each case, and also intro-
duce our notation for the Kodaira singularities.

Case 1,(d): E is an elliptic curve. Its normal bundle has Chern
number —d (d = 0 for the Kodaira fibre, d > 0 for the singularity).

Case 1,(b,,..., b,): E is a cycle of rational curves, each meeting both
its neighbours. For n =2 we interpret this to mean that the two curves
intersect (transversely) twice; for n =1, that the curve has a single point
of (transverse) self-intersection. The normal degrees —b,,..., —b, of the
curves (in order) satisfy b, > 2. If all the b, equal 2, we have the Kodaira
fibre. (Note that for n=1 the curve has normal degree —b,, but
selfintersection number —b; + 2.)

Case 1I(k): E is a rational curve with a cusp; the normal degree is
—(k+2), with k> 1.

Case 111(k,, k,): E consists of two rational curves touching in a point
(intersection number 2). The normal degrees are —(k; +2), —(k,+2)
where k; >0, £k, >0, k; + k,>0.

Case 1V(k,, k,, k;): E consists of three rational curves, meeting
(pairwise transversely) in a single point: the normal degrees are — (k, + 2).

In the remaining cases, all components of E are rational and nonsin-
gular; E has normal crossings; no two components meet more than once.
We can thus describe E by a graph Iy with one vertex for each
component of E: two vertices are joined iff the corresponding compo-
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nents meet. We weight this by writing next to each vertex the integer b
such that —b is the degree of the corresponding component.

Case I}(ky, ky, k;, k,): Dual graph an extended Dynkin graph of
type D, 14

ky +2 ky+2

(n+1) vertices
>——0-
2 2 2
ky+2

ki+2

Case 11*(k,): (type Eg)

ky+2 2 2 2 2 2 2 2

L

Case 111*(k,, k,): (type E,)

ky+2 2 2 2 2 2 ky+2
Case IV*(k,, k,, k;): (type Eg)

ki+2 2 2

In each case, the k, are nonnegative integers, not all 0: the case when all
are 0 gives the fibre in Kodaira’s list.

The Kodaira singularities have two basic intrinsic properties: they are
elliptic (of genus 1) and Gorenstein (there is a local regular 2-form). For
a discussion in terms of these properties, see [53] and [35].

The above symbols do not quite provide a complete classification. For
cases I, I there is a “modulus”: in case I, this can be taken as the
J-invariant of the elliptic curve E; for I} as given by the cross-ratio A of
the set of 4 points (in some order) where the outer curves meet the central
one. The precise classification in this case depends on consideration of
changing the order of the points, and on which of the k, are distinct.

For a given case, given k, (or b,), and (where relevant) a given A, the
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singularity is determined up to a finite ambiguity. The number of cases is
[33]1 for types I,, (n > 0), I*¥ (n> 0); 2 for types II, III, IV and If; and 3
for types II*, IIT* and IV*. For types 1, II, III, IV, I§, II*, IIT*, IV* just
one of these cases gives a singularity with C* action.

1.2. Uniformisation

The survey article of Neumann [46] describes the different types of
uniformisation available for surface singularities, and gives a bijection
between such uniformisations and geometric structures (in the style of
Thurston [60,61]) on the 3-manifold which is the boundary of a
neighbourhood of the singularity.

For isolated surface singularities there are just 4 models available; we
consider them in turn.

A geometric structure of type S* comes from a finite group T acting
freely on S3: thus I' C U,. As is well known [68] the quotient C%/T is
Gorenstein if and only if I' C SU,. These cases give rise to the well-known
list A,, D,, E, of singularities [14,15].

For a geometric structure of type Nil we have a discrete cocompact
subgroup I' of the isometry group O,.Nil acting freely on Nil. The
corresponding singularity is Gorenstein if and only if T' € Nil [12]. Up to
deformation, I' then belongs to one of a sequence

1 7z z
[L=(0 1 nz|, neN.
0 0 1

The corresponding singularity is then of type I,(n) above; conversely, we
obtain all these. These are the “simple-elliptic” singularities of Saito [54].

Neumann describes in [46] all singularities with geometric structure of
type Sol: he obtains two classes. The second class are easily seen not to
be Gorenstein. The first give precisely the singularities of type I, (n>1)
above. These are commonly called “cusp singularities” after their ap-
pearance in the work of Hirzebruch [23]: however, we prefer to avoid this
term. .

There remains the much more extensive class of structures of type SL,.
Again, it has been shown by Dolgachev [12] and others that the corre-
sponding singularity is Gorenstein if and only if it is the (compactifica-
tion of the) quotient of the model (universal cover of the bundle of
nonzero tangent vector§_3f the hyperbolic plane £) by a free discrete
cocompact subgroup of SL,. All isolated surface singularities admitting a
C* action which is “good” in the sense that, for any P, ¢.P tends to the
singular point as ¢ — 0, except those already discussed, belong to this
class: in particular, all those defined by a weighted homogenous system
of equations.
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Given such a C*-action, one usually describes the situation by “Seifert
invariants” as follows. The surface T with genus g is the orbit space of
the action. The non-free C*-orbits, where the stabiliser has order p,, give
rise to points P, € T marked with p,. The action of the stabiliser on the
tangent space defines an invariant ¢, mod p,. It is better to consider T as
orbifold (in the sense of Thurston [60]; see also [55]): as such, it has Euler
characteristic

x=2-28+Y(p '-1).

The link of the singularity is a circle bundle over this orbifold, with
characteristic class

e=B+ qupl—l’

where B is a certain integer. The first homology group of the link is the
sum of 2g copies of Z and a finite group of order A = |e[[Ip,. A minimal
resolution consists of 7 with normal degree B8, with a chain of rational
curves for each point P. The (negatives of the) normal degrees in the
chain are obtained by expanding p,/q, as a continued fraction.

In the Gorenstein case, these data simplify as follows. There is an
integer R such that x = eR. For each i, g, is inverse to R mod p,.

We can easily calculate all these from the resolution for cases of
Kodaira type. They are listed in the table. In each of these cases, g=0.
We recall that (for given A in the I¥ cases), just one of the 2 (or 3)
isomorphism classes admits a good C*-action.

The numbers p, are called the Dolgachev numbers of the singularity,
after [10,11]. Observe that all cases where g = 0, there are just 3 excep-
tional orbits, R =1 and x <0 appear in cases II, III and IV above.

1.3. The fundamental cycle
It is shown in [53] and [35] that the minimal resolution of an elliptic
Gorenstein singularity carries a 2-cycle Z with the following properties:

(1) For divisors D supported on the exceptional set E,

R(0,)=h(0;) = D> Z.

Case P, R|A
TI(k,) 2,3,6+k, 1|k
I(k,, k,) 2,44k, 4+ k, 1 | kyky +2(k, + ky)
IV(ky, ko, k3) 34ky, 3+ ky, 3+ kK, 1 | 3%k, +2Xk,k, +T1k,
I8(ky, koyy k3 ko) |2+ Ky, 2+ ky, 2+ k3, 24 kg |1 |48k, + 45k, k, + 3Lk, k k, + 201k,
11*(k,) 2,3,6+5k, 5 |k,
I*(k,, ky) 2,4+3k,, 4+ 3k, 3 | 3kyky +2(ky + ky)
2

IV¥(ky, ko, k3) | 342k, 3+2k,, 3+2k;, 3%k, +4%k,k, + 41k,
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(2) If the singularity occurs on a projective variety X with resolution
M > E, then for some line bundle L on X the canonical bundle K,, = f*L
®0,,(—-2).

(3) Z is the unique positive divisor supported on E with positive
arithmetic genus.

(4) Z is the minimal cycle satisfying Z.C < 0 for all components C of
E.

It is easy to write down Z for singularities of Kodaira type: for the
original Kodaira elliptic curve we have Z2 = 0. Thus for types I, II, II
and IV, Z is a sum of the components C of E, each with multiplicity 1.
The multiplicities in the remaining cases are as follows:

1 1

I11*) 1 2 3 4 3 2 1

The fundamental cycle Z determines in turn the invariant D= — Z?2
which we will call the grade. It is shown in [53] and [35] that (a) the
degree (or multiplicity) of the singular point is max(D, 2), (b) its
embedding dimension is max(D, 3). Thus for D <3 we have hyper-
surface singularities; for D = 4 we have complete intersections in C*. The
cases D > 4 do not give complete intersections; however [9] if D =35 we
have Pfaffian singularities in C°.

Observe that the normal degrees for a singularity of Kodaira type are
obtained from those for a Kodaira elliptic curve by decreasing the
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Case|lo(d) [1,,(by,..., b,)|1(k,) HI(ky, ko)|IV(ky, ks, k3)|I2(Ky, ko, ks, ky)
D |d (b, -2) |k, ky+ky, |ky+hko+ky [ky+k,+ka+k,

Case|lI*(k,)|III*(k,, k,) [IV*(ky, ko, k3)
D |k K+ k, K ¥k, ¥k,

numbers for certain components of multiplicity 1 in Z. Thus Z? is
decreased by the same amount. We can now see that, in the notation
above, the grade is as indicated in the table.

Thus the singularities of a given type with grade D are classified by
partitions of D into the appropriate number of parts. We shall see later
that these partitions correspond to Arnold’s series of singularities.

The embedding result comes from considering the line bundle L =
0,(—2Z): then [53] h°%(L)=D, and H°(L) generates ® H°(nL) if
D > 3.1f D=2, the cokernel of H°(L) ® H°(L)— H°(2L) has dimen-
sion 1; and if D=1 our three generators are in H°(L), H°(2L) and
HP(3L), respectively.

2. Duality
2.1. Hyperbolic singularities: Inoue—Hirzebruch surfaces and duality

By “hyperbolic singularity” we mean those of type I, with n> 0. The
link of I,,(b,,...,b,) is a torus bundle over a circle, with monodromy

A(b)=( b, 1) ( b, 1)( b, 1),

-1 0 -1 0/\-1 0

where each b, > 2, and at least one is > 2. Indeed, this is a normal form
for conjugacy classes of matrices in SL,(Z) with trace > 3. The con-
jugate by a matrix of determinant —1 can be put in the form A(b*);
then b* is defined to be the sequence dual to b. The singularity llink
corresponding to I,.(4*) is thus homeomorphic to that for I,(b), but
with reversed orientation. It is not difficult to fit the two singularities
together to obtain a complete surface with two isolated singular points
[25b,37,44,45,52].

These are called Inoue-Hirzebruch surfaces, or hyperbolic Inoue
surfaces. We observe parenthetically that there also exist [25a] parabolic
Inoue surfaces, obtained by compactifying a I,(n) singularity by a
“Kodaira fibre” of type I,(2, 2,...,2), and forming in some sense a
limiting case of the above.

To obtain the duality explicitly we distinguish the b, equal to 2 from
those exceeding 2, and write the sequence (up to cycling reordering) as

b=2,...,2, k +2,2,...,2, ky+2,...,k +2.
k¥—1 k% —1
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We then have [24]

B*=k¥+2,2,...,2, kX +2,2,..,2,., k¥ +2,2,...,2.
2onl

~_—— T ———

k=1 ky—1 k,—1

Observe that since not all the b, are 2, this is well defined. Each of the &,
k¥ is > 1. This duality, and the alternative notation k,, k* is the key to
understanding the further relations below.

Instead of matrices, we could have wanrked with continued fractions. It
follows from [23] that if

=ph — —— 1
g bn bn—-l_ _‘b_ l 1
Z_b =
1 l% _ .
then
E—-1=k +L 1
e kx4 1
& kg 4+— 1
§ ky + 5, 4
k¥ +-—
kg+..‘

In terms of the new notation, we find
D=3 (b-2)=Xk,
so that the formula D = ¥k, now holds in all cases. We also have
n = length of sequence b= ) k* = D* (say).

Thus D* is the grade of the dual singularity, which is of type I,,. We also
need

g g
Yb=X (kr—1)2+(k,+2)= ¥ (2k? + k;) =2D* + D;

i=1 i=1

of course also Lb} = 2D + D*.
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We now consider duality, restricted to complete intersections, follow-
ing Nakamura [44]. If both 1,(b) and its dual are complete intersections,
then ¥ ,k, <4 and X8k} <4. Since k,, k¥ are >1, cases are as
follows: l

g=1;each of k, k*is 1,2, 3, or 4.

g=2;each of k, k* is (1, 1), (1, 2), (1, 3) or (2, 2).

g=3;eachof k, k*is (1,1, 1) or (1, 1, 2).

g=4;eachof k, k*i1s (1,1, 1, 1).

We also need a cyclic order, in which terms of k alternate with those of
k*. For g <2, such an order is clearly unique: the only time when it is
not is when k = k* = (1, 1, 2): the cyclic orders (1,1, 1, 1, 2, 2) resp. (1, 1,
2,1, 1, 2) correspond to b= b* = (2, 3, 3, 4) resp. (2, 3, 4, 3).

A list of these 38 cases is given in Table 1. For some purposes we shall
extend the list to D <5, D* < 5. Thus the possibilities for k, k* are:

g=1;1,23;4;5.

g=2; (1, 1), (1, 2); (1, 3), 2. 2); (1, 4), (2, 3).

g=3(1,1,1);@1,1,2);1,1,3),(@1,2,2).

g=4;(1,1,1,1);(1,1,1,2).

g=501,1,1,1,1).

Of these 82 cases, the cyclic order of k, k* is non-unique in just 10, in
each of which there are 2 possibilities. These arise when k, k* are among

g=3(1,1,2);(@1,1,3),(@1,?2,2).

g=4;(1,1,1,2).

There are thus 92 cases in all.

We observe finally that the first homology group of the link is the sum
of an infinite cyclic group (corresponding to the base circle) and the
cokernel of the map represented by 4 — I: the order of the latter is

|det(4 —1)|=]|2— trace 4

B

n=1: b, - 2.
n=2: bb,—4.
n=3: bbyb, — b, — b, — by — 2, etc.

2.2. The parameters p,

We next consider the equations of the hypersurface hyperbolic singular-
ities. According to [28,29] these are of the form

xP+yi+2z"+xyz=0,

where p"'+¢ '+r '<1 and p, ¢, r are related to b as in the
following table.
Similarly, in the complete intersection case we can take as equations

wP+y "+ xz=0, x9+ 2z 4+ wy=0.
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pgr(p<qg<r)|b k k* b*

2,3, r(r=7 277703 1 r—=6 r—4

2.4, r(r=5) 27754 2 r—4 2, r—2

2, 4. r(qg>=5) 2975327753 1 1.1 g—4,r—4 g-2,r-2

3,3, r(r>4) 245 3 r—3 2,2, r—1

3, 4, r(g=4) 29743 2774 4 | 21 qg-3,r-3 2,g-1,r-1

P q. r(p=4) 2774329743 11,11 | p=3,9-3,r=3 | p—1,¢9-1,r—1
27743

Depending how many of p, g, r and s equal 2 there are five cases for b
(corresponding to the five possible partitions k of 4); in each case,

*=(p.q.r.s).

We are thus led to introduce a new notation, modifying b* (we regard
k, k* as the basic notation). Recall that D is the length of the series b*.

If D=1, define pf =2, pf =3, p¥ =6+ k¥ =4+ b}.

If D=2,set pf=2, py=4+k¥=2+b}, p¥=4+k¥=2+b3.

If D=3,set p*=1+b¥=3+k}_ fori=1,2, 3.

If D=4, set p*=>b* for1<i<4.

Note here that kF* is set equal to O for i > g. Also note that, in the four

cases,

Ypr=

11+ k*
10 + k* + k%

=12+ Y k*— Y k,

=12+ D* - D.

=2D + D*

Interchanging the k, and the k* we correspondingly define p, if D* < 4,

and have Lp, =

©<b1 —_

12+ D — D*.

SO< '
1
5<><b1

b2

b,+2 1 b1+3
—
2
1 b1+1
—
b2+1

Schema 1.
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Schema 2.

We introduced the p* so that if D < 3 the equation took the form
X+ XD+ x4 x,x,x,=0.

It turns out that the parameters p, are related to the minimal resolution
which is good in the sense that each component is embedded, no two
meet twice, and all crossings are normal. For types I,, I, these are
described in Schema 1. So for each of types I, I,, I, we obtain a triangle
as in Schema 2.

2.3. Strange duality

We establish bijections between the indicated classes of singularities of
Kodaira type by

(k) —~ ’ L (k; +2),
MI(ky, ky) =P 1, (ky+2, ky+2),
IV(ky, ky, k3) =P 13(ky +2, ky+2, ky+2).

Since these preserve D, hypersurfaces correspond to hypersurfaces, com-
plete intersections to the same.

Observe that minimal good resolutions are obtained as in the follow-
ing figure.

II k —>

<
<t

k,+1

2 k.,+1

k1+1 3

7?‘7?7&"77

l I [

Schema 3.



[13] Kodaira singularities 15

Thus for each singularity of type II, III or IV, the minimal good
resolution has the form

where p is the sequence defined in section 2.2.

Indeed, in the quasihomogeneous cases, we can now identify the
component marked 1 with the central sphere S?, and see that there are
three exceptional orbits and that the numbers p, above coincide with
those described in section 1.2 and often known as “Dolgachev numbers”
after [10].

If we now denote by & the duality of section 2.1, then 87 '88 defines a
duality among those singularities of classes II, III and IV for which 87!
is defined. Since b* has length at most 3 if and only if D < 3, i.e., we
have a hypersurface singularity, these are precisely the hypersurface
singularities of these classes. Now 8, = 87188 is the same as the strange
duality of Arnol’d [4]. We recall that a satisfying geometrical interpreta-
tion using compactification by K3 surfaces was given by Pinkham [49].

We also have correspondences

Yo La(ky 42, ko2, ky+2, ky+2) > 15(ky, ky, ks, ky);

bijective for n > 0 (for n = 0 we lose the cyclic order). These will be seen
below to play a similar role to the above. There is also the trivial bijection

(k,) = < 11*(k,),

I(ky, ky) = € TI*(kq, k),

IV(ky, ky, ky) = < IV*(ky, ky, ky),
which can be composed with 8 or with §,. We shall study these further in
the section on quadratic forms.

Observe, however, that each of B, v,, € preserves the sequence k, and
hence D.

3. Embeddings
3.1. General remarks

The Kodaira singularities with D < 3 are given by equations in C3. These
equations had been obtained by Arnol’d [4] in his classification of
singularities. Arnold’s 1-modal singularities are precisely those of types
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I,, 11, IIT and IV; his 2-modal singularities are those of types If, I1*, ITT*
and IV*.

The cases D=4 appear as complete intersections in C*, hence as
f71(0) for some f:(C* 0)— (C?2, 0). We contemplate classifying such
maps up to J-equivalence [40] (or contact equivalence). Say that f has
modality r if for a versal unfolding

F:(C*xC“ 0)> (C2XxC*,0)

of f, all the germs in some neighbourhood of 0 fall into a finite number
of families, each depending on at most r parameters, for J#“equivalence.
Say that f has strict modality r if the same holds for multigerms (all
singular, with the same target). One of the main conclusions of [66] is
that a germ has strict modality 1 if and only if the singularity f~'(0) is of
Kodaira type.

These cases also are tabulated below (and this tabulation was one of
the origins of the present paper), in the notation of [66], which is a slight
modification of Arnold’s [4]. All the cases, other than those of type I,
belong to well-defined series. We find by inspection that the series is
determined by the numbers k, defined in our notation. If the k, are
arranged in decreasing order, and any which equal zero are omitted, we
find the following table:

k 1 2 1,1 3 2,1 1,11 4 31 22 | 2,11 1,1,1,1
Series E |z w [ U J’ L K’ M i

We recall that in these cases D = Xk,.

We also consider below the cases D =5. According to [9], each of
these cases is defined by 5 equations which are given by the Pfaffians of a
skew-symmetric 5 X 5 matrix. We shall obtain such a matrix (it is not, of
course, unique) in each case.

3.2. The hyperbolic case
We have already given normal forms for equations here, namely
x4+ x84 x4 x,x,x,=0
if D <3, while if D =4 we take
X+ X+ xox,=xx, + xB + xbi=0.

In the case D=5 it is easy to verify (this has also been noted by
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Nakamura) that a suitable matrix is

bh3—1

br—1

0 X4 — X3 Xs — X,
—X, 0 X5 —x-! xbi-l

x5 —xg 0 X, —xhim!
—xbi-l x.’{‘_' — X, 0 X5

X3 —xf7_1 xB-t o —x, 0

We set p* =b* —1 for 1 <i< 5 and define correspondingly p,.

As we shall shortly see in the other cases, the nature of the terms of
lowest order here is determined by the sequence k. As usual, the cases
D < 2 are somewhat anomalous.

If D=1, then p¥=2, pf=23 and we have the alternative normal
form

xPTHe 4 x2x2 + x3 + x2.
If D=2, again p¥ =2 and we have the alternative form
xPTH4 4 x2x? + x314 4+ x2,

If k= (1, 1), the only term of order 4 in x,, x, is x?x2; if k=2, k¥ =0,
so we have x2x2 + x3.

If D=3, all terms have order > 3, and those of degree 3 define a
plane cubic curve which is:

if k=(1, 1, 1), a triangle,

if k=(2, 1), a conic and chord,

if k= (3), a nodal cubic.

Similarly for D =4 or 5 we find that the terms of lowest degree (namely
2) in the equations define a set of g smooth rational curves, of degree
ky,..., k, respectively, with each meeting the next one simply, all inter-
section points being distinct.

If we substitute b* = 2 for each i in the above formulae, we obtain a
singularity of type I (D): in some formal sense, we can consider 1,(D)
as dual to I,(2, 2,...,2): compare the remark in section 2.1 about
parabolic Inoue surfaces. However, the general singularity of type I,(n)
involves a modulus. The equations for n < 3 are well known; for n =4
we can take a generic pencil of quadrics and for n=15 a generic
skew-symmetric matrix which is linear in x,;, x,, x;, x, and x,.

It is interesting to observe the relation between the varieties associated
in this way to hyperbolic or other Kodaira singularities with the same k.
For D = 3, we have:
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k 3 2,1 1,11
Hyperbolic nodal cubic conic + chord triangle

Other cuspidal cubic conic + tangent concurrent lines
Series Q S | U

For D =4, the pencils of quadrics can be described by Segre symbols,
and we find:

k 4 31 2,2 2,1,1 1,1,1,1
Hyperbolic 2,1,1 2,2 1,1),1,1 2,(1,1) (1,1),(1,1)
Other 31 4 2,1 3,1) 1,1,1;1
Series J’ L K’ M 1

3.3. Equations for Kodaira singularities: reduction methods

There are (at least) three ways of obtaining explicit equations for
embedded singularities of the various types. First, for the quasihomoge-
neous singularities of types II, III, IV, IV* III* and II* we can write
down generators and relations for the ring of automorphic forms of the
given hyperbolic triangle, using a modification of the method of Milnor
[42] (which will be described elsewhere). Second, one can resolve a
surface given by equations explicitly (and hence infer step by step the
terms needed in the equations to produce the desired result). Third, we
have reduction procedures. We recall from [67,7.9] that if

f(x, y,z)=yx*+2xb(y, z) +c(y, 2),
set

A f(w, y,z)=w =b(y, z)" +yc(y, 2);
if

f(x, y,2,w)=(xp+a(y, z,w), x2+b(y, z,w)),
set

L. f(y,z,w)=yb(y, z,w)—za(y, z, w).

Then the exceptional sets S, T in the minimal resolutions of f and A f
(resp. L, f) are isomorphic, but one of the normal degrees is changed by
1. The same argument gives a reduction procedure for Pfaffian singular-
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ities: if f is defined by the Pfaffians of

0 Xs p q r

—Xs 0 u voow
=p —u 0 X3 X
-q -V =X, 0 x
-r —-w -x;, -x; 0

(where p, g, r, u, v, w are functions of x,, x,, x; and x,), we define
P, f=(ux; —vx,+ wx;, px;—qx,+rx,) and the same conclusion ob-
tains.

These reduction procedures allow us to deal with whole classes of
singularities simultaneously. We shall suppose that they give bijections
between isomorphism classes of germs, though the arguments above only
yield bijections of topological types.

Case 11 111 v I
A x%+ ax,x, X%, + axi X} + ax,x? Ax2+px,x? +uxi
+ ax,x;]
Case v+ II* I I¥(n>=1)
A )c15+ax2x,3 xzxf+ax|" xf+ax2x]4 x§+x?+"
+a'xyx; +a’'x] +a'x,x}

Case g =1. Define a function 4 depending on cases as in the table.
Then the equations for the various series are:

X
k=(1), x§+x§+fo(x—2, x,)=0,

1
k=(2), xi+xx;3+x;4(x,, x,).
k=(3), x;x3+x3+x%4(x,, x,),

k=(4), (x;x4—x3, x3x,+ x} +x,4(x,, xl)),

0 Xs A(xy, 1) —x4 X,

—Xs 0 X4 x, O

k=(5), | —4(x,,x)) —x4 0 X3 X,
Xy —X, —X; 0 x

—X; 0 -x, -x, 0
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The weighted homogeneous cases are those with a =a’ = 0; the other
cases are those with a # 0 or (II*, III*, IV*) a =0 and a’ # 0. For type
I#, the cubic 1> + At2 + ut + » = 0 must have distinct roots. We can even
include the hyperbolic cases here by setting 4 = —3x, + 2x, + xiT+1,
Case g = 2. Here we define the function B as in the table.
The equations are given by:

k=(1,1), x2+x3—x}B(x,, x;),

Case |11l v I Iv* 17*

B x,2+ax§ xyx, + ax; )\x§+px,3+ax%x, x,x2+axi+a'x} xit + axix, +a'x%x,2
Case | I*(kp2 kyn2) | I%(ky kpu2.2)(nodd) | I%(ky ks.2,2) (n even)
B x2+xpt3 2x2— x} + xyx{"tI2 2x2— x}+ x2xp7?

k=(21), xx3+2x;x2+xB(x,, x,),

k=(3,1), (x;x4—2x;x5, X3+ x,x,+ x,B(x3, x)),

- 2
k=1(2,2), (xl(x3+x4)+2x2,x3x4—x,B(x2,x,)),
0 Xs B(x,, x;) —x; x4
—Xs 0 X4 2x; O
k=(4,1), | =B(x,,x,) —x,4 0 X, x5 |,
X4 —2x3  —X; 0 X,
— X, 0 —X, —X; 0
0 —B(x,, x;) Xs 0 X4
B(x,, x;) 0 —(x3+ x,) X3 X3
k=(3,2), | —xs X3+ X, 0 2x, 0
0 — X3 —2x, 0 X,
—X, —X, 0 - X, 0

The rdles of a, a’ are as before. For type 1%, u(A* + 4p)+0.

Case g = 3. Define C(x,, x,, x3) as in the table.
Here the term Q - as indeed the x? appearing in cases IV and IV* — can
be any quadratic in x, and x; which is nor a linear combination of
3x3—x3 and x,x;. The term L is a linear expression in x, and X,
which is nor a multiple of the chosen factor 4 (=x,, x,+ x;) of
x3 — x,x? (a corresponding remark applies for type I¥).



(9] Kodaira singularities 21
The normal form for k=(1,1, 1) is
X3 — X,x3 + x2C;
for k=(2, 1, 1) we have

(2x1x, + x3 — x2, 2x,x, — x,C).

Case | IV I} Iv* I*
(n=1)/2
x Q, nodd
C xZ+ax3? (Axy+ px3)x, xi + ax? x4+ ! +2y 2
xé" /21 neven
+axyx}? +a'x,x}

Here there is less symmetry.

0 Xs -C —2x4 0
— X5 0 2x, —Xx, —X3
k=(3,1,1), C —2x, 0 X, x, |
2x,4 X, — X3 0 X
0 X3 - X, — X 0
0 -C Xs 0 x,+x,
C 0 Xy —X4 Xy— X5
k=1(2,2,1), —Xs — Xy 0 -x, O
0 X4 Xy 0 x
—(x3+x3) —(x3=-x3) 0 —x 0

Note here that P-reduction gives an equation in the (2, 1, 1) series but
with x, + x, (rather than x,) as the preferred factor of x3 — x,x3.

Case g = 4. We define E(x,, x,) to be, resp:
(I*) axi + x3; (I*, n>2 even) x{"*?/2; (I*, n odd) x,x{"*V/2

We have equations: k= (1, 1, 1, 1),

(xz(x3 —x4) +x7, X3(x5 = x4) + X, E(x3, xl));

k= (2, 1, 1, l)a
0 Xs E(x,, x1) 0 Xy — X4
— X5 0 x} X,—x; 0
~E(x3, x;)  —x{ 0 X3 X
0 —(x4—x3) —x, 0 X

—(x,—x,) 0 - X, —-Xx 0
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3.4. Weights

The weights in the weighted homogeneous cases above display similar
regularities. We first define parameters ¢ and R as in the table.

Here ¢ is the order of the matrix A4 of section 1.1; it is also (except for
cases II, III, IV) the highest multiplicity of a component in the funda-

Case I1 11 v Iy Iv* I1* I*
c 6 4 3 2 3 4 6
R 1 1 1 1 2 3 5

mental cycle; R equals either 1 or ¢ —1 (or both) and has the same
meaning as in section 1.2.
Next suppose that k = (k,, k,,..., k,) defines a partition of D. We
define a sequence of D natural numbers by
1,2,k 1,2,0,ky,000,1, 2,00 k.
Rearrange this sequence in increasing order, and change its first term
from 1 to 0; we then denote it by

Wi, Wo,.ot, Wp
Then the weights of the coordinates are given by
weight(x,)=c+ w,R forl<i<D.

In the cases when D < 3 further formulae are needed, and are as follows:
If k= (1), weight x, =2(c + R), weight x, = 3(c + R).
If k= (2), weight x;=2c + 3R.
If k=(1, 1), weight x; =2(c + R).
We also observe that:
if g=1, weight 4 = c+ 6R (all cases),
if g =2, weight B =c + 4R (all cases),
if g =3, weight C = ¢ + 3R (all cases),
if g =4, weight £ =c + 2R (only one case).
One can infer the weights of the equations. If D < 3, then of course

weight f=wt x, + wt x, + wt x5 + R.
If D=4,
wt fi + wt f,=wt x; + wt x, +wt x;+wt x, +R

whence, by closer examination:
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k 1 2 (1,1) 3 2,1 (1,1,1)
wt f 6(c+ R) 4c+6R 4(c+ R) 3(c+2R) 3¢+4R 3(¢c+R)
k 4 3.1) 2,2) (2,1,1) (1,1,1,1)

wt f) 2c¢+4R 2¢+3R 2c+2R 2c+2R 2¢+2R

wt f, 2c¢+6R 2¢+4R 2¢+4R 2¢+3R 2¢+2R

Conversely, the only monomials having the desired weights for a/l ¢, R
are (D < 3):

k 1 2 (1,1) 3 2,0 (1,1,1)

2

Monomials | x7, x2 2

3 2,2 4.3 2 2 2 3 .2 2 .3
XX3, X3 [ X3, X3X5, X5 | X5, X1 X3 | X1 X3, X3X3|X5, X3X3, XpX3, X3

defining the initial forms used above. For D = 4:

k (4 (3,1) (2,2) 2,1,1) (1,1,1,1)

2 2 2 2[.2 2 2
f1|X1X40 X3 [X1X40 Xy X3|X) X gy X1X3, X3|X1Xg, X3, XX3, X3|X3, Xy X3, XyXg, X3, X3X4, X

2 2 | 2 2 2 2 2
fa|X2X4s X3(X5Xg, X3 (X3, X3Xg, X5 |X2Xg, X3X4 X2, X3X3, X3Xg, X3, X3Xg, X4

and generic linear combinations of these monomials define a pencil of
quadrics with respective Segre symbol

| l 3,1 | 4 | 1,1 T 3.1 i 1,1,1;1

In each case, the intersection of the pencil of conics has components with
degrees ky, k,,..., k, (Xk,=4): all have a common point, and the base
locus has a unique singular point.

Analogous considerations apply for n=35. In this case, the Pfaffian
formulation yields the surface as the intersection of a smooth 5-dimen-
sional hypersurface with the Grassmannian cone in A*(V°). The aux-
iliary space V> also admits a C*-action, though its weights may be
half-integral. These weights (semiweights) are of the form %(c+/,R),
where the numbers /, are given by the table.

k 1 1 I I I
®) -1 1 3 5 7
1) -1 1 3 3 5
(32) -1 1 1 3 5
2.1 -1 1 1 3 3
3,1,1) 0 0 2 2 4
@111 0 0 2 2 2
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These determine the linear part of the skew-symmetric matrix (take it
generic subject to these weights) and hence the quadratic part of the
defining equations. In turn, these determine a curve of degree 5 in P*: it
is again a union of irreducible components with degrees k,.

It must be observed that the arbitrariness in the choice of the matrix is
appreciably greater than that in the defining equations: this does not
however affect the essential uniqueness of the equations given.

4. Quadratic forms
4.1. Milnor fibrations and smoothings

If X is a hypersurface singularity, i.e. defined as f~'(0) for f:(C"*',
0) — (C, 0), then Milnor [41] showed that the restriction of f to B.N
f I(D" — {0}) is a fibration for n << € < 1. This yields a deformation of
X to X,=B,Nf"!(¢) for 0 <|t| <m, which is smooth, and is known as
the Milnor fibre. Moreover, Milnor showed that X, has the homotopy
type of a bouquet of n-spheres. Thus the only nontrivial reduced ho-
mology group is H = H,(X,) which is free abelian; its rank is known as
the Milnor number and denoted by p. Intersection numbers define a
bilinear pairing, symmetric if n is even, (,): H X H— Z. The group H
with this pairing is known as the Milnor lattice. Since X, has trivial
normal bundle in C"*! it is parallelisable, so the quadratic form on H is
even.

We next seek to extend these results to other classes of singularities. In
the case of complete intersections, corresponding results were obtained
by Hamm [22]: there is a fibration (not quite as above) whose fibre has
all the properties listed above.

Now suppose X a normal surface singularity. A deformation of X is a
flat mapping 7:Y — C with 7~ !(0)= X; as above, we make this more
precise by embedding Y in C"*! with the singular point of X at the
origin, and then restricting to B, N7~ D, for sufficiently small €, n. We
say X deforms to X, =x"'¢; if X, is smooth, it is a smoothing of X. In
particular [30; Cor. 4.6] a singularity X of Kodaira type deforms to a
space (say ¥,) which has a single singularity of type I, with the same
degree D.

According to [48] if D <9, V, is smoothable; thus X is also. We can
thus define Milnor fibres for X. In general they are not unique. However,
if D=5 (so that X has codimension 3 in C°) the base space of the
semiuniversal deformation of X is smooth [64], so the X, form a
connected family and the Milnor lattice is unique. See also [63] for a
general reference on smoothings.

THEOREM 4.1.1: Let X be a normal surface singularity, X, a smoothing
obtained as above. Then:
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(1) X, has the homotopy type of a finite CW-complex of dimension < 2.
(ii) rtk H\(X,, Z)=0.
(iii) If X is Gorenstein, then X, is parallelisable.
(iv) If X is Kodaira singularity with D <5, then X, is I1-connected and
has the homotopy type of a bouquet of 2-spheres.

Proor: (i) follows from [1].

(ii) is a result due to Greuel and Steenbrink [21].

For a proof of (iii) see e.g. [56] combined with [13].

We are indebted to E. Looijenga for the following proof of (iv). We
shall first show that X, is 1-connected for a simple elliptic or a hyper-
bolic singularity X of grade 5. According to [37; III, (1.7) plus (2.8)] the
Milnor fibre of such a singularity is homeomorphic to a rational surface,
where an anti-canonical cycle of length 5 is removed:

Let us consider the simple elliptic case first. By the partial classification
of [37] a rational surface with an anti canonical cycle of rational curves,
each with self-intersection number —2, of length 5 can be obtained as
follows: Consider P2 and in P2 a cubic curve C with one node. Blow up
four points on the regular part of C, no three of which are collinear, to
get a Del Pezzo surface of degree five with a curve C. Then blow up
successively the singular point and four suitable infinitely near points,
such that the strict transform of C becomes the desired anti-canonical
cycle C. Call the resulting surface Y.

Now 7,(P2— C)=2Z/3 Z and the preimage of a generator is homo-
topic in Y — C to a loop lying on an exceptional curve of the first kind,
which meets exactly one component of C transversally in a single point,
and going around that point. Since this loop is contractible in ¥ — C,
Y — C is simply connected. For the hyperbolic singularities one has to
blow up further points on C. But the fundamental group of the comple-
ment of the strict transform can have at most more relations.

Now we consider the remaining Kodaira singularities. It was shown in
[30] that there is a deformation of X into a simple-elliptic singularity of
grade D via simultaneous resolution. This means that there is a 3-dimen-
sional manifold .# and a flat mapping &: .# — A to a complex disk,
such that the Stein factorisation

VSR TIN

gives a deformation of X, where the general fibre V, has a simple elliptic
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singularity x, of grade D and Z,=17"!(x,) is an elliptic curve with
selfintersection number —D in M, =& '(¢). Now this simple elliptic
singularity can be smoothed. Since V, is Stein, also V, deforms into a
smooth space X,. Choose a small ball around x, which intersects X, in a
Milnor fibre Y, of x,. Then we have a homeomorphism X,/Y,—» M,/Z,
(Y, and Z, collapsed to a point). Consider the following diagram:

= m(Y) > m(X,) - m(X, ¥)—>0

m(X,/Y,)

- W](Ml) —)WI(M/’ Z/) - 0.

As we saw above, m,(Y,) = 0. Therefore also =,(X,, Y,)=m(X,/Y,). If X
is not a hyperbolic singularity, then 7,(M,)= =,(M,)= m,(E)= 0, since
E is then homotopy equivalent with a bouquet of 2-spheres. This implies
7,(X,)=0. That X, has the homotopy type of a bouquet of pu spheres,
follows as in [41, Theorem 6.5]. O

4.2. The Milnor number

The Milnor number p was defined in section 4.1 as the second Betti
number of any smoothing. A formula was given by Laufer [34] for
hypersurface singularities and extended in [59] to all smoothable Goren-
stein singularities,

pw=Eu+2Z*+(12n-1).

Here, h is the genus. Singularities of Kodaira type are elliptic, so & =1
and the last term equals 11. We have already introduced D to denote
— Z?. Finally, Eu is the topological Euler characteristic of the minimal
resolution. We see by inspection that its values are as follows:

Type 1 IT 111 v I Iv* I* 1n*

n

Eu n(=D% | 2 3 3 n+6 8 9 10

Using these formulae we can thus attach a well-defined integer p to
any singularity of Kodaira type, p = 11 + Eu — D. In the hyperbolic case,
we have

p=11+D* - D.
Thus for dual singularities X and 8X, we have

p(X)+p(8Xx)=22.
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For the parameters p, of section 2.2 we had
Y p*=12+D*-D=p+1.

We now consider the other transforms of section 2.3. We find that 8,
v, and e all preserve D while

Eu(BX)=Eu(X) -1,
Eu(y,X)=Eu(X)+n+2,
Eu(eX) =12 — Eu( X).

Now the strange duality was defined on singularities of type II, III and
IV with D <3 by 8, = 87'88; thus (as expected)

p(X) +p(8,X)=24.

We can extend this to include singularities of type I, and D <4 by
augmenting B by the bijection vy, '. But for this to give the same formula
for p we need to substitute n = —1. Thus our extension of the strange
duality involves a “virtual” singularity n= —1 associated to each se-
quence I*(k,, k,, k;, k) with Xk, < 4.

For singularities of types II*, III* and IV* with D < 3 we can define
8;(X)=¢B7'8 Be '(X). Then Eu(8;X)=11—- D(X), so p(8;X)=pnX.
If we extend this by replacing Be”' by v, ! for type I* we find the
formula for u is correct if we take n=1.

4.3. Signatures and mixed Hodge structures

We recall that H = H,(X,): intersection numbers on X, induce a sym-
metric bilinear form on H. We can take a basis of H ® R for which the
matrix of this form is diagonal; then the numbers p,, u_ and p . of zero,
negative and positive eigenvalues give further invariants whose sum is p.
By a formula of Durfee [13] for complete intersections, extended to all
smoothable normal surface singularities by Steenbrink [59],

2h=potp,.

In our cases & = 1. Extending slightly the results of Arnol’d [2], it is easy
to see that
po=2, p,=0 for singularities of type I,

po=p,=1 for singularities of type I,(n > 1),
po=0, p,=2 for all other smoothable elliptic normal surface
singularities.

Following Steenbrink [58], we can be yet more precise in the hyper-
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surface case. These limiting homology groups have a canonical mixed
Hodge structure. To perceive the duality, one separates the unipotent
part of the monodromy (A = 1) and its orthogonal complement (A # 1).
If we label the Hodge numbers 4 {9 as follows:

(A=1) (A#1)

q 0 1 2 q 0 1 2
p=0 0 0 0 p=0 4 d e
p=1 0 a b p=1 d f d
p=2 0 b a p=2 e d c

(using the known identities) then, according to Steenbrink [58],
po=a+2b, p_=2d+f,
p,=a+2(c+d+e);

thus by Durfee’s formula,

h=a+b+c+d+e.

For the case of genus 1, just one of the numbers a, b, ¢, d and e is 1; the
others vanish. We find (rather disappointingly):

for type I, b=1,
fortypeI,(n>0), a=1,
in all other cases, e=1.

Indeed, whenever there is a good C* action (whether the genus is 1 or
higher) a=c=d=0.

For an isolated hypersurface singularity, whose equation f(x)=0 is
homogeneous of degree d (when x, has weight w,, w; <w, <w;), the
Jacobian algebra 0,/ ¢, satisfies Poincaré duality, with highest term the
Hessian of f, of weight 3d — 2(w; + w, + w;). The eigenvalues of the
residue matrix of f are obtained [6] from the degrees of basis monomials
of 0,/¢ by adding w, +w,+w,; and dividing by d. This yields u
rational numbers r,<r,< - <r, with r ,+r_,=3, and r=
d='(w; + wy + wy), r,=d”'(2w, + w, + w;). Since [57] eigenvalues r con-
tribute to p, or p_ according as the integer part [r] is odd or even (if
r € Z there is a contribution to p,), we deduce (since & = 1) that either
r; =1 (which occurs only for type I,) or r; <1 < r,. Conversely, w, + w,
+ w, < d < 2w; +w, + w, characterises the weights of weighted homoge-
neous elliptic hypersurface singularities (which must of course also satisfy
Arnold’s [3] necessary conditions for the existence of an isolated hyper-
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surface singularity). In addition to the cases of Kodaira type there are 15
more, which can be found in [53] or [35].

An analogous discussion applies for complete intersections, with the
governing inequality

0<(d, +d,)—(w, +w,+w; +w,) <minw,.

The other examples will be listed and further discussed in a subsequent
paper.

4.4. Discriminant quadratic forms

If X is a normal surface singularity, we can consider X as a compact
(contractible) neighbourhood of the singular point, whose interior is
Stein. Write L = 90X for the boundary of X: the link of the singularity.
This is a closed 3-manifold, thus there is a well-defined linking pairing

b:TH,(L)X TH,(L) > Q/Z,

where TH,(L) denotes the torsion subgroup of H,(L; Z). This pairing is
symmetric, and (if a framing is chosen on L) arises from a quadratic map
[65,43]

q:TH,(L) - Q/2Z.

More precisely, ¢ satisfies the following two conditions:

@) q(rx)=rig(x).

(i) g(x+y)—q(x)—q(y)=2b(x, y) (mod 2Z) for r€Z and x,
y€TH(L).

We shall refer to g as the discriminant quadratic form.

To calculate b and ¢ we need an expression for L as the boundary of
a compact 4-manifold. We have two alternative procedures here: we can
use a smoothing of X, or a resolution.

Suppose in either case L =0M and (for simplicity) that H,(M)=
H,(M)=0, so that H= H,(M) is free abelian. Suppose also that H,(L)
is finite (the argument can easily be generalised to allow H,(L) infinite.
It is also generalised in [39] to the case where H,(M ) has torsion). Then
the exact sequence

0 Hy(M)—* Hy,(M, L)>* H(L)—>0

determines H,(L) as the cokernel of ¢, which is the map from H,(M) to
its dual induced by the intersection pairing on H,(M). Now for x,
y € H,(L) choose u, v with ¢ (u)=x, Y(v)=y,and rEN, w€ H,(M)
with ¢(w)=ru. Then b(x, y)=r"w, v) (mod Z). However, the
natural conventions of [39] give the opposite sign here.
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If M is parallelisable, we also have
q(x)=r"%w, u) (mod 2Z).

In general this is not well defined and we need a cycle z € H,(M)
representing a (Poincaré) dual of the Stiefel class w,(M). If M has a
complex structure (as in the cases above), take z congruent mod 2 to a
representative of a dual of ¢,(M). The choice of z determines a framing
on M —|z| and hence on L. Then

g(x)={(z, u) +r Yw, u) (mod 2Z).

We find that if M is a smoothing of X, and X is Gorenstein, M is
parallelisable (by Theorem 4.1.1), so ¢ is the quadratic form defined by
intersection numbers on H,(M). If L comes from a resolution this is not
the case: we take z as the fundamental cycle (see section 1.3) or, more
conveniently, as the sum of components of odd multiplicity in Z.

If H (L) has order N, the Gauss sum

Y {em: xe H (L)}

is equal to VN e'™/* for some integer s = s(g) defined mod 8. When M is
parallelisable, s is the signature o(M ) of the quadratic form on M. In
general,

s(qg)=0(M)—(zNz) (mod 8).

This result is essentially due to Van der Blij [62]. Two abstract quadratic
maps ¢,, 4,: G = Q/2Z, where G is a finite abelian group, satisfying the
conditions (i), (ii) at the beginning of this section with isomorphic
bilinear forms b,, b, are themselves isomorphic if and only if s(gq,)=
s(q,) (mod 8) [47; 1.11.3].

We use this to determine s(g) for Kodaira singularities. Take L to be
given by a minimal good resolution. Then the intersection form is
negative definite, so o equals minus the rank. For types I*, II*, III* and
IV* this rank is Eu — 1. Thus

s(q)=1—Eu+ D (mod 8)=12 — p.
For types II, 111, and IV this rank is 4, and
—Z =k, + k,+k;,
sO

s(q)=k +ky+k,—4=20—p.
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For type I, (n > 0), the rank of H, for a resolution is the length n = D*
of the sequence. Thus

s(q)=D—D*=11—p.

Results including the above have also been obtained by Looijenga and
Wahl [39].
We shall also need the following:

LEMMA 4.4.1: Let X be a Kodaira singularity. Then TH,(L) can be
generated by 2 elements, except for type 1 where 3 elements will suffice.

PROOF: We calculate this group using a resolution M of X. If C, are the
components of the exceptional set, our group is presented by a square
N X N matrix whose rows and columns correspond to the C,. It is enough
to find an (N — 2) X (N — 2) minor with determinant +1, as we can then
reduce the matrix by elementary operations to the direct sum of the
identity matrix /,,_, and a 2 X 2 matrix.

First consider the matrix of a chain

b, by b,
o o —e,
namely,
-b, 1 0
1
. . ' 1
0 1 -5

If we delete the first row and the last column, we obtain an upper
triangular matrix, with determinant 1.

For a graph of type I,,, IT* or III* we can delete one vertex to obtain a
chain, so the result follows. For type I* we can delete two vertices to
obtain a chain. For type II, III or IV a minimal good resolution yields a
graph

Here we obtain a nonsingular minor by deleting rows B, and B, and



32 W. Ebeling and C.T.C. Wall [30]

columns B, and B,. For type IV*,

we delete rows 1 and 4 and columns S5and 7. O

Any nonsingular quadratic form on a finite group can [47] be ex-
pressed, up to isomorphism, as an (orthogonal) direct sum of forms of the
following basic types:

(1) G=2Z/p*Z with generator x ( p prime, k > 1); g(x)=up~* with
(v, p)=1.

Notation w¢

ks Where

€= (;) € {+1} (Legendre symbol) if p is odd,
e=u(mod8), e€{+l, +5} if p=2
(if k£ =1, this depends only on € mod 4).
(2) G=7/2*7 & /27 with generators x, y (k>1); q(x)=q(y)
and equal to (a) 0 or (b) 2' %, b(x, y)=2"%
Notation u, in case (a), v, in case (b) (see also [7]). We shall use this
notation in the tables. Such a decomposition is not unique (even up to

isomorphism): a set of relations is given in [47, 1.8.2].
The signature of these types is as follows:

s(wi)=k*(1-p)+2(e—1)k (mod 8) (p odd),

+1 (mod8) accordingase= +1 (mod4) (k odd),
€ (mod 8) (k even)

s(ui)=|

s(u,)=0,  s(v,)=4k (mod 8).

For the systematic description of series we augment this notation by
the discriminant quadratic forms of simple singularities:

94, =Z/(k+1)Z, generator x, g(x) = (k+2)/(k+1),

u;, k=0 (mod 8),
vy, k=4 (mod 8),
wii+ws,, e= 11, k= —2¢ (mod 8),
wya, €= tlor +5, k= —e (mod 8).

dp, =
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Thus

§(44)= —k (mod ),

s(gp, )= —k (mod 8).

Indeed in these cases a smoothing has even, negative definite quadratic
form, with rank k.

4.5. Synthesis of the Milnor lattice

We now need some results from the theory of quadratic forms: these may
all be found in [47].

If we are given a free abelian group H and a symmetric bilinear
pairing of H with itself to Z, H is called a lattice. If, for each x € H, (x,
x) is even, then H is an even lattice. We can construct invariants of
lattices as follows:

First, tensor with R. The form can then be diagonalised. Write ¢_, ¢,
t_ for the numbers of diagonal terms which are <0 (resp. =0, > 0). As
t, does not interact with the other invariants, we usually suppose it zero.

Next let H* CcH ® Q denote the subgroup dual to H. Then
G=H*/H is a finite group, and the pairing induces a non-singular
symmetric bilinear map G X G — Q/Z. Moreover, if H is even, the
composite G H* - Q - Q/2Z is also well defined, so we have a
discriminant quadratic form g,,. (This is essentially a special case of the
construction in section 4.4).

For G a finite abelian group, we denote by /(G) the minimum number
of generators of G.

We now enquire to what extent these invariants determine H. We
have:

(A) ([47,1.10.2])) An even lattice H with invariants ¢, ¢_ and (G, q)
exists provided that s(g)=t¢,—¢_(mod8), ¢, >0, t_>0, ¢t +¢_>I(G).

(B) ([47, 1.9.4)) The invariants ¢, ¢t_ and (G, ¢) determine the genus
of H.

(C) (|47,1.13.3])) The invariants determine H up to isomorphism
provided that 1, >1, t_>1and 7, +¢t_> 2+ [(G).

Now according to section 4.1, for any Kodaira singularity with D <9
we have smoothings { X,}, each determining a Milnor lattice, which is
unique for D < 5. Moreover, we saw in section 4.2 that we can define the
rank p of H in all cases (even for D> 9) and in section 4.3 how to
determine p, and p,, and hence p_. In section 4.4 we have shown how
to calculate the discriminant quadratic form (G, ¢), in the case when
H,(X,; Z)=0 (which holds for D <5). We now apply these results to
reconstruct H.

Recall that: for type I, p,=0, uo=2; fortype I, (n>0), p,=py=
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1; otherwise, u, =2, po=0 (so in all cases p_=pu — 2). Let H be the
nondegenerate lattice obtained from H by factoring out the radical
(= subspace orthogonal to H): then H determines H, as p, is known.
Now

2-p (typelp),
nu+_l"-= 3—1““ (type In’ n>0)’
4 —p  (otherwise).

Our calculation of s(g) in section 4.4 now shows that, in all cases,

s(q)=p,—p_ (mod8).

To apply (C), we recall that by section 4.4, /(G) <2 (type I}: < 3). Thus
H (and hence H) is determined up to isomorphism provided p, > 1 (true
in all cases except type 1), p_>1, and p,+ pu_> 4 (5) (which as p, <2,
implies the condition p_> 2 (3)).

Next, we seek to show that H=K & U, where U is a hyperbolic
plane, with matrix ()}). If this is so, the invariants for K are obtained
from those of H by diminishing each of 7, and 7_ by 1. Now applying
(A) we see that a suitable lattice K exists provided that

pe=>1,  p>1,  p+p >1(G)+2,

giving the same conditions again. Moreover, since K @ U and H have
the same invariants, they are isomorphic by (C).
Further, the lattice K is unique if

pe=2, po=2, pot+u_>1(G)+4.
Let us summarise these results.

PROPOSITION 4.5.1: Exclude type 1,. Then for a Kodaira singularity with
p—po=4 (I¥: >5), the parameters p. ., po, p_ and (G, q) determine a
lattice H unique up to isomorphism. H is of the form K & U for some
lattice K.

If we exclude also type 1, and suppose p > 6 (7), then K is unique up to
isomorphism.

The lattice H determined above is isomorphic to the lattice H,( X,) for
any smoothing with H,(X,; Z)=0.

As p=11 - D + Eu, all these results apply to all cases D < 7, since
then p > 4 + Eu: if we exclude type I, Eu>1 and p, < 1; if we exclude
all I, then Eu > 2(I*: Eu > 3).
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4.6. Obstructions to smoothing

We observed in section 4.1 that all Kodaira singularities with D < 9 are
known to be smoothable, and this includes those in which we are
principally interested.

As to the rest, by Theorem 4.1.1 any smoothing X, has H,(X,; R) =0,
and the numbers p,, p_ and p, of the intersection form on H,(X,; R)
are calculated in sections 4.2 and 4.3. This leads at once to the principal
necessary condition for existence of a smoothing: namely, that p_> 0. In
the hyperbolic case, this yields 9+ Lk* > Yk,; and in the other cases, it
reduces to 9 + Eu > D.

One might expect to obtain stronger necessary conditions from lattice
considerations. For smoothings which satisfy the additional condition
H,(X,; Z)=0, the Milnor lattice must be an even lattice H with
invariants p_, u_ and (G, g). It thus follows that

s(q)=p,—p_(mod8),
p,.=>0, p_>0 and p,+p_>I(G).

However, the first and second conditions are always satisfied, and in the
cases u, = 2, the third implies the fourth (except for those cases of type
I* where /(G)=3). Thus in most cases, we obtain no more than the
simple condition p_> 0 above; even in the others, we can only strengthen
it to p_> 1. A lattice-theoretic analysis applying to the general case is
given in [39].

The singularities of types II, III and IV are often called triangle
singularities. It was shown by Looijenga [38] and Pinkham [51] that all
cases with D < 9 + Eu admit simply-connected smoothings, except for

D, ¢, = 111(2, 10),
Dy ,0=1V(3,3,7),
D, 1010 = 111(6, 6).
Of these, only the last has no smoothings at all.
4.7. Notes on the calculation of discriminant quadratic forms

As we observed in section 4.4 these can be easily calculated from the
resolution for all Kodaira singularities. However, some special features
can be observed without doing the numerical work.

For hyperbolic singularities, the resolution forms a cycle; this con-
tributes an element of infinite order in ¥= H,(L). However, the torsion
subgroup of H,(L) can be obtained from the quadratic from defined by
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the exceptional divisor, or alternatively from the matrix A4 given earlier:
either leads to an inductive formula for the order of this group. Since
dual singularities can be “attached” to form an Inoue-Hirzebruch surface,
the links L and L* must be diffeomorphic. Hence there is an isomor-
phism of ¢ on ¢* taking q to —qg*.

For a triangle singularity X we can use the resolution of X given by
three smooth rational curves with a single common point. Now this has
the same parameters as a resolution for the hyperbolic singularity SX
(with exceptional set a triangle), except that the components instead of
forming a cycle have a single common point. This does not affect the
calculation of the discriminant quadratic form, which is thus the same for
X and BX.

We have already given in section 1.2 the order of G in most cases;
there remains the case 1*(k,, k,, k;, k,). The order here is a linear
function of n; the constant term is given by the value at n=0; the
coefficient of n turns out to be

(kyky+ky+ky)(koky+ky+ky).

We shall also need the discriminant quadratic forms corresponding to
the lattices with the graphs of Schemas 4,5. As usual, such a graph
defines a lattice as follows. The vertices correspond to the elements of a
basis of the lattice and the matrix of the bilinear form with respect to this
basis is determined by the graph: the diagonal terms are —2 and the
remaining terms O unless the corresponding nodes are joined by an edge,
when we have 1.

Here we use a device first proposed by Brieskorn [7]. We augment the
graph by joining each vertex of valence 1 to a new vertex, which will give
a new basis vector with diagonal entry —1 in the extended matrix. We

q
A TN
P / e —a—e
r A\ N
T —0o --- —o—o—¢
pP»>q,Tr
\ et ———o
~ Dy
r

P q
A A
I —— s \ / cesr —o—e
D,q,r,s
v b
r S

Schema 4.
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Q
P»3,r,s,t

Schema S.

can now see inductively that the extended quadratic forms are (odd)
unimodular, essentially using the fact, that “blowing down ( — 1)-vertices”
does not alter the discriminant. The orthogonal complements of the
original lattices have bases {a,,..., a,}, where / = 3, 4, 5 respectively, as
follows. We describe a, by assigning to the vertex of the extended graph
the coefficient of the corresponding basis vector, writing a, as a linear
combination in the extended basis. Then the vector a, is described in the
diagrams of Schemas 6,7. The other basis vectors are defined analo-
gously, where the arms of the graphs interchange their roles. The bilinear
form with respect to these bases is described by the following matrices:

1—p 1 . -» 1 0 1
1 1-¢ 1 |, Lo=¢ 1 0p
1 1 1—» 0 1 —r 1
1 0 1 -5

-1-p 1 0 0 1

1 ~1-¢ 1 0 0

0 1 -1-=r 1 0 >

0 0 1 -1-3 1

1 0 0 1 -1-—1t

which are the intersection matrices of the (minimal good) resolution
graphs of the hyperbolic singularities

I,(r—4) (p=2,9=3,r>6),
I,(¢—2,r-2) (p=2,r=q>4,r>4),
L(p-1,9-1,r-1) (r=qg=p=3,r>3),
I,(p,q,r,s) (s2r>q>p>2,5>2),

I(p+1l,q+1, r+1,s+1,t+1) (t=2s=>r=>gq=>p>1,1t>1).

If we have a primitive embedding of a lattice H in an (odd) unimodular
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Schema 6.

Schema 7.

lattice, then [47] the discriminant bilinear form of the orthogonal comple-
ment H* of H is the negative of the dicriminant bilinear form of H.
Thus we can compute the discriminant bilinear forms of the original
lattices from the above matrices. By the results of sections 4.4 and 4.5 we
can thus also determine the discriminant quadratic forms.

From the results of section 4.5 and the identification of the discrimi-
nant quadratic forms of X and BX we deduce:

PROPOSITION 4.7.1.: If X is a triangle singularity with D <5 then there is
an even lattice K, unique up to isomorphism, such that the Milnor lattice of
Xis K @ U and that of BX is K & (0).

As t,=1, 1,=0 for K, we shall refer to K as the associated hyper-
bolic lattice. As K is determined by ., 7_ and the discriminant

quadratic form, we can identify K as follows. We have

Dual to: Hyperbolic lattice K:
Ii(by, by, by, by, bs) Ry 14, 1.6,- 1= 16515
1,(by, by, by, b,) Iy, b, .55640

I;(by, by, b3) Ty i1b,41.6,+15

1, (b, b,) Ty p,+2.,+25

L (b)) Tysb,+a
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A more direct construction of the graphs giving these lattices is given by
Looijenga [37].

The parameters on the right-hand side defining the graphs coincide
with the parameters p* associated to the hyperbolic singularity 8X in
sections 2.2 and 3.2. If X is a triangle singularity with D < 3, they are
often known as Gabrielov numbers (see below).

Indeed, one can interpret the above imbedding of the lattice K in a
unimodular lattice N geometrically using Looijenga’s construction.
Namely following [37], the Milnor fibre of the hyperbolic singularity 8.X
is homeomorphic to a rational surface with homology lattice N, where a
cycle of rational curves with one of the above intersection matrices is
removed.

5. The Milnor lattice
5.1. Dynkin diagrams

We have seen in sections 4.1 and 4.5 how to associate a Milnor lattice to
each Kodaira singularity with D <7, and that each such lattice is
uniquely of the form K & (0) (hyperbolic cases) or K & U (otherwise),
where K has signature (1, p—2) or (1, p— 3) and is called the hyper-
bolic sublattice.

Now it turns out that if D <5 each such lattice K has a basis {e;}
such that, for each i, j,

(e,e)=-2, (e,e)=00r1 ifi#}.

As is customary, we represent this by a graph, called the Dynkin
diagram, with a vertex v, for each basis vector e,, and an edge joining
v,v, whenever (e,, e,) = 1. The basis can be taken such that this diagram
is connected and contains no vertex of valence > 3. Thus the matrix of
the bilinear form with respect to this basis, multiplied by —1, is an
indecomposable symmetric Cartan matrix of negative type in the sense of
Kac [24], such that the corresponding Dynkin diagram has no multiple
edges, and no vertices of valence > 3.

For the hyperbolic and triangle singularities, an appropriate diagram
was constructed in the preceding section. Alternatives for some of these,
and diagrams for the remaining cases, are displayed in Table 4.

In the hypersurface case, each singularity also determines a class of
distinguished bases of vanishing cycles in the lattice. In these cases the
diagrams of Table 4 can be extended to Dynkin diagrams of dis-
tinguished bases of vanishing cycles as follows: For the hyperbolic
singularities let v, be the vertex of valence 3 and join v, and the adjacent
vertices with a new vertex v,,, as in Fig. 1. For the corresponding
hypersurface singularities of type II, III, IV one has to join v,,, with
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a+b+d+e-2

a+b+c+d+e-u

~
a+b+c+d+e-5 a+b+d+e-1

(o}

FIGURE 1.

another vertex v,,, as in Fig. 1. This yields the diagrams of Gabrielov
[20a]. Recall that these diagrams led to the original discovery of the
strange duality. In the other hypersurface cases, let v, be the left vertex of
valence 3 and apply the same construction. But now v,,, has to be
joined by a dotted edge to another vertex v,, such that the resulting
graph fits into the pattern of Fig. 1. Here a, b, ¢ > 2, d, e> 1, k, A € {0,
1} and « =0 (1) mans that there is no edge (is an edge) between v, ,_,
and v, 4, (cf. [18]).

In the nonhypersurface but nonhyperbolic complete intersection case
we claim that the vertices of the diagrams of Table 4 still correspond to
vanishing cycles in the Milnor lattice. Here we argue as follows. Pinkham
[50] has shown, that the monodromy groups of the complete intersection
singularities of triangular type II, III, IV can be characterized arithmeti-
cally. The first author has extended Pinkham’s result to large classes of
hypersurface singularities, including all nonhyperbolic Kodaira singulari-
ties with D <3 [16,17], and very recently to all complete intersection
singularities, which deform into one of the above singularities [17, Note
added in proof; 19], thus to all nonhyperbolic Kodaira singularities with
D < 4 (see section 5.3). But from the description of the monodromy
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group one can derive that the set of vanishing cycles can also be
described in purely lattice-theoretic terms: The vanishing cycles are
exactly the minimal vectors x in H with (x, x)= —2, such that there
exists a y € H with (x, y)=1. But these conditions are satisfied for the
elements corresponding to the vertices of the diagrams of Table 4.
Moreover, if one extends the diagrams as for the hypersurface singulari-
ties of type II, III, IV, the corresponding bases are bases of vanishing
cycles, such that (by [19, Theorem 3.2]) the monodromy groups are
generated by the corresponding reflections. We mention that for the 8
complete intersection singularities of triangular type, the diagrams of
Table 4 were already given by Pinkham [50].

5.2. The strange duality

We observed in section 4.2 that extending the strange duality from D < 3
to D < 4 involved a ““virtual” singularity » = —1 in each series I*(k,, k,,
ky, k,). To this we can associate a lattice in the following way.

Let H (n € N) be the Milnor lattice associated to 1*(k,, k,, ki,
k,) with Xk, < 5. Then H has rank p® + n and discriminant A© + bn
for certain integers p®, A®, b which are listed above. Moreover, the
resolution graphs determine a primitive embedding of H") in H"*V for
each n. Let J' be the orthogonal complement, which has rank 1 and is
therefore determined by its discriminant disc J ", But

disc J" =p(n)

for a polynomial p which depends on the series. Let J(~! be the lattice
of rank 1 with disc /(=P = p(—1). One can show in each case, using [47,
1.15.1], that there is a unique primitive sublattice H™" of H® of rank
p©@—1 and discriminant A% -5 and (¢,, t,)=(0, 2), such that the
orthogonal complement is equal to J~ V. The finite quadratic form
corresponding to H™1 is given by setting n = —1 in Table 3. Again we
can uniquely decompose

H V=KD e U,

and the hyperbolic lattice K~ has again a basis as above. One gets a
Dynkin diagram with respect to such a basis, if one sets n = —1 in Table
4 in the corresponding entry. In general one can take any sequence of
diagrams of { K"}, _,, , which induces the right embeddings of H‘"
in H"*D and take the diagram for n= —1, if it is defined. But now
these lattices K~ coincide with the hyperbolic lattices associated with
v, ' X=1,(k;+2, k,+2, ky+2, k,+2). Thus the lattice duality ()
already established for the hyperbolic singularities D < 4, D* <4 yields
a duality (8,) here, with the newly constructed lattices K~V added to
the list of lattices of the triangle singularities. Let us define the Dolgachev
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numbers of the “virtual” singularity n = —1 in a series I*(k,, k,, ki,
k,) tobe p=2+k, 1<i<4, and the Gabrielov numbers to be the
Gabrielov numbers p* of the lattice K~ (cf. section 4.7). Then, as in

the original strange duality, one makes the following observation (see
Tables 2 and 4):

THEOREM 5.2.1: With respect to the extended duality (8,), the Dolgachev
numbers of a singularity coincide with the Gabrielov numbers of the dual
singularity.

Moreover, one has the following fact: Let K be the hyperbolic
sublattice associated to the Milnor lattice of a singularity of type I, II,
IIL, IV or to H™Y for a series of singularities of type I* and let K* be
the corresponding dual lattice. Then by [47,1.14.4] there exists a unique
primitive embedding of K @ U into the unimodular lattice

EEeE,eUeUeU,

which is the homology lattice of a K-3 surface, and the orthogonal
complement is just K*. For the exceptional unimodular singularities,
Pinkham [43] has given a geometric realization of this embedding and
conjectured the uniqueness.

Another feature of the original strange duality observed by Arnold is
that the Coxeter numbers of dual singularities coincide. The Coxeter
number of a singularity was originally defined by Arnold using integrals
of a corresponding oscillating function [2,4]. For the 14 hypersurface
triangle singularities it is a negative integer — N; its values can be found
in [4]. In this case there are also two other interpretations of the absolute
value N of this number. It coincides with the degree d of a weighted
homogeneous equation defining the singularity (see section 3.4). In
section 4.3 we defined p rational numbers r, 1<i<p, such that
A= exp(Zm/—*l r,) are the eigenvalues of the classical monodromy oper-
ator. Then N is also the least common multiple of the denominators of
these numbers r,.

We use these two interpretations to extend the definition of the
Coxeter number to complete intersection triangle singularities on one
hand, and to the “ virtual” singularities of series of bimodal hypersurface
singularities on the other hand.

For a complete intersection singularity which is given by weighted
homogeneous equations f; and f, of degree d, and d,, we define N to
be the least common multiple of d, and d,.

On the other hand, consider a series of singularities I*(k,, k,, k;, k4)
with D < 3. We associated above to the “virtual” singularity n= —1
certain Dynkin diagrams of the hyperbolic sublattice by setting n = —1
in a sequence of diagrams for n> 0. Now extend these diagrams to
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Dynkin diagrams of distinguished bases of vanishing cycles as explained
in section 5.1. Let C'" be the product of the reflections corresponding to
the basis elements in the given order in a diagram for I*(k,, k,, ks, k,).
Note that, for n > 0, C" is just the monodromy operator. Now set again
n=—1and let A,..., A, n be the eigenvalues of C D, which can be
computed using the general formula for the characteristic polynomial
given in [18]. They are again of the form A, = exp(2m/—1 r,) for certain
rational numbers r, determined modulo Z. Then define N to be the least
common multiple of the denominators of these numbers 7. By the
remark following Theorem 5.4.1. below, N does not depend on the
chosen Dynkin diagram of an entry of Table 4; one can also take the
diagram defined by the Gabrielov numbers and extend it as in the
hypersurface case. For each series, the value of N can be found in the
tables of [20b], where one has to set p = —1 in the column corresponding
to N (but note that in [20b] N is defined to be some common multiple of
the denominators, not necessarily the least common multiple).
Now we observe the following fact:

THEOREM 5.2.2: Given any of the 8 triangle singularities with D = 4, its
Coxeter number N coincides with the Coxeter number N of the correspond-
ing dual “virtual” singularity of a bimodal series under our extended duality

(8,)

Using the notation of Table 2, we tabulate for each triangle singularity
with D =4 the values of d,, d,, and N, and its dual:

Notation Jg Jio Jh Ly, Ly, Kio K1, M,
d,,d, 16,18 12,14 10,12 11,12 9,10 10,12 8,10 8,9
N 144 84 60 132 90 60 40 72
Dual E;_, Zy 0> Wlil Sf—l Wi -1 Si-1 Ui

Now let us regard the duality &, defined in section 4.2 which concerns
the right part of the tables. For g =1 we have a symmetry around the
diagonal starting in the upper right corner of the table. Here the Milnor
lattices of dual singularities are not complementary but isomorphic.
(Concerning column I, and the last row, this statement is only true for
the hyperbolic sublattices.) For g=2, we have to replace the right
column of the double column I} by the corresponding column for I%
(this does not change the discriminant). Then one has a symmetry of part
of the diagram, but not in the principal diagonal. Again the quadratic
forms of dual singularities are isomorphic. In particular we get examples
of singularities of grade 4 and 5 which have the same quadratic forms as
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hypersurface singularities. But whenever defined, the Coxeter numbers of
dual singularities are not equal.

In Section 5.4 we shall construct an extension of the table for g=2 on
the right by two additional columns (for lattices corresponding to “ vir-
tual” singularities). In the new larger table (Table 5) the symmetry
described above can be extended. One can prolong the axis of symmetry
to the first row to get on both sides isomorphic lattices, because up to the
last element the first new column corresponds exactly to the right part of
the first row. Moreover, one can extend the axis to the last row. Then the
Milnor numbers and discriminants of the symmetric pairs of the last row
and the corresponding column satisfy

p—pr=d—d* -1,
with no replacement in the columns IF.
5.3. Adjacencies
We first note a slight extension of a result standard for hypersurfaces.

PROPOSITION 5.3.1: Let (X, x) and (Y, y) be Kodaira singularities, and
suppose (X, x) deforms into (Y, y). Then there exists a primitive
embedding of the Milnor lattice of (Y, y) into that of (X, x).

PrOOF: In the semiuniversal deformation of (X, x), choose a small ball
around y € Y which intersects a smooth fibre X’ in a Milnor fibre Y’ of
(Y, y). The proposition then follows from the exact homology sequence
of the pair (X', Y’), using H, (X', Y)= H,(Y, y), H,(Y")= 0 and the fact
that Y can be chosen to be Stein. O

Now according to Laufer [36, Theorem 4.13] we have, for each series
of singularities, adjacency relations with constant grade forming (a
subdiagram of) the following diagram:

Lel, < I <1y <1y « 1, « Iy <
NN N N N N N N
Helll <1V «IF «IF «If «If <I%
N N N
IV¥ « III* « IT*

More precisely: for each k; > 1, we have the entire diagram (other k,,
where needed, are taken as 0; k¥ = n is determined uniquely for each I,).
For k, > k, > 1 (and other k, = 0), we have to omit the entries I,, II and
IT*. There are two choices for I,, Is and I* (n>1): III* (resp. IV*)
deforms to each of the alternative I% (resp. IF); I¥(k, k’, 0, 0) deforms to
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each of the I, while If(k, 0, k', 0) deforms only to that with k* = (4, 1)
(but not to the one with k* =(3, 2)), and specialisations of the I,
proceed by diminishing one of the k¥ by 1.

For g =3 the diagram reduces to

LI, I .-

NONOKN

IVelf «IF « .-
N
Iv*

but the cases corresponding to the entries can be more numerous.

We next consider these adjacencies from a different viewpoint: this
will show that the singularities of type I play for lattices of types IV*,
IIT*, IT* a role analogous to that of 1, for lattices of type I*.

5.4. Transforms

Let S be the Dynkin diagram corresponding to an indecomposable
symmetric Cartan matrix. We assume that S has no multiple edges and
no vertices of valence > 3. We associate a weighted graph S’ to S as
follows: Replace each subgraph

o —eo— -+ —0—0, [>2

vy U2 V-1 v

where v, is a vertex of valence 2 for i # 1, / and of valence # 2 for i =1,
/, by

l
*—=0.

We call the graph S’, which can now have loops and multiple edges, the
scheme of S, the weights of S’ the weights of S and the underlying
unweighted graph the shape of S.

We call a weight of S” an outer weight, if one of the vertices of the
corresponding edge of S’ has valence 1, otherwise it is called an inner
weight. Let S, and S, be two such graphs of the same shape with weights
w®, .., w D respectively w?,...,w? and let I be a subset of the index
set {1,...,r}. We define

S, < S, (with respectto 1)

if and only if w¥=w? for i & I, ¥ <w? for i € I. The number

d(Sl’ SZ) = Z(WI(Z)— w’(l))
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is called the distance of S, and S,.

We define an operation on graphs, which produces new graphs
defining the same quadratic form. Let S be a graph as above. Let Q be a
subgraph of S, which is an extended Dynkin diagram in the classical
sense, that is, an extended A,-, D,-, E-, E,- or E;-diagram and let v, be
a vertex of S which is neither contained in Q nor connected by an edge
to a vertex of Q. We shall define a transformation 7, , depending on the
choice of Q and v, and only defined for special choices of Q and v, as
follows. The lattice corresponding to Q contains a distinguished isotropic
vector w; w is the sum of the longest root of the corresponding finite
root system and the additional vector [8]. Thus the coefficients of w are
exactly the coefficients of the fundamental cycle associated to a resolu-
tion graph, which corresponds to the extended Dynkin diagram Q (cf.
section 1.3). Let

eV=w—e,, e=e, fori#k.
Then the new basis {e"} satisfies again (e!", e{"’)= —2, since (w,

e.)=(w, w)=0.1If (e[, )€ {0, 1} for i # k and the new graph S"
corresponding to {e{"} is connected, then we define

TQ.k(S) =850,
If S? is not connected or if there exists an i # k with |(ef”, e")|>1,
then 7, , is not defined. If finally for some i (ef", e!")= —1, we shall
continue transforming as follows. Choose j, with (e{", e{")= —1 and
let

e = o) —e®

D, eP=e fori#k.

1

If now |(e{?, e/?)|> 1 for some i or (e\?, e?)= —1 for e € Q, then
T« is again not defined. If (¢[”, /)= —1 for e, & Q we set again
e) =) —e?, eP=e® fori+k,

and continue in this way until we reach at step N one of the following
situations:

(a) [(el™, eM)|>1 for some i # k,

(b) (ef™), eM)= —1 for some i # k with eV € Q,

() (efM, eM)e (0, 1} for all i # k.
In cases (a) and (b) 7, , is not defined. In case (c) the matrix correspond-
ing to {e/"’} is again a Cartanmatrix and the corresponding graph S’
has no multiple edges. We define in this case

"'Q.k(S): SN,
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One easily checks that there is such an N, at which the process stops, and
that 7, , does not depend on the choice of the sequence j;, j,,..., Jy, if
it is defined.

EXAMPLE:
T
(e o e e o Bk
© =) s
Q Yk
Schema 8.

The graphs obtained from S by these transformations or sequences of
these transformations with same Q are called the transforms of S. The
transforms of S which are different from S are called the proper
transforms.

Using these definitions we have the following characterisation:

THEOREM 5.4.1: The hyperbolic sublattices of the singularities of type 11, 111
and IV with D <5 are exactly those given by the graphs of the types T,
II and Q

pP.q.r.s p.q.r.s.t>
transforms.

.q.r’
which define hyperbolic lattices and have no proper

Let & be the set of these graphs. Let Z‘“) be the set of all graphs R
of the types T2.3.r’ TZ,q.r (q”>4), 7.‘p.q,r (P’q?r> 3)’ Hp.q.r.s’ Qp.q.r.x.l
such that S < R with respect to p, q, r, s, t for all S €% and

d=min{d(S, R)|Se¥}.

The graphs of #" are listed in column I, & I* in Table 4. They
correspond to the hyperbolic sublattices of the singularities of type I,
resp. to the lattices K(~1. The graphs of #® are listed in the middle
columns. They correspond to the hyperbolic sublattices of the singulari-
ties of type I. All these graphs do have transforms. They are listed in
Table 4 in the same entries (setting n = —1 in column I, & I*).

REMARK: There are certain groups of transformations of Dynkin di-
agrams, which preserve the properties of being the diagram of a (weakly)
distinguished basis. Let Z° resp. Z* c Z° be this group with respect to
weakly distinguished resp. distinguished bases as defined in [18]. Then in
general 7, , & Z 0 since Z° leaves the group generated by the reflections
corresponding to the basis elements invariant. But if one extends in the
hypersurface case the diagrams of column I, & I} (n= —1) and I by
two additional vertices to diagrams in the canonical form with respect to
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distinguished bases as described in section 5.1, then the corresponding
diagrams in the same entry are equivalent under Z*, as can be shown.

The graphs of type IT and € have a distinguished Ds- resp. A,-sub-
graph. We now consider the order relation < between graphs with
respect to those inner weights which in the cases IT and £ do not belong
to these subgraphs. These are the underlined weights in Table 4. We then
have the following characterisation of the remaining lattices:

THEOREM 5.4.2: (a) The hyperbolic sublattices of the singularities of type 1*
are exactly those given by graphs R > S, where S is a transform of the
graph of BV associated to the singularity under the bijection v, of section
2.3.

(b) The hyperbolic sublattices of the singularities of type I¥, IV*, III*
and 11* of a row of Table 4 are those given by the graphs R satisfying the
following conditions:

(i) R> S, where S is a transform of a graph of B® of the same row.

(ii) R defines a hyperbolic lattice.

(i) For each chain R, <R, < --- <R, =R with d(R,, R, |)=1
and R, minimal, there exists an i # k such that R, is a proper transform of
a graph of B> of the same row.

(iv) A transform of each graph of B'® of the corresponding row is
reached by (iii).

We have listed all such graphs in Table 4. To each relation R, <R,
between such graphs corresponds an adjacency (achieved over the simul-
taneous-blow-down parameter space [36]) between the corresponding
singularities. There are still some classes of graphs which satisfy only the
conditions (i), (ii) and (iii) and not (iv) of Theorem 5.4.2. In each row of
Table 4 also the graphs which satisfy these conditions and belong to
singularities of the same row are given. But in the table for g =2 these
are not all the graphs satisfying (i) to (iii): There are additional graphs
and one can extend Table 4 (g = 2) according to these additional graphs.
The result is shown in Table 5(c). It turns out that these graphs define
lattices, which can be identified with the hyperbolic sublattices of certain
Kodaira singularities. The names of these singularities, Milnor numbers
and discriminants are tabulated in Table 5(a), the discriminant quadratic
forms in Table 5(b). Table 5(a) resp. 5(b) are the corresponding exten-
sions of Table 2 resp. 3. Concerning these singularities, there are now
relations R, < R, in Table 5(c), which do not correspond to adjacency
relations.

5.5. Fundamental vectors

Here we give another characterisation of the hyperbolic sublattices of the
singularities of type II, III and IV with D < 5.
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Let K be an even, nondegenerate, indefinite lattice with a basis
B={e,...,e,}, such that 4 =(—(e, e))) is an indecomposable sym-
metric Cartan matrix. Let S be the corresponding graph.

DEFINITION: A fundamental vector with respect to B is a vector x =Y.¢ e,
€ K such that

(i) Vi§ >0,
(i) Vi(x,e)>0.

So a fundamental vector with respect to B is thus a positive integral
vector which lies on the boundary of the fundamental chamber with
respect to B (cf. [26]).

LEMMA 5.5.1: Let x be a fundamental vector with respect to B. Let
J={j€{1,....,p}(x, ¢)=0}. Then M=% ., Ze, is a negative defi-
nite lattice (and hence a sum of A,,, D,, Eg, E; or Ey).

PrOOF: Since K is nondegenerate, J # {1,...,p}. Let J=J, U --- UJ,
be the partition of J corresponding to the decomposition of the subgraph
of S with respect to {¢ | jE€J} into connected components. Let xD=
Y, € e for 1<I/<k. Now since (x, e, )=0 for j €J, and since there
exist numbers i &€ J;, j, €J, such that (e, e, )> 0, it follows that

(0, ¢)<0

for all j€J, and <O for at least one j. Therefore (x, x'"’) <0 and by
[5, Proposition 2] K is negative definite. O

DEFINITION: A small fundamental vector (with respect to B) is a funda-
mental vector x = ¥£ e, satisfying the following additional conditions:
(1) (x, x)<4,
(i) Vi (x, ¢,)<2, (x, e,)=2 for at most one i, (x, e,)=2=§ =1.
If x is a small fundamental vector, the coefficients £, give a valuation
£:S >N — {0} of the vertices of S. We call such a valuation a small
fundamental valuation.

THEOREM 5.5.2: The hyperbolic sublattices of the singularities of type 11, 111
and 1V are exactly those given by the graphs of the following type, which
possess a small fundamental valuation:

D

Tv2.3.r’
L, q.r>4,
T,y

II
Q

P, q,r=3,

Ii
w A W N

paq.r.s°

S S O o

p.q.r.s.t*
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The graphs together with a small fundamental valuation correspond-
ing to a small fundamental vector of minimal length are listed in Table 6.
All the singularities of type I*, IV*, IIT*, II* also have a diagram with

a small fundamental valuation; in each case one of the listed diagrams in
Table 4 satisfies this condition.

6. Tables

Notations and remarks

The numbers in parentheses refer to the section, where the notations are
defined.

Table 1: Normal degrees and sequences k*, k

This table defines the scheme of all the tables. The upper row of an entry
of this table corresponds to an alternating sequence k*, k,

k¥, ky, k¥, ky,... k

4

(section 2.1), the lower row to the corresponding sequence

b=2,...,2,k +2,2,..,2, ky+2,... k, +2.
Sl St
kr—1 kt—1

On the left-hand side we have listed the 92 cases of such sequences up to
cyclic order with D, D* <5 (section 2.1). We have made up a subtable
for each value of g, 1 < g < 5. For a fixed value of g, we have written in a
row all alternating sequences k*, k with the same k, in a column all
those with the same k*. The order among the rows and columns is given
by the order of the sequences k resp. k* as listed in section 2.1. If the
cyclic order of the alternating sequence k*, k is not unique, we divide the
corresponding entry into two parts separated by a dotted line.

Each column is labelled by the type I, to which the sequence corre-
sponds. The correspondences 8 and 1y, (section 2.3) are also indicated.
Each row is labelled by D, which is the grade of the singularity (section
1.3). The duality & (section 2.1) is now given by reflection in the principal
diagonals starting in the upper left corners.

Now we reflect the tables at the middle columns, interchanging the
columns for I, & I¥%, if there are two of them. This gives the complete
table. To the right-hand side we associate the singularities of type If,
IV*, II1*, and II* according to the correspondences y, and € o B~1. The
corresponding columns are labelled by these types.
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Table 2: Names, Milnor numbers and discriminants

We have indicated in an entry:

Upper left corner: Notation of Arnold—Wall (section 3.1). In the case
of the correspondences B and vy, we refer to the singularities of type II,
III, IV and I*.

Upper right corner: Sequence p defined for type II, III, IV, I¥ in
section 1.2, for I,,, 1 < n <4, in section 2.2, for I in section 3.2.

Lower left corner: Discriminant = order of TH,(L) (section 4.4).

Lower right corner: Milnor number (section 4.2). In the case of the
correspondences f and y, we make the same convention as for the upper
left corner. Compare section 4.2 for the relations between the Milnor
numbers under the correspondences.

Table 3: Discriminant quadratic forms

The notations for the discriminant quadratic forms are explained in
section 4.4. In order to give a uniform description of the discriminant
quadratic forms of the series I*, it is necessary to use also the following
notation: (k/m), where k, m € N, denotes the finite quadratic form (G,
q), where G is a cyclic group of order m and ¢ takes the value (k/m)
(mod 2Z) on a generator of G.

Two cases need an extra explanation. The symbols g{" resp. ¢i™
stand for the finite quadratic forms defined on the finite abelian groups
G{" resp. G§" by the following matrices with respect to a standard set
of generators (where the diagonal entries have to be taken mod 2Z, the
other entries mod Z):

2

1+in
2,22 @ 2/(18+2n)Z,| | 10+n |
2

9+n
(n) (mMY) .=
(617, 4i7): n=0(mod2),
1-n(9+n) _ .
Z/(36+4n)Z,(74(9+n) ), n=1 (mod 2);
W6-n) 3
Z/22$Z/(32+4”)Z, n 4_(2+3n)(8+”)
8 16(8+ n)
n=0 (mod 4),
(G%"’,q%’”)ﬁ Z/(64+8n)Z,(1—_~(—§.6+—(3;T)——£8)+n)), n=1 (mod 4),
ww(@+n) 3
z2/42 ® Z/(16+2n)Z, | | 9+n |, n=2(mod4),
4 8+n
Z/(64+8n)Z,(%), n=3(mod 4).
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Table 4: Dynkin diagrams

Here we give Dynkin diagrams of the hyperbolic sublattices (section 5.1).
Below (in Figure 2) is an explanation of the symbols used. We draw the
schemes of the corresponding graphs (section 5.4). Note that the first
diagram in each entry of column I, < I* is a diagram of I,. For more
information we refer to section 5.

Table 5: Extension of the Tables 2—4 for g = 2

This table presents the extension of the Tables 2-4 for g=2 at the
right-hand side defined in section 5.4. It shows the strange duality
considered at the end of section 5.2. Note that the right column of the
original column I¥ is replaced by the corresponding column for I%. The
notation is as above.

Table 6: Small fundamental valuations

This table shows the small fundamental valuations (section 5.5), which
exist according to Theorem 5.5.2. A small fundamental valuation &¢: S —
N — {0} corresponds to a small fundamental vector x = ¥§,¢,. We have
additionally indicated in an entry: a vertex v, with (x, e,) =1 resp. 2 by

© resp. ,

the number ¢, in the lower left corner, and (x, x) in the lower right
corner.
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