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KODAIRA SINGULARITIES AND AN EXTENSION OF ARNOLD’S
STRANGE DUALITY
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among the 14 "exceptional unimodal" singularities of surfaces in C 3.
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[47], it remains somewhat mysterious. In independent work in early 1982
the two authors discovered an extension of this duality embracing on one
hand series of bimodal singularities and on the other, complete intersec-
tion surfaces in C4 . Following Nakamura [44,45], we related this to

Hirzebruch-Zagier duality of hyperbolic (alias cusp) singularities.
Our extension of the duality is described in section 5.2 (following

some remarks in sections 2.3 and 4.2). The duals of complete intersection
triangle singularities are not themselves singularities, but are virtual

(n = - 1) cases of sequences (e.g. Wl,n : n  0) of bimodal singularities.
We associate to these well-defined Milnor lattices, and show that all

numerical features of Arnold’s strange duality continue to hold.
We also discovered some other symmetries between singularities re-

lated to the duality of hyperbolic singularities, embracing other Kodaira
singularities, too. So the appearance of pairs of bimodal exceptional
singularities with isomorphic Milnor lattices [16] turned out to be part of
a more extensive symmetry between singularities of in general different
embedding dimensions (see again section 5.2).

Therefore it seemed appropriate to consider the whole class of Kodaira
singularities. These are described below, and one of our objectives is to
extend to them as far as possible results known for the hypersurface
cases, and to seek alternative characterisations analogous to the many
known [14] for "rational double points". A limited success is attained
here, but it does become clear that this class of singularities has many
beautiful properties.

The paper is divided into five sections. The first introduces Kodaira

singularities in general, and the second the strange duality. Next we
consider embeddings in euclidean space (and equations). Finally we
study the associated quadratic forms: first from the viewpoint of synthe-
sis from local data, and then from the Dynkin diagram approach.

1. Singularities of Kodaira type

l.l. Enumeration

Kodaira’s enumeration [31] of exceptional fibres in pencils of elliptic
curves shows intriguing parallels with other well-known lists (Lie groups
etc.). It was discovered ten years ago by Kulikov [32], Laufer [35] and
Reid [53] that the same exceptional sets E but with different neighbour-
hoods gave minimal resolutions for an important class of singularities.
These we shall call Kodaira singularities (see also [30]).
We recall Kodaira’s classification. The table given is adapted from [31,

p. 604, Table 1] and gives some insight into the structure of the classifica-
tion. In this table A is the local monodromy matrix of the elliptic
fibration. The cases are distinguished by the conjugacy class of A in
SL2 (71): we obtain all those with Itr AI  2, save for the restriction b &#x3E; 0.
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The order of A is denoted by c: it will reappear in section 3.4.
We now describe the exceptional fibres in each case, and also intro-

duce our notation for the Kodaira singularities.

Case I o ( d ) : E is an elliptic curve. Its normal bundle has Chern
number - d (d = 0 for the Kodaira fibre, d &#x3E; 0 for the singularity).

Case I n ( b 1, ... , bn ) : E is a cycle of rational curves, each meeting both
its neighbours. For n = 2 we interpret this to mean that the two curves
intersect (transversely) twice; for n = 1, that the curve has a single point
of (transverse) self-intersection. The normal degrees - b,, ... , - b,, of the
curves (in order) satisfy b, &#x3E; 2. If all the b, equal 2, we have the Kodaira
fibre. (Note that for n = 1 the curve has normal degree - bl, but
selfintersection number - bl + 2.)

Case 11(k): E is a rational curve with a cusp; the normal degree is
-(k+2), with k à 1.

Case II I( k 1, k 2 ) : E consists of two rational curves touching in a point
(intersection number 2). The normal degrees are - ( k + 2), - ( k 2 + 2)
where k, &#x3E; 0, k 2 &#x3E; 0, kl+k2&#x3E;0.

Case IV( k 1, k 2 , k 3 ) : E consists of three rational curves, meeting
(pairwise transversely) in a single point: the normal degrees are - ( k, + 2).

In the remaining cases, all components of E are rational and nonsin-
gular ; E has normal crossings; no two components meet more than once.
We can thus describe E by a graph 0393E with one vertex for each

component of E: two vertices are joined iff the corresponding compo-
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nents meet. We weight this by writing next to each vertex the integer b
such that - b is the degree of the corresponding component.

Case I*n(k1, k2, k 3, k4) : Dual graph an extended Dynkin graph of
type Dn+4’

Case II*(kl): (type Ê.)

Case III*(k1, k2): (type E7)

Case IV*(kl, k2, k3): (type É6)

In each case, the k, are nonnegative integers, not all 0: the case when all
are 0 gives the fibre in Kodaira’s list.

The Kodaira singularities have two basic intrinsic properties: they are
elliptic (of genus 1) and Gorenstein (there is a local regular 2-form). For
a discussion in terms of these properties, see [53] and [35].

The above symbols do not quite provide a complete classification. For
cases I0, I*0 there is a "modulus": in case I0, this can be taken as the
j-invariant of the elliptic curve E; for Iô as given by the cross-ratio À of
the set of 4 points (in some order) where the outer curves meet the central
one. The precise classification in this case depends on consideration of
changing the order of the points, and on which of the k, are distinct.

For a given case, given k, (or b, ), and (where relevant) a given À, the
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singularity is determined up to a finite ambiguity. The number of cases is
[33] 1 for types I" (n  0), I* (n &#x3E; 0); 2 for types II, III, IV and IÓ; and 3
for types II*, III* and IV*. For types 10, II, III, IV, 1*, II*, III*, IV* just
one of these cases gives a singularity with C* action.

1.2. Uniformisation

The survey article of Neumann [46] describes the different types of
uniformisation available for surface singularities, and gives a bijection
between such uniformisations and geometric structures (in the style of
Thurston [60,61]) on the 3-manifold which is the boundary of a

neighbourhood of the singularity.
For isolated surface singularities there are just 4 models available; we

consider them in turn.
A geometric structure of type S3 comes from a finite group r acting

freely on S 3 : thus r c U2. As is well known [68] the quotient C2/0393 is

Gorenstein if and only if r c SU2. These cases give rise to the well-known
list An, Dn, En of singularities [14,15].

For a geometric structure of type Nil we have a discrete cocompact
subgroup r of the isometry group 02.Nil acting freely on Nil. The
corresponding singularity is Gorenstein if and only if r c Nil [12]. Up to
deformation, r then belongs to one of a sequence

The corresponding singularity is then of type I0(n) above; conversely, we
obtain all these. These are the "simple-elliptic" singularities of Saito [54].

Neumann describes in [46] all singularities with geometric structure of
type Sol: he obtains two classes. The second class are easily seen not to
be Gorenstein. The first give precisely the singularities of type ln (n  1)
above. These are commonly called "cusp singularities" after their ap-
pearance in the work of Hirzebruch [23] : however, we prefer to avoid this
term.

There remains the much more extensive class of structures of type SL2. 
Again, it has been shown by Dolgachev [12] and others that the corre-
sponding singularity is Gorenstein if and only if it is the (compactifica-
tion of the) quotient of the model (universal cover of the bundle of
nonzero tangent vectors of the hyperbolic plane D ) by a free discrete
cocompact subgroup of SL2. All isolated surface singularities admitting a
C * action which is "good" in the sense that, for any P, t. P tends to the
singular point as t ~ 0, except those already discussed, belong to this
class: in particular, all those defined by a weighted homogenous system
of equations.
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Given such a C *-action, one usually describes the situation by "Seifert
invariants" as follows. The surface T with genus g is the orbit space of
the action. The non-free C *-orbits, where the stabiliser has order p,, give
rise to points P, c- T marked with p,. The action of the stabiliser on the
tangent space defines an invariant q, mod p,. It is better to consider T as
orbifold (in the sense of Thurston [60]; see also [55]): as such, it has Euler
characteristic

The link of the singularity is a circle bundle over this orbifold, with
characteristic class

where 03B2 is a certain integer. The first homology group of the link is the
sum of 2 g copies of Z and a finite group of order 0394 = |e|03A0pi. A minimal
resolution consists of T with normal degree /3, with a chain of rational
curves for each point P,. The (negatives of the) normal degrees in the
chain are obtained by expanding p,/q, as a continued fraction.

In the Gorenstein case, these data simplify as follows. There is an

integer R such that X = eR. For each i, q, is inverse to R mod p,.
We can easily calculate all these from the resolution for cases of

Kodaira type. They are listed in the table. In each of these cases, g = 0.
We recall that (for given À in the 1* cases), just one of the 2 (or 3)
isomorphism classes admits a good C*-action.

The numbers pi are called the Dolgachev numbers of the singularity,
after [10,11]. Observe that all cases where g = 0, there are just 3 excep-
tional orbits, R = 1 and x  0 appear in cases II, III and IV above.

1.3. The fundamental cycle

It is shown in [53] and [35] that the minimal resolution of an elliptic
Gorenstein singularity carries a 2-cycle Z with the following properties:

(1) For divisors D supported on the exceptional set E,



9

(2) If the singularity occurs on a projective variety X with resolution
M ~ E, then for some line bundle L on X the canonical bundle KM = f *L
~ OM(-Z).

(3) Z is the unique positive divisor supported on E with positive
arithmetic genus.

(4) Z is the minimal cycle satisfying Z.C  0 for all components C of
E.

It is easy to write down Z for singularities of Kodaira type: for the
original Kodaira elliptic curve we have Z2 = 0. Thus for types I,l, II, III
and IV, Z is a sum of the components C of E, each with multiplicity 1.
The multiplicities in the remaining cases are as follows:

The fundamental cycle Z determines in turn the invariant D = - Z 2
which we will call the grade. It is shown in [53] and [35] that (a) the
degree (or multiplicity) of the singular point is max(D, 2), (b) its

embedding dimension is max(D, 3). Thus for D  3 we have hyper-
surface singularities; for D = 4 we have complete intersections in C4 . The
cases D &#x3E; 4 do not give complete intersections; however [9] if D = 5 we
have Pfaffian singularities in C5.

Observe that the normal degrees for a singularity of Kodaira type are
obtained from those for a Kodaira elliptic curve by decreasing the
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numbers for certain components of multiplicity 1 in Z. Thus Z2 is
decreased by the same amount. We can now see that, in the notation
above, the grade is as indicated in the table.

Thus the singularities of a given type with grade D are classified by
partitions of D into the appropriate number of parts. We shall see later
that these partitions correspond to Arnold’s series of singularities.

The embedding result comes from considering the line bundle L =
(9,(-Z): then [53] h0(L)= D, and HO(L) generates ~ HO(nL) if

D  3. If D = 2, the cokernel of H0(L) ~ H0(L) ~ H0(2L) has dimen-
sion 1; and if D = 1 our three generators are in H0(L), H0(2L) and
H0(3L), respectively.

2. Duality

2.1. Hyperbolic singularities: Inoue-Hirzebruch surfaces and duality

By "hyperbolic singularity" we mean those of type ln with n &#x3E; 0. The
link of In(b1,..., bn ) is a torus bundle over a circle, with monodromy

where each b1  2, and at least one is &#x3E; 2. Indeed, this is a normal form
for conjugacy classes of matrices in SL2(Z) with trace  3. The con-
jugate by a matrix of determinant -1 can be put in the form A ( b*);
then b* is defined to be the sequence dual to b. The singularity llink
corresponding to In*( b*) is thus homeomorphic to that for In(b), but
with reversed orientation. It is not difficult to fit the two singularities
together to obtain a complete surface with two isolated singular points
[25b,37,44,45,52].

These are called Inoue-Hirzebruch surfaces, or hyperbolic Inoue
surfaces. We observe parenthetically that there also exist [25a] parabolic
Inoue surfaces, obtained by compactifying a I0(n) singularity by a
"Kodaira fibre" of type In(2, 2,..., 2), and forming in some sense a
limiting case of the above.

To obtain the duality explicitly we distinguish the br equal to 2 from
those exceeding 2, and write the sequence (up to cycling reordering) as
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We then have [24]

Observe that since not all the br are 2, this is well defined. Each of the k,,
k* is  1. This duality, and the alternative notation k,, k* is the key to
understanding the further relations below.

Instead of matrices, we could have UTArtrpr1 UT1th continued fractions. It
follows from [23] that if

then

In terms of the new notation, we find

so that the formula D = "Lkl now holds in all cases. We also have

n = length of sequence

Thus D* is the grade of the dual singularity, which is of type ID. We also
need

of course also
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We now consider duality, restricted to complete intersections, follow-
ing Nakamura [44]. If both In(b) and its dual are complete intersections,
then kl  4 and k*  4. Since k,, k*l are  1, cases are as
follows: 1

We also need a cyclic order, in which terms of k alternate with those of
k*. For g  2, such an order is clearly unique: the only time when it is
not is when k = k* = (1, 1, 2): the cyclic orders (1, 1, 1, 1, 2, 2) resp. (1, 1,
2, 1, 1, 2) correspond to b = b* = (2, 3, 3, 4) resp. (2, 3, 4, 3).
A list of these 38 cases is given in Table 1. For some purposes we shall

extend the list to D  5, D*  5. Thus the possibilities for k, k* are:

Of these 82 cases, the cyclic order of k, k* is non-unique in just 10, in
each of which there are 2 possibilities. These arise when k, k * are among

There are thus 92 cases in all.
We observe finally that the first homology group of the link is the sum

of an infinite cyclic group (corresponding to the base circle) and the
cokernel of the map represented by A - I: the order of the latter is

2.2. The parameters p,

We next consider the equations of the hypersurface hyperbolic singular-
ities. According to [28,29] these are of the form

where p-1 + q-1 + r-1  1 and p, q, r are related to b as in the

following table.
Similarly, in the complete intersection case we can take as equations
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Depending how many of p, q, r and s equal 2 there are five cases for b
(corresponding to the five possible partitions k of 4); in each case,

We are thus led to introduce a new notation, modifying b* (we regard
k, k* as the basic notation). Recall that D is the length of the series b*.

Note here that k * is set equal to 0 for i &#x3E; g. Also note that, in the four
cases, 

Interchanging the k, and the k * we correspondingly define p, if D*  4,
and have 03A3pl = 12 + D - D*.

Schema 1.
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Schema 2.

We introduced the p* so that if D  3 the equation took the form

It turns out that the parameters p, are related to the minimal resolution
which is good in the sense that each component is embedded, no two
meet twice, and all crossings are normal. For types Il, I2 these are
described in Schema 1. So for each of types Il, 12, 13 we obtain a triangle
as in Schema 2.

2.3. Strange duality

We establish bijections between the indicated classes of singularities of
Kodaira type by

Since these preserve D, hypersurfaces correspond to hypersurfaces, com-
plete intersections to the same.

Observe that minimal good resolutions are obtained as in the follow-
ing figure.

Schema 3.
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Thus for each singularity of type II, III or IV, the minimal good
resolution has the form

where p is the sequence defined in section 2.2.
Indeed, in the quasihomogeneous cases, we can now identify the

component marked 1 with the central sphere S 2, and see that there are
three exceptional orbits and that the numbers pi above coincide with
those described in section 1.2 and often known as "Dolgachev numbers"
after [10].

If we now denote by 8 the duality of section 2.1, then 03B2-103B403B2 defines a
duality among those singularities of classes II, III and IV for which 03B2-1
is defined. Since b* has length at most 3 if and only if D  3, i.e., we
have a hypersurface singularity, these are precisely the hypersurface
singularities of these classes. Now 82 = 03B2-103B403B2 is the same as the strange
duality of Arnol’d [4]. We recall that a satisfying geometrical interpreta-
tion using compactification by K3 surfaces was given by Pinkham [49].
We also have correspondences

bijective for n &#x3E; 0 (for n = 0 we lose the cyclic order). These will be seen
below to play a similar role to the above. There is also the trivial bijection

which can be composed with P or with 82. We shall study these further in
the section on quadratic forms.

Observe, however, that each of fi, yn, E preserves the sequence k, and
hence D.

3. Embeddings

3.1. General remarks

The Kodaira singularities with D  3 are given by equations in C3 . These
equations had been obtained by Arnol’d [4] in his classification of

singularities. Arnold’s 1-modal singularities are precisely those of types
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1,,, II, III and IV; his 2-modal singularities are those of types I*, II*, III*
and IV*.

The cases D = 4 appear as complete intersections in C4, hence as
f-1(0) for some f : (C4, 0) ~ (C2, 0). We contemplate classifying such
maps up to H-equivalence [40] (or contact equivalence). Say that f has
modality r if for a versal unfolding

of f, all the germs in some neighbourhood of 0 fall into a finite number
of families, each depending on at most r parameters, for .%equivalence.
Say that f has strict modality r if the same holds for multigerms (all
singular, with the same target). One of the main conclusions of [66] is

that a germ has strict modality 1 if and only if the singularity f-1(0) is of
Kodaira type.

These cases also are tabulated below (and this tabulation was one of
the origins of the present paper), in the notation of [66], which is a slight
modification of Arnold’s [4]. All the cases, other than those of type I,?,
belong to well-defined series. We find by inspection that the series is

determined by the numbers k, defined in our notation. If the k, 1 are

arranged in decreasing order, and any which equal zero are omitted, we
find the following table:

We recall that in these cases D = Lkl.
We also consider below the cases D = 5. According to [9], each of

these cases is defined by 5 equations which are given by the Pfaffians of a
skew-symmetric 5 X 5 matrix. We shall obtain such a matrix (it is not, of
course, unique) in each case.

3.2. The hyperbolic case

We have already given normal forms for equations here, namely

if D  3, while if D = 4 we take

In the case D = 5 it is easy to verify (this has also been noted by
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Nakamura) that a suitable matrix is

We set p* = b* - 1 for 1  i  5 and define correspondingly p,.
As we shall shortly see in the other cases, the nature of the terms of

lowest order here is determined by the sequence k. As usual, the cases
D  2 are somewhat anomalous.

If D = 1, then p 1 = 2, pi = 3 and we have the alternative normal
form

If D = 2, again p* = 2 and we have the alternative form

If k = (1, 1), the only term of order 4 in xl, X2 is xi x2; if k = 2, k2 = 0,
so we have x21x22 + X4 

If D = 3, all terms have order  3, and those of degree 3 define a
plane cubic curve which is:

if k = (1, 1, 1), a triangle,
if k = (2, 1), a conic and chord,
if k = (3), a nodal cubic.

Similarly for D = 4 or 5 we find that the terms of lowest degree (namely
2) in the equations define a set of g smooth rational curves, of degree
kl, ... , kg respectively, with each meeting the next one simply, all inter-
section points being distinct.

If we substitute b* = 2 for each i in the above formulae, we obtain a
singularity of type I0(D): in some formal sense, we can consider I0(D)
as dual to ID(2, 2,...,2) : compare the remark in section 2.1 about

parabolic Inoue surfaces. However, the general singularity of type I0(n)
involves a modulus. The equations for n  3 are well known; for n = 4
we can take a generic pencil of quadrics and for n = 5 a generic
skew-symmetric matrix which is linear in Xl’ X2’ X3’ x4 and x5.

It is interesting to observe the relation between the varieties associated
in this way to hyperbolic or other Kodaira singularities with the same k.
For D = 3, we have:
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For D = 4, the pencils of quadrics can be described by Segre symbols,
and we find:

3.3. Equations for Kodaira singularities: reduction methods

There are (at least) three ways of obtaining explicit equations for
embedded singularities of the various types. First, for the quasihomoge-
neous singularities of types II, III, IV, IV*, I II * and II* we can write
down generators and relations for the ring of automorphic forms of the
given hyperbolic triangle, using a modification of the method of Milnor
[42] (which will be described elsewhere). Second, one can resolve a
surface given by equations explicitly (and hence infer step by step the
terms needed in the equations to produce the desired result). Third, we
have reduction procedures. We recall from [67,7.9] that if

set

if

set

Then the exceptional sets S, T in the minimal resolutions of f and à,f
(resp. Lxf) are isomorphic, but one of the normal degrees is changed by
1. The same argument gives a reduction procedure for Pfaffian singular-
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ities : if f is defined by the Pfaffians of

(where p, q, r, u, v, w are functions of x,, x2, x3 and x 4)’ we define

Pxtf = ( ux 1 - vx2 + WX3’ px1 - qx2 + rx3) and the same conclusion ob-
tains.

These reduction procedures allow us to deal with whole classes of
singularities simultaneously. We shall suppose that they give bijections
between isomorphism classes of germs, though the arguments above only
yield bijections of topological types.

Case g = 1. Define a function A depending on cases as in the table.
Then the equations for the various series are:
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The weighted homogeneous cases are those with a = a’ = 0; the other

cases are those with a ~ 0 or (II*, III*, IV*) a = 0 and a’ ~ 0. For type
IÓ, the cubic t3 + 03BBt2 + 03BCt + v = 0 must have distinct roots. We can even
include the hyperbolic cases here by setting A = - 3x2 + 2x1 + x03BB1*1+1.

Case g = 2. Here we define the function B as in the table.

The equations are given by:

The rôles of a, a’ are as before. For type I*0, 03BC(03BB2 + 41t) gÉ 0.
Case g = 3. Define C(xl, x2, x3) as in the table.

Here the term Q - as indeed the x2 appearing in cases IV and IV* - can
be any quadratic in X2 and x3 which is not a linear combination of
3x22 - 3 and x2x3. The term L is a linear expression in x2 and x3
which is not a multiple of the chosen factor A (= x2, x2 ± x3) of
x2 - x2x23 (a corresponding remark applies for type I*0).
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The normal form for k = (1, 1, 1) is

for k = (2, 1, 1) we have

Here there is less symmetry.

Note here that P-reduction gives an equation in the (2, 1, 1) series but
with X2 + X3 (rather than x2) as the preferred factor of x32 - x2x23.

Case g = 4. We define E(x2, Xl) to be, resp:
(IÓ) axi + x22; (I*n, n  2 even) x(n+2)/21; (I*n, n odd) x2x(n+1)/21.
We have equations: k = (1, 1, 1, 1),
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3.4. Weights

The weights in the weighted homogeneous cases above display similar
regularities. We first define parameters c and R as in the table.
Here c is the order of the matrix A of section 1.1; it is also (except for
cases II, III, IV) the highest multiplicity of a component in the funda-

mental cycle; R equals either 1 or c - 1 (or both) and has the same
meaning as in section 1.2.

Next suppose that k = (kl, k2, ... , kg) defines a partition of D. We
define a sequence of D natural numbers by

Rearrange this sequence in increasing order, and change its first term

from 1 to 0; we then denote it by

Then the weights of the coordinates are given by

weightl

In the cases when D  3 further formulae are needed, and are as follows:
If k = (1), weight x2 = 2( c + R ), weight X3 = 3( c + R ).
If k = (2), weight X3 = 2c + 3R.
If k = (1, 1), weight x3 = 2( c + R ).

We also observe that:
if g = 1, weight A = c + 6R (all cases),
if g = 2, weight B = c + 4R (all cases),
if g = 3, weight C = c + 3R (all cases),
if g = 4, weight E = c + 2 R (only one case).

One can infer the weights of the equations. If D  3, then of course

weight f = wt x + wt x2 + Wt X3 + R.

If D = 4,

whence, by closer examination:



23

Conversely, the only monomials having the desired weights for all c, R
are (D  3):

defining the initial forms used above. For D = 4:

and generic linear combinations of these monomials define a pencil of
quadrics with respective Segre symbol

In each case, the intersection of the pencil of conics has components with
degrees kl, k2, ... , kg (03A3k, = 4): all have a common point, and the base
locus has a unique singular point.

Analogous considerations apply for n = 5. In this case, the Pfaffian
formulation yields the surface as the intersection of a smooth 5-dimen-
sional hypersurface with the Grassmannian cone in 039B2(V5 ). The aux-
iliary space hS also admits a C*-action, though its weights may be
half-integral. These weights (semiweights) are of the form 1( c + (R),
where the numbers l, are given by the table.
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These determine the linear part of the skew-symmetric matrix (take it
generic subject to these weights) and hence the quadratic part of the
defining equations. In turn, these determine a curve of degree 5 in P4: it

is again a union of irreducible components with degrees k,.
It must be observed that the arbitrarmess in the choice of the matrix is

appreciably greater than that in the defining equations: this does not

however affect the essential uniqueness of the equations given.

4. Quadratic forms

4.1. Milnor fibrations and smoothings

If X is a hypersurface singularity, i.e. defined as f-1(0) for f : (Cn+1,
0) - (C, 0), then Milnor [41] ] showed that the restriction of f to B, ~

f-1(D~ - {0}) is a fibration for q « E « 1. This yields a deformation of
X to XI = BE ~ f-1 ( t ) for 0  t  q, which is smooth, and is known as
the Milnor fibre. Moreover, Milnor showed that XI has the homotopy
type of a bouquet of n-spheres. Thus the only nontrivial reduced ho-
mology group is H = Hn ( X,) which is free abelian; its rank is known as
the Milnor number and denoted by it. Intersection numbers define a

bilinear pairing, symmetric if n is even, (, ) : H X H - Z. The group H
with this pairing is known as the Milnor lattice. Since XI has trivial
normal bundle in Cn+1 it is parallelisable, so the quadratic form on H is
even.

We next seek to extend these results to other classes of singularities. In
the case of complete intersections, corresponding results were obtained
by Hamm [22]: there is a fibration (not quite as above) whose fibre has
all the properties listed above.
Now suppose X a normal surface singularity. A deformation of X is a

flat mapping 77-: Y 6 C with 03C0-1(0)= X; as above, we make this more
precise by embedding Y in Cn+1 1 with the singular point of X at the
origin, and then restricting to B, ~ 03C0-1 D’ri for sufficiently small E, q. We
say X deforms to Xt = 03C0-1t; if Xt is smooth, it is a smoothing of X. In
particular [30; Cor. 4.6] a singularity X of Kodaira type deforms to a
space (say Vt) which has a single singularity of type I o with the same
degree D.

According to [48] if D  9, Y is smoothable; thus X is also. We can
thus define Milnor fibres for X. In general they are not unique. However,
if D = 5 (so that X has codimension 3 in C5) the base space of the
semiuniversal deformation of X is smooth [64], so the Xt form a

connected family and the Milnor lattice is unique. See also [63] for a
general reference on smoothings.

THEOREM 4.1.1: Let X be a normal surface singularity, XI a smoothing
obtained as above. Then:
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(i) XI has the homotopy type of a finite C W-complex of dimension  2.
(ii) rk H1(Xt, Z) = 0.

(iii) If X is Gorenstein, then XI is parallelisable.
(iv) If X is Kodaira singularity with D  5, then XI is 1-connected and

has the homotopy type of a bouquet of 2-spheres.

PROOF: (i) follows from [1].
(ii) is a result due to Greuel and Steenbrink [21].
For a proof of (iii) see e.g. [56] combined with [13].
We are indebted to E. Looijenga for the following proof of (iv). We

shall first show that XI is 1-connected for a simple elliptic or a hyper-
bolic singularity X of grade 5. According to [37; III, (1.7) plus (2.8)] the
Milnor fibre of such a singularity is homeomorphic to a rational surface,
where an anti-canonical cycle of length 5 is removed:

Let us consider the simple elliptic case first. By the partial classification
of [37] a rational surface with an anti canonical cycle of rational curves,
each with self-intersection number - 2, of length 5 can be obtained as
follows: Consider p 2 and in IP 2 a cubic curve C with one node. Blow up
four points on the regular part of C, no three of which are collinear, to
get a Del Pezzo surface of degree five with a curve C. Then blow up
successively the singular point and four suitable infinitely near points,
such that the strict transform of C becomes the desired anti-canonical
cycle C. Call the resulting surface Y.
Now ?Tl (IP 2 - C) = Z/3 Z and the preimage of a generator is homo-

topic in Y - C to a loop lying on an exceptional curve of the first kind,
which meets exactly one component of C transversally in a single point,
and going around that point. Since this loop is contractible in Y - C,
Y - C is simply connected. For the hyperbolic singularities one has to
blow up further points on C. But the fundamental group of the comple-
ment of the strict transform can have at most more relations.
Now we consider the remaining Kodaira singularities. It was shown in

[30] that there is a deformation of X into a simple-elliptic singularity of
grade D via simultaneous resolution. This means that there is a 3-dimen-
sional manifold -4f and a flat mapping  : M ~ 0394 to a complex disk,
such that the Stein factorisation

gives a deformation of X, where the general fibre Y has a simple elliptic
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singularity xl of grade D and Zt = 03C4-1 (xt) is an elliptic curve with
selfintersection number - D in Mt = -1 ( t ). Now this simple elliptic
singularity can be smoothed. Since Vt is Stein, also V, deforms into a
smooth space Xt. Choose a small ball around xt which intersects X, in a
Milnor fibre Y of x,. Then we have a homeomorphism Xt/Yt ~ Mt/Zt
( Y and Z, collapsed to a point). Consider the following diagram:

As we saw above, 03C0l(Yt) = 0. Therefore also 03C01(Xt, Yt) ~ 03C01(Xt/Yt). If X
is not a hyperbolic singularity, then 03C01(Mt) ~ 03C01(M0) ~ 03C01 (E) = 0, since
E is then homotopy equivalent with a bouquet of 2-spheres. This implies
03C01(Xt) = 0. That Xt has the homotopy type of a bouquet of Il spheres,
follows as in [41, Theorem 6.5]. D

4.2. The Milnor number

The Milnor number jn was defined in section 4.1 as the second Betti
number of any smoothing. A formula was given by Laufer [34] for

hypersurface singularities and extended in [59] to all smoothable Goren-
stein singularities,

Here, h is the genus. Singularities of Kodaira type are elliptic, so h = 1
and the last term equals 11. We have already introduced D to denote
-Z2. Finally, Eu is the topological Euler characteristic of the minimal
resolution. We see by inspection that its values are as follows:

Using these formulae we can thus attach a well-defined integer p to
any singularity of Kodaira type, jn = 11 + Eu - D. In the hyperbolic case,
we have

Thus for dual singularities X and 8X, we have
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For the parameters p, of section 2.2 we had

We now consider the other transforms of section 2.3. We find that 03B2,
y" and E all preserve D while

Now the strange duality was defined on singularities of type II, III and
IV with D  3 by 03B42 = 03B2-103B403B2; thus (as expected)

We can extend this to include singularities of type In and D  4 by
augmenting 03B2 by the bijection Yn- 1. But for this to give the same formula
for 03BC we need to substitute n = -1. Thus our extension of the strange
duality involves a " virtual" singularity n = -1 associated to each se-
quence I*n(k1, k2, k3, k4) with Skl  4.

For singularities of types II*, III* and IV* with D  3 we can define
03B43(X) = ~03B2-103B4 /3(-I(X). Then Eu(03B43X)=11-D(X), so 03BC(03B43X) = 03BC X.
If we extend this by replacing /3(-1 by yn 1 for type I*n we find the
formula for jn is correct if we take n = 1.

4.3. Signatures and mixed Hodge structures

We recall that H=H2(Xt): intersection numbers on Xt induce a sym-
metric bilinear form on H. We can take a basis of H ~ R for which the

matrix of this form is diagonal; then the numbers 03BC0 , m_ and J.L+ of zero,

negative and positive eigenvalues give further invariants whose sum is J.L.

By a formula of Durfee [13] for complete intersections, extended to all
smoothable normal surface singularities by Steenbrink [59],

In our cases h = 1. Extending slightly the results of Arnol’d [2], it is easy
to see that

03BC0 = 2, 03BC+ = 0 for singularities of type Io,
03BC0 = 03BC+ = 1 for singularities of type In( n  1),
03BC0=0, /L+ = 2 for all other smoothable elliptic normal surface

singularities.
Following Steenbrink [58], we can be yet more precise in the hyper-
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surface case. These limiting homology groups have a canonical mixed
Hodge structure. To perceive the duality, one separates the unipotent
part of the monodromy (À = 1) and its orthogonal complement (03BB ~ 1).
If we label the Hodge numbers hp,q03BB as follokws:

(using the known identities) then, according to Steenbrink [58],

thus by Durfee’s formula,

For the case of genus 1, just one of the numbers a, b, c, d and e is 1; the
others vanish. We find (rather disappointingly):

Indeed, whenever there is a good C* action (whether the genus is 1 or
higher) a = c = d = 0.

For an isolated hypersurface singularity, whose equation f(x)=0 is
homogeneous of degree d (when x, has weight wl, wl  w2  w3), the
Jacobian algebra 0311f satisfies Poincaré duality, with highest term the
Hessian of f, of weight 3d - 2(w1 + w2 + w3). The eigenvalues of the
residue matrix of f are obtained [6] from the degrees of basis monomials
of O3/Ff by adding wl + w2 + w3 and dividing by d. This yields ju
rational numbers r1  r2  ...  r03BC, with ri+1 + r03BC-i = 3, and r1 =

d-1(w1 + w2 + w3), r2 = d-1 (2w1 + w2 + w3). Since [57] eigenvalues r con-
tribute to 03BC+ or 03BC- according as the integer part [r] is odd or even (if
r ~ Z there is a contribution to po ), we deduce (since h = 1) that either
r1 = 1 (which occurs only for type I0) or r1  1  r2 . Conversely, w, + w2
+ w3  d  2w, + w2 + w3 characterises the weights of weighted homoge-
neous elliptic hypersurface singularities (which must of course also satisfy
Arnold’s [3] necessary conditions for the existence of an isolated hyper-
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surface singularity). In addition to the cases of Kodaira type there are 15
more, which can be found in [53] or [35].
An analogous discussion applies for complete intersections, with the

governing inequality

The other examples will be listed and further discussed in a subsequent
paper.

4.4. Discriminant quadratic forms

If X is a normal surface singularity, we can consider X as a compact
(contractible) neighbourhood of the singular point, whose interior is
Stein. Write L = 8X for the boundary of X: the link of the singularity.
This is a closed 3-manifold, thus there is a well-defined linking pairing

where TH, ( L ) denotes the torsion subgroup of Hl ( L; Z). This pairing is
symmetric, and (if a framing is chosen on L ) arises from a quadratic map
[65,43]

More precisely, q satisfies the following two conditions:
(i) q(rx) = r2q(x).
(ii) q(x + y) - q(x) - q( y) = 2b(x, y) (mod 2Z) for r ~ Z and x,

y ~ TH1(L).
We shall refer to q as the discriminant quadratic form.

To calculate b and q we need an expression for L as the boundary of
a compact 4-manifold. We have two alternative procedures here: we can
use a smoothing of X, or a resolution.

Suppose in either case L = aM and (for simplicity) that H, (M)
H3(M) = 0, so that H = H2 ( M ) is free abelian. Suppose also that H1(L)
is finite (the argument can easily be generalised to allow Hl ( L ) infinite.
It is also generalised in [39] to the case where H1(M) has torsion). Then
the exact sequence

determines Hl ( L ) as the cokernel of 0, which is the map from H2 ( M ) to
its dual induced by the intersection pairing on H2(M). Now for x,
y e Hl ( L ) choose u, v with 03C8(u)=x, 03C8(v)=y, and r E 1B1, w E H2 ( M )
with ~(w)=ru. Then b ( x, y) = r-1~w, v~ (mod Z). However, the
natural conventions of [39] give the opposite sign here.
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If M is parallelisable, we also have

In general this is not well defined and we need a cycle z ~ H2 ( M )
representing a (Poincaré) dual of the Stiefel class w2(M). If M has a
complex structure (as in the cases above), take z congruent mod 2 to a
representative of a dual of cl ( M ). The choice of z determines a framing
on M - 1 z and hence on L. Then

We find that if M is a smoothing of X, and X is Gorenstein, M is
parallelisable (by Theorem 4.1.1), so q is the quadratic form defined by
intersection numbers on H2(M). If L comes from a resolution this is not
the case: we take z as the fundamental cycle (see section 1.3) or, more
conveniently, as the sum of components of odd multiplicity in Z.

If H1(L) has order N, the Gauss sum

is equal to N e i03C0s/4 for some integer s = s(q) defined mod 8. When M is
parallelisable, s is the signature 03C3(M) of the quadratic form on M. In
general,

This result is essentially due to Van der Blij [62]. Two abstract quadratic
maps ql, q2 : G ~ C/2Z, where G is a finite abelian group, satisfying the
conditions (i), (ii) at the beginning of this section with isomorphic
bilinear forms bl, b2 are themselves isomorphic if and only if s(q1) ~
s(q2) (mod 8) [47; 1.11.3].
We use this to determine s(q) for Kodaira singularities. Take L to be

given by a minimal good resolution. Then the intersection form is

negative definite, so a equals minus the rank. For types I*n , II*, III * and
IV* this rank is Eu - 1. Thus

For types II, III, and IV this rank is 4, and

so
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For type In (n &#x3E; 0), the rank of H2 for a resolution is the length n = D*
of the sequence. Thus

Results including the above have also been obtained by Looijenga and
Wahl [39].
We shall also need the following:

LEMMA 4.4.1: Let X be a Kodaira singularity. Then TH1 (L) can be

generated by 2 elements, except for type I*n where 3 elements will suffice.

PROOF: We calculate this group using a resolution M of X. If C, are the
components of the exceptional set, our group is presented by a square
N X N matrix whose rows and columns correspond to the C,. It is enough
to find an ( N - 2) X ( N - 2) minor with determinant ± 1, as we can then
reduce the matrix by elementary operations to the direct sum of the
identity matrix IN _ 2 and a 2 X 2 matrix.

First consider the matrix of a chain

namely,

If we delete the first row and the last column, we obtain an upper
triangular matrix, with determinant 1.

For a graph of type I n, II * or III * we can delete one vertex to obtain a
chain, so the result follows. For type In we can delete two vertices to
obtain a chain. For type II, III or IV a minimal good resolution yields a
graph

Here we obtain a nonsingular minor by deleting rows B2 and B3 and
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columns B, and B3. For type IV*,

we delete rows 1 and 4 and columns 5 and 7. 0

Any nonsingular quadratic form on a finite group can [47] be ex-
pressed, up to isomorphism, as an (orthogonal) direct sum of forms of the
following basic types:

(1 ) G = Zlpk Z with generator x ( p prime, k  1); q(x) = up -k with
(u, p) = 1.
Notation W;,k’ where

(if k = 1, this depends only on E mod 4).
(2) G ~ Z/2kZ ~ Z/2k Z with generators x, y ( k  1); q(x)=q(y)

and equal to (a) 0 or (b) 2l-k, b(x, y)=2-k.
Notation uk in case (a), vk in case (b) (see also [7]). We shall use this
notation in the tables. Such a decomposition is not unique (even up to
isomorphism): a set of relations is given in [47, 1.8.2].

The signature of these types is as follows:

For the systematic description of series we augment this notation by
the discriminant quadratic forms of simple singularities:
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Thus

Indeed in these cases a smoothing has even, negative definite quadratic
form, with rank k.

4.5. Synthesis of the Milnor lattice

We now need some results from the theory of quadratic forms: these may
all be found in [47].

If we are given a free abelian group H and a symmetric bilinear
pairing of H with itself to Z, H is called a lattice. If, for each x E H, (x,
x ) is even, then H is an even lattice. We can construct invariants of
lattices as follows:

First, tensor with R. The form can then be diagonalised. Write t _, to,
t+ for the numbers of diagonal terms which are  0 (resp. = 0, &#x3E; 0). As
to does not interact with the other invariants, we usually suppose it zero.

Next let H# c H ~ Q denote the subgroup dual to H. Then

G = H#/H is a finite group, and the pairing induces a non-singular
symmetric bilinear map G X G ~ Q /Z . Moreover, if H is even, the

composite G ~ H# ~ Q ~Q/2Z is also well defined, so we have a
discriminant quadratic form qH. (This is essentially a special case of the
construction in section 4.4).

For G a finite abelian group, we denote by l( G ) the minimum number
of generators of G.
We now enquire to what extent these invariants determine H. We

have:

(A) ([47,1.10.2]) An even lattice H with invariants t +, t- and (G, q)
exists provided that s(q) ~ t+ - t- (mod 8), t+  0, t-  0, t + + t- &#x3E; l(G).

(B) ([47, 1.9.4]) The invariants t+, t- and (G, q ) determine the genus
of H.

(C) ([47,1.13.3]) The invariants determine H up to isomorphism
provided that t+  1, t-  1 and t+ + t-  2 + 1( G ).
Now according to section 4.1, for any Kodaira singularity with D  9

we have smoothings {Xt{, each determining a Milnor lattice, which is
unique for D  5. Moreover, we saw in section 4.2 that we can define the
rank it of H in all cases (even for D &#x3E; 9) and in section 4.3 how to
determine 03BC+ and 03BC0 , and hence 03BC- . In section 4.4 we have shown how
to calculate the discriminant quadratic form (G, q), in the case when
H1(Xt; Z) = 0 (which holds for D  5). We now apply these results to
reconstruct H.

Recall that: for type I0 , 03BC+ = 0, po = 2; for type ln ( n &#x3E; 0), 03BC+ = 03BC0 =
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1; otherwise, 03BC+ = 2, 03BC0 = 0 (so in all cases 03BC-=03BC - 2). Let H be the
nondegenerate lattice obtained from _H by factoring out the radical

( = subspace orthogonal to H): then H determines H, as it, is known.

Now

Our calculation of s(q) in section 4.4 now shows that, in all cases,

To apply (C), we recall that by section 4.4, l(C)  2 (type I*n :  3). Thus
H (and hence H) is determined up to isomorphism provided 03BC+  1 (true
in all cases except type Io ), 03BC-  1, and JL+ + 03BC-  4 (5) (which as 03BC+  2,
implies the condition 03BC-  2 (3)).

Next, we seek to show that H = K ~ U, where U is a hyperbolic
plane, with matrix (1)). If this is so, the invariants for K are obtained

from those of H by diminishing each of t+ and t_ by 1. Now applying
(A) we see that a suitable lattice K exists provided that

giving the same conditions again. Moreover, since K ED U and H have
the same invariants, they are isomorphic by (C).

Further, the lattice K is unique if

Let us summarise these results.

PROPOSITION 4.5.1: Exclude type 10. Then for a Kodaira singularity with
IL - 03BC0  4 (I*n:  5), the parameters it , it 0, IL- and (G, q) determine a
lattice H unique up to isomorphism. H is of the form K ~ U for some
lattice K.

If we exclude also type ln, and suppose IL  6 (7), then K is unique up to
isomorphism.

The lattice H determined above is isomorphic to the lattice H2(Xt) for
any smoothing with Hl(Xt; Z) = 0.

As IL = Il - D + Eu, all these results apply to all cases D  7, since
then IL  4 + Eu : if we exclude type 10, Eu  1 and 03BC0  1; if we exclude
all 1 n then Eu  2(I*n: Eu  3).
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4.6. Obstructions to smoothing

We observed in section 4.1 that all Kodaira singularities with D  9 are
known to be smoothable, and this includes those in which we are

principally interested.
As to the rest, by Theorem 4.1.1 any smoothing X, has H1(Xt; R) = 0,

and the numbers 03BC0, 03BC- and it, of the intersection form on H2(X(; R)
are calculated in sections 4.2 and 4.3. This leads at once to the principal
necessary condition for existence of a smoothing: namely, that 03BC-  0. In
the hyperbolic case, this yields 9 + 03A3k*r  03A3kr; and in the other cases, it
reduces to 9 + Eu  D.

One might expect to obtain stronger necessary conditions from lattice
considerations. For smoothings which satisfy the additional condition
H1(Xt; Z) = 0, the Milnor lattice must be an even lattice H with
invariants 03BC+, 03BC- and (G, q). It thus follows that

However, the first and second conditions are always satisfied, and in the
cases 03BC+ = 2, the third implies the fourth (except for those cases of type
I*n where l(G)=3). Thus in most cases, we obtain no more than the
simple condition 03BC-  0 above; even in the others, we can only strengthen
it to 03BC- 1. A lattice-theoretic analysis applying to the general case is
given in [39].

The singularities of types II, III and IV are often called triangle
singularities. It was shown by Looijenga [38] and Pinkham [51] that all
cases with D  9 + Eu admit simply-connected smoothings, except for

Of these, only the last has no smoothings at all.

4. 7. Notes on the calculation of discriminant quadratic forms

As we observed in section 4.4 these can be easily calculated from the
resolution for all Kodaira singularities. However, some special features
can be observed without doing the numerical work.

For hyperbolic singularities, the resolution forms a cycle; this con-

tributes an element of infinite order in G = H1(L). However, the torsion
subgroup of Hl ( L ) can be obtained from the quadratic from defined by
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the exceptional divisor, or alternatively from the matrix A given earlier:
either leads to an inductive formula for the order of this group. Since
dual singularities can be "attached" to form an Inoue-Hirzebruch surface,
the links L and L* must be diffeomorphic. Hence there is an isomor-
phism of W on G* taking q to - q * .

For a triangle singularity X we can use the resolution of X given by
three smooth rational curves with a single common point. Now this has
the same parameters as a resolution for the hyperbolic singularity 03B2X
(with exceptional set a triangle), except that the components instead of
forming a cycle have a single common point. This does not affect the
calculation of the discriminant quadratic form, which is thus the same for
X and /3X.
We have already given in section 1.2 the order of G in most cases;

there remains the case I*n(k1, k2 , k3, k4)’ The order here is a linear

function of n ; the constant term is given by the value at n = 0; the
coefficient of n turns out to be

We shall also need the discriminant quadratic forms corresponding to
the lattices with the graphs of Schemas 4,5. As usual, such a graph
defines a lattice as follows. The vertices correspond to the elements of a
basis of the lattice and the matrix of the bilinear form with respect to this
basis is determined by the graph: the diagonal terms are - 2 and the
remaining terms 0 unless the corresponding nodes are joined by an edge,
when we have 1.

Here we use a device first proposed by Brieskorn [7]. We augment the
graph by joining each vertex of valence 1 to a new vertex, which will give
a new basis vector with diagonal entry -1 in the extended matrix. We

Schema 4.



37

Schema 5.

can now see inductively that the extended quadratic forms are (odd)
unimodular, essentially using the fact, that " blowing down ( -1)-vertices"
does not alter the discriminant. The orthogonal complements of the
original lattices have bases ( a,, ... , al}, where 1 = 3, 4, 5 respectively, as
follows. We describe a, by assigning to the vertex of the extended graph
the coefficient of the corresponding basis vector, writing a, as a linear
combination in the extended basis. Then the vector a 1 is described in the

diagrams of Schemas 6,7. The other basis vectors are defined analo-
gously, where the arms of the graphs interchange their rôles. The bilinear
form with respect to these bases is described by the following matrices:

which are the intersection matrices of the (minimal good) resolution
graphs of the hyperbolic singularities

If we have a primitive embedding of a lattice H in an (odd) unimodular
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Séhema 6.

Schema 7.

lattice, then [47] the discriminant bilinear form of the orthogonal comple-
ment H~ of H is the negative of the dicriminant bilinear form of H.
Thus we can compute the discriminant bilinear forms of the original
lattices from the above matrices. By the results of sections 4.4 and 4.5 we
can thus also determine the discriminant quadratic forms.

From the results of section 4.5 and the identification of the discrimi-
nant quadratic forms of X and 03B2X we deduce:

PROPOSITION 4.7.1.: If X is a triangle singularity with D  5 then there is
an even lattice K, unique up to isomorphism, such that the Milnor lattice of
X is K ~ U and that of 03B2X is K ~ (0).

As t+ = 1, to = 0 for K, we shall refer to K as the associated hyper-
bolic lattice. As K is determined by t+, t- and the discriminant

quadratic form, we can identify K as follows. We have
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A more direct construction of the graphs giving these lattices is given by
Looijenga [37].

The parameters on the right-hand side defining the graphs coincide
with the parameters p* associated to the hyperbolic singularity f3X in
sections 2.2 and 3.2. If X is a triangle singularity with D  3, they are
often known as Gabrielov numbers (see below).

Indeed, one can interpret the above imbedding of the lattice K in a
unimodular lattice N geometrically using Looijenga’s construction.

Namely following [37], the Milnor fibre of the hyperbolic singularity f3X
is homeomorphic to a rational surface with homology lattice N, where a
cycle of rational curves with one of the above intersection matrices is
removed.

5. The Milnor lattice

S.l. Dynkin diagrams

We have seen in sections 4.1 and 4.5 how to associate a Milnor lattice to
each Kodaira singularity with D  7, and that each such lattice is

uniquely of the form K ~ (0) (hyperbolic cases) or K ED U (otherwise),
where K has signature (1, p - 2) or (1, jn - 3) and is called the hyper-
bolic sublattice.
Now it turns out that if D  5 each such lattice K has a basis {ei}

such that, for each i, j,

As is customary, we represent this by a graph, called the Dynkin
diagram, with a vertex v, for each basis vector e,, and an edge joining
vtvj whenever (e,, ej) = 1. The basis can be taken such that this diagram
is connected and contains no vertex of valence &#x3E; 3. Thus the matrix of

the bilinear form with respect to this basis, multiplied by -1, is an
indecomposable symmetric Cartan matrix of negative type in the sense of
Kac [24], such that the corresponding Dynkin diagram has no multiple
edges, and no vertices of valence &#x3E; 3.

For the hyperbolic and triangle singularities, an appropriate diagram
was constructed in the preceding section. Alternatives for some of these,
and diagrams for the remaining cases, are displayed in Table 4.

In the hypersurface case, each singularity also determines a class of
distinguished bases of vanishing cycles in the lattice. In these cases the
diagrams of Table 4 can be extended to Dynkin diagrams of dis-

tinguished bases of vanishing cycles as follows: For the hyperbolic
singularities let vp be the vertex of valence 3 and j oin v03C1 and the adjacent
vertices with a new vertex Vp+ 1 as in Fig. 1. For the corresponding
hypersurface singularities of type II, III, IV one has to join vr+1 with
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FIGURE 1.

another vertex v03C1+2 as in Fig. 1. This yields the diagrams of Gabrielov
[20a]. Recall that these diagrams led to the original discovery of the
strange duality. In the other hypersurface cases, let be the left vertex of
valence 3 and apply the same construction. But now v03C1+2 has to be

joined by a dotted edge to another vertex v1, such that the resulting
graph fits into the pattern of Fig. 1. Here a, b, c  2, d, e  1, 03BA, 03BB ~ (0,
1} and K = 0 (1) mans that there is no edge (is an edge) between vd+e-l 
and Ua+d+e-1 (cf. [18]).

In the nonhypersurface but nonhyperbolic complete intersection case
we claim that the vertices of the diagrams of Table 4 still correspond to
vanishing cycles in the Milnor lattice. Here we argue as follows. Pinkham
[50] has shown, that the monodromy groups of the complete intersection
singularities of triangular type II, III, IV can be characterized arithmeti-
cally. The first author has extended Pinkham’s result to large classes of
hypersurface singularities, including all nonhyperbolic Kodaira singulari-
ties with D  3 [16,17], and very recently to all complete intersection
singularities, which deform into one of the above singularities [17, Note
added in proof; 19], thus to all nonhyperbolic Kodaira singularities with
D  4 (see section 5.3). But from the description of the monodromy
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group one can derive that the set of vanishing cycles can also be
described in purely lattice-theoretic terms: The vanishing cycles are

exactly the minimal vectors x in H with (x, x) = - 2, such that there
exists a y e H with (x, y ) = 1. But these conditions are satisfied for the
elements corresponding to the vertices of the diagrams of Table 4.

Moreover, if one extends the diagrams as for the hypersurface singulari-
ties of type II, III, IV, the corresponding bases are bases of vanishing
cycles, such that (by [19, Theorem 3.2]) the monodromy groups are
generated by the corresponding reflections. We mention that for the 8
complete intersection singularities of triangular type, the diagrams of
Table 4 were already given by Pinkham [50].

5.2. The strange duality

We observed in section 4.2 that extending the strange duality from D  3
to D  4 involved a " virtual" singularity n = - 1 in each series I*n(k1, k2,
k3, k4). To this we can associate a lattice in the following way.

Let H(I1) (n ~ NB) be the Milnor lattice associated to I*n(k1, k2, k3.
k4) with 03A3kl  5. Then H(n) has rank 03BC(0) + n and discriminant 0394(0) + bn
for certain integers p.(0), D(0), b which are listed above. Moreover, the
resolution graphs determine a primitive embedding of H(n) in H(n+1) for
each n. Let J(n) be the orthogonal complement, which has rank 1 and is
therefore determined by its discriminant disc j(n). But

for a polynomial p which depends on the series. Let J(n-1) be the lattice
of rank 1 with disc J(-1) = p(-1). One can show in each case, using [47,
1.15.1], that there is a unique primitive sublattice H(-1) of H(0) of rank
03BC(0)-1 and discriminant 0394(0) - b and ( to, t+) = (0, 2), such that the
orthogonal complement is equal to J(-1). The finite quadratic form
corresponding to H(-1) is given by setting n = - 1 in Table 3. Again we
can uniquely decompose

and the hyperbolic lattice K(-1) has again a basis as above. One gets a
Dynkin diagram with respect to such a basis, if one sets n = -1 in Table
4 in the corresponding entry. In general one can take any sequence of
diagrams of {K(n)}n=0,1,..., which induces the right embeddings of H(n)
in H(n+1), and take the diagram for n = - 1, if it is defined. But now
these lattices K(-1) coincide with the hyperbolic lattices associated with
Yn-1X = I4(k1 + 2, k2 + 2, k3 + 2, k4 + 2). Thus the lattice duality (03B4)
already established for the hyperbolic singularities D  4, D*  4 yields
a duality (03B42) here, with the newly constructed lattices K(-1) added to
the list of lattices of the triangle singularities. Let us define the Dolgachev
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numbers of the " virtual" singularity n = -1 in a series I*n(k1, k2 , k 31
k4) to be p, = 2 + k,, 1  i  4, and the Gabrielov numbers to be the
Gabrielov numbers p* of the lattice K(-1) (cf. section 4.7). Then, as in
the original strange duality, one makes the following observation (see
Tables 2 and 4):

THEOREM 5.2.1: With respect to the extended duality (&#x26;2), the Dolgachev
numbers of a singularity coincide with the Gabrielov numbers of the dual
singularity.

Moreover, one has the following fact: Let K be the hyperbolic
sublattice associated to the Milnor lattice of a singularity of type In, II,
III, IV or to H(-1) for a series of singularities of type 1* and let K* be
the corresponding dual lattice. Then by [47,1.14.4] there exists a unique
primitive embedding of K ~ U into the unimodular lattice

which is the homology lattice of a K-3 surface, and the orthogonal
complement is just K*. For the exceptional unimodular singularities,
Pinkham [43] has given a geometric realization of this embedding and
conjectured the uniqueness.

Another feature of the original strange duality observed by Arnold is
that the Coxeter numbers of dual singularities coincide. The Coxeter
number of a singularity was originally defined by Arnold using integrals
of a corresponding oscillating function [2,4]. For the 14 hypersurface
triangle singularities it is a negative integer - N; its values can be found
in [4]. In this case there are also two other interpretations of the absolute
value N of this number. It coincides with the degree d of a weighted
homogeneous equation defining the singularity (see section 3.4). In

section 4.3 we defined Il rational numbers r,, 1  i  03BC, such that

xi = exp(2TT/-l r,) are the eigenvalues of the classical monodromy oper-
ator. Then N is also the least common multiple of the denominators of
these numbers r,.
We use these two interpretations to extend the definition of the

Coxeter number to complete intersection triangle singularities on one
hand, and to the " virtual" singularities of series of bimodal hypersurface
singularities on the other hand.

For a complete intersection singularity which is given by weighted
homogeneous equations f 1 and f2 of degree d 1 and d2 , we define N to
be the least common multiple of d 1 and d2.
On the other hand, consider a series of singularities I*n(k1, n k2, k 3 , k4)

with D  3. We associated above to the " virtual" singularity n = -1
certain Dynkin diagrams of the hyperbolic sublattice by setting n = - 1
in a sequence of diagrams for n  0. Now extend these diagrams to
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Dynkin diagrams of distinguished bases of vanishing cycles as explained
in section 5.1. Let C(n) be the product of the reflections corresponding to
the basis elements in the given order in a diagram for I*(kl, k2, k3, k4).
Note that, for n  0, C(") is just the monodromy operator. Now set again
n = -1 and let 03BB1, ... , 03BB03BC(-1) be the eigenvalues of C(-1), which can be
computed using the general formula for the characteristic polynomial
given in [18]. They are again of the form À, = exp(203C0~-1 rl) for certain
rational numbers r, determined modulo Z. Then define N to be the least
common multiple of the denominators of these numbers r,. By the

remark following Theorem 5.4.1. below, N does not depend on the
chosen Dynkin diagram of an entry of Table 4; one can also take the
diagram defined by the Gabrielov numbers and extend it as in the

hypersurface case. For each series, the value of N can be found in the
tables of [20b], where one has to set p = - 1 in the column corresponding
to N (but note that in [20b] N is defined to be some common multiple of
the denominators, not necessarily the least common multiple).
Now we observe the following fact:

THEOREM 5.2.2: Given any of the 8 triangle singularities with D = 4, its

Coxeter number N coincides with the Coxeter number N of the correspond-
ing dual "virtual" singularity of a bimodal series under our extended duality
(&#x26;2)’

Using the notation of Table 2, we tabulate for each triangle singularity
with D = 4 the values of d, , d2, and N, and its dual:

Now let us regard the duality 83 defined in section 4.2 which concerns
the right part of the tables. For g = 1 we have a symmetry around the
diagonal starting in the upper right corner of the table. Here the Milnor
lattices of dual singularities are not complementary but isomorphic.
(Concerning column 1. and the last row, this statement is only true for
the hyperbolic sublattices.) For g = 2, we have to replace the right
column of the double column Ii by the corresponding column for I2
(this does not change the discriminant). Then one has a symmetry of part
of the diagram, but not in the principal diagonal. Again the quadratic
forms of dual singularities are isomorphic. In particular we get examples
of singularities of grade 4 and 5 which have the same quadratic forms as
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hypersurface singularities. But whenever defined, the Coxeter numbers of
dual singularities are not equal.

In Section 5.4 we shall construct an extension of the table for g = 2 on
the right by two additional columns (for lattices corresponding to " vir-
tual" singularities). In the new larger table (Table 5) the symmetry
described above can be extended. One can prolong the axis of symmetry
to the first row to get on both sides isomorphic lattices, because up to the
last element the first new column corresponds exactly to the right part of
the first row. Moreover, one can extend the axis to the last row. Then the
Milnor numbers and discriminants of the symmetric pairs of the last row
and the corresponding column satisfy

with no replacement in the columns I i .

5.3. Adjacencies

We first note a slight extension of a result standard for hypersurfaces.

PROPOSITION 5.3.1: Let (X, x) and (Y, y) be Kodaira singularities, and
suppose (X, x) deforms into (Y, y). Then there exists a primitive
embedding of the Milnor lattice of ( Y, y) into that of (X, x).

PROOF: In the semiuniversal deformation of (X, x ), chpose a small ball
around y E Y which intersects a smooth fibre X’ in a Milnor fibre Y’ of
(Y, y ). The proposition then follows from the exact homology sequence
of the pair (X’, Y’), using H, ( X’, Y’) = Hl (Y, y), Hl(Y’) = 0 and the fact
that Y can be chosen to be Stein. D

Now according to Laufer [36, Theorem 4.13] we have, for each series
of singularities, adjacency relations with constant grade forming (a
subdiagram of) the following diagram:

More precisely: for each k1 &#x3E; 1, we have the entire diagram (other k,,
where needed, are taken as 0; ki = n is determined uniquely for each In ).
For k1  k2 &#x3E; 1 (and other k, = 0), we have to omit the entries Il, II and
11 *. There are two choices for I4 , I5 and I n (n  1): III* (resp. IV*)
deforms to each of the alternative I*2 (resp. I*1); 1*(k, k’, 0, 0) deforms to
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each of the I5 while I*1(k, 0, k’, 0) deforms only to that with k* = (4, 1)
(but not to the one with k* = (3, 2)), and specialisations of the In
proceed by diminishing one of the k * by 1.

For g = 3 the diagram reduces to

but the cases corresponding to the entries can be more numerous.
We next consider these adjacencies from a different viewpoint: this

will show that the singularities of type 15 play for lattices of types IV*,
III*, II * a role analogous to that of I4 for lattices of type I*n.

5.4. Transforms

Let S be the Dynkin diagram corresponding to an indecomposable
symmetric Cartan matrix. We assume that S has no multiple edges and
no vertices of valence &#x3E; 3. We associate a weighted graph S’ to S as
follows: Replace each subgraph

where v, is a vertex of valence 2 for i ~ 1, 1 and of valence "4= 2 for i = 1,
l, by

We call the graph S’, which can now have loops and multiple edges, the
scheme of S, the weights of S’ the weights of S and the underlying
unweighted graph the shape of S.
We call a weight of S’ an outer weight, if one of the vertices of the

corresponding edge of S’ has valence 1, otherwise it is called an inner

weight. Let SI and S2 be two such graphs of the same shape with weights
w(1)1,..., W;l) respectively w(2)1, ... , w(2)r and let I be a subset of the index
set {1, ... , r). We define

SI  S2 (with respect to I )

if and only if w(1)i = w(2)l for i ~ I, w(1)i  wi(2) for i E I. The number
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is called the distance of Si and S2.
We define an operation on graphs, which produces new graphs

defining the same quadratic form. Let S be a graph as above. Let Q be a
subgraph of S, which is an extended Dynkin diagram in the classical
sense, that is, an extended A,,-, D"-, E6-, E7- or E.-diagram and let vk be
a vertex of S which is neither contained in Q nor connected by an edge
to a vertex of Q. We shall define a transformation 03C4q,k depending on the
choice of Q and v. and only defined for special choices of Q and v. as
follows. The lattice corresponding to Q contains a distinguished isotropic
vector w; w is the sum of the longest root of the corresponding finite
root system and the additional vector [8]. Thus the coefficients of w are
exactly the coefficients of the fundamental cycle associated to a resolu-
tion graph, which corresponds to the extended Dynkin diagram Q (cf.
section 1.3). Let

Then the new basis ( e(’) 1 satisfies again (e(1)l , e(1)l) = - 2, since ( w,
ek) = ( w, w) = 0. If (ek e(1)l) E {0, 1} for i =1= k and the new graph S(l)
corresponding to {e(10l} is connected, then we define

If S(1) is not connected or if there exists an i ~ k with |(e(1)k, el(1»)1 &#x3E; 1,
then 03C4Q, k is not defined. If finally for some i (e(1)k), e(1)l) = -1, we shall
continue transforming as follows. Choose jl with (ek e(1)j1) = -1 and
let

If now |(e(2)k, e(2)l) &#x3E; 1 for some i or (e(2)k, e(2)l) = -1 for e(2)l ~ Q, then
03C4Q,k is again not defined. If (e(2)k, e(2)j2) = - 1 for ej2 ~ Q we set again

and continue in this way until we reach at step N one of the following
situations:

(a) |(e(N)k, e(N)l)| &#x3E; 1 for some i ~ k,
(b) (e(N)k, e(N)l) = -1 for some i ~ k with e(N)l ~ Q,
(c) (e(N)k, e(N)l) ~ (0, 1} for all i ~ k.

In cases (a) and (b) TQ, k is not defined. In case (c) the matrix correspond-
ing to {e(N)l} is again a Cartanmatrix and the corresponding graph S(N)
has no multiple edges. We define in this case
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One easily checks that there is such an N, at which the process stops, and
that TQ./.. does not depend on the choice of the sequence jl, J2,..., jN, if
it is defined.

EXAMPLE: 

Schema 8.

The graphs obtained from S by these transformations or sequences of
these transformations with same Q are called the transforms of S. The
transforms of S which are different from S are called the proper
transforms.

Using these definitions we have the following characterisation:

THEOREM 5.4.1: The hyperbolic sublattices of the singularities of type II, III
and I V with D  5 are exactly those given by the graphs of the types Tp, q, r,
03A0p, q, r,s, and 03A9p, q, r, s, r, which define hyperbolic lattices and have no proper
transforms.

Let G be the set of these graphs. Let B(d) be the set of all graphs R
of the types T2.3.r’ T2,q,r (q, r  4), Tp,q,r (p,q,r  3), 1-Ip@q,r,s’ S2p,q,r,s,t
such that S  R with respect to p, q, r, s, t for all S G M and

d= min{d(S, R)|S ~ G}.
The graphs of 91(1) are listed in column I4 ~ I*n in Table 4. They
correspond to the hyperbolic sublattices of the singularities of type 14
resp. to the lattices K(-1). The graphs of B(2) are listed in the middle
columns. They correspond to the hyperbolic sublattices of the singulari-
ties of type 15. All these graphs do have transforms. They are listed in
Table 4 in the same entries (setting n = -1 in column I4 H I*n).

REMARK: There are certain groups of transformations of Dynkin di-
agrams, which preserve the properties of being the diagram of a (weakly)
distinguished basis. Let Z° resp. Z* c Z° be this group with respect to
weakly distinguished resp. distinguished bases as defined in [18]. Then in
general 03C4Q,k ~ Z °, since Z ° leaves the group generated by the reflections
corresponding to the basis elements invariant. But if one extends in the
hypersurface case the diagrams of column 14 H In (n = -1) and 1, by
two additional vertices to diagrams in the canonical form with respect to
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distinguished bases as described in section 5.1, then the corresponding
diagrams in the same entry are equivalent under Z*, as can be shown.

The graphs of type II and S2 have a distinguished 5- resp. Â,-sub-
graph. We now consider the order relation  between graphs with
respect to those inner weights which in the cases II and 03A9 do not belong
to these subgraphs. These are the underlined weights in Table 4. We then
have the following characterisation of the remaining lattices:

THEOREM 5.4.2: (a) The hyperbolic sublattices of the singularities of type 1*
are exactly those given by graphs R &#x3E; S, where S is a transform of the
graph of B(1) associated to the singularity under the bijection 03B3n of section
2.3.

(b) The hyperbolic sublattices of the singularities of type Ii, IV*, Ill*
and II* of a row of Table 4 are those given by the graphs R satisfying the
following conditions:

(i) R &#x3E; S, where S is a transform of a graph of e (2) of the same row.
(ii) R defines a hyperbolic lattice.
(iii) For each chain R1  R2  ···  Rk = R with d(R1, Rl+1) = 1

and R 1 minimal, there exists an i =1= k such that R, is a proper transform of
a graph of B(2) of the same row.

(iv) A transform of each graph of B(2) of the corresponding row is

reached by (iii).

We have listed all such graphs in Table 4. To each relation R1  R 2
between such graphs corresponds an adjacency (achieved over the simul-
taneous-blow-down parameter space [36]) between the corresponding
singularities. There are still some classes of graphs which satisfy only the
conditions (i), (ii) and (iii) and not (iv) of Theorem 5.4.2. In each row of
Table 4 also the graphs which satisfy these conditions and belong to
singularities of the same row are given. But in the table for g = 2 these
are not all the graphs satisfying (i) to (iii): There are additional graphs
and one can extend Table 4 ( g = 2) according to these additional graphs.
The result is shown in Table 5(c). It turns out that these graphs define
lattices, which can be identified with the hyperbolic sublattices of certain
Kodaira singularities. The names of these singularities, Milnor numbers
and discriminants are tabulated in Table 5(a), the discriminant quadratic
forms in Table 5(b). Table 5(a) resp. 5(b) are the corresponding exten-
sions of Table 2 resp. 3. Concerning these singularities, there are now
relations R1  R2 in Table 5(c), which do not correspond to adjacency
relations.

5.5. Fundamental vectors

Here we give another characterisation of the hyperbolic sublattices of the
singularities of type II, III and IV with D  5.
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Let K be an even, nondegenerate, indefinite lattice with a basis
B = {e1,...,e03C1}, such that A =(-(el, ej)) is an indecomposable sym-
metric Cartan matrix. Let S be the corresponding graph.

DEFINITION: A fundamental vector with respect to B is a vector x = 03A303BElel
~ K such that

So a fundamental vector with respect to B is thus a positive integral
vector which lies on the boundary of the fundamental chamber with
respect to B (cf. [26]).

LEMMA 5.5.1: Let x be a fundamental vector with respect to B. Let

J = { j ~ { 1, ... , 03C1} | (x, ej) = 0} . Then M = L J E J leI is a negative defi-
nite lattice (and hence a sum of An, Dn, E6, E7 or E8).

PROOF: Since K is nondegenerate, J ~ {1, ... , 03C1}. Let J = J1 ~ ··· ~ Jk
be the partition of J corresponding to the decomposition of the subgraph
of S with respect to {eJ| j ~ J } into connected components. Let x(1) =
03A3J~Jl 03BEJeJ for 1  1  k. Now since (x, eJ) = 0 for j E JI and since there
exist numbers i ~ Jl, j0 ~ Jl, such that (el, ej0) &#x3E; 0, it follows that

for all j G Jj and  0 for at least one j. Therefore (x(l), X(l))  0 and by
[5, Proposition 2] K is negative definite. D

DEFINITION: A small fundamental vector (with respect to B) is a funda-
mental vector x = 03A303BElel satisfying the following additional conditions:

(i) (x, x)  4,
(ii) Vi i (x, el)  2, (x, el) = 2 for at most one i, (x, el) = 2 ~ 03BEl = 1.

If x is a small fundamental vector, the coefficients e, give a valuation
03BE : S ~ N - {0} of the vertices of S. We call such a valuation a small
fundamental valuation.

THEOREM 5.5.2: The hyperbolic sublattices of the singularities of type II, III
and IV are exactly those given by the graphs of the following type, which
possess a small fundamental valuation:
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The graphs together with a small fundamental valuation correspond-
ing to a small fundamental vector of minimal length are listed in Table 6.

All the singularities of type I *, IV*, III*, Il* also have a diagram with
a small fundamental valuation; in each case one of the listed diagrams in
Table 4 satisfies this condition.

6. Tables

Notations and remarks

The numbers in parentheses refer to the section, where the notations are
defined.

Table l: Normal degrees and sequences k*, k

This table defines the scheme of all the tables. The upper row of an entry
of this table corresponds to an alternating sequence k*, k,

(section 2.1), the lower row to the corresponding sequence

On the left-hand side we have listed the 92 cases of such sequences up to

cyclic order with D, D*  5 (section 2.1). We have made up a subtable
for each value of g, 1  g  5. For a fixed value of g, we have written in a
row all alternating sequences k *, k with the same k, in a column all
those with the same k*. The order among the rows and columns is given
by the order of the sequences k resp. k * as listed in section 2.1. If the

cyclic order of the alternating sequence k*, k is not unique, we divide the
corresponding entry into two parts separated by a dotted line.

Each column is labelled by the type In to which the sequence corre-
sponds. The correspondences /3 and 03B3n, (section 2.3) are also indicated.
Each row is labelled by D, which is the grade of the singularity (section
1.3). The duality 8 (section 2.1) is now given by reflection in the principal
diagonals starting in the upper left corners.
Now we reflect the tables at the middle columns, interchanging the

columns for 14 H In, if there are two of them. This gives the complete
table. To the right-hand side we associate the singularities of type 1*,
IV*, III*, and II* according to the correspondences yl and E - /3-1. The
corresponding columns are labelled by these types.
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Table 2: Names, Milnor numbers and discriminants

We have indicated in an entry:
Upper left corner: Notation of Arnold-Wall (section 3.1). In the case

of the correspondences 03B2 and yn we refer to the singularities of type II,
III, IV and I*.

Upper right corner: Sequence p defined for type II, III, IV, I*0 in
section 1.2, for In, 1  n  4, in section 2.2, for 1, in section 3.2.

Lower left corner: Discriminant = order of TRI (L) (section 4.4).
Lower right corner: Milnor number (section 4.2). In the case of the

correspondences 03B2 and 03B3n we make the same convention as for the upper
left corner. Compare section 4.2 for the relations between the Milnor
numbers under the correspondences.

Table 3: Discriminant quadratic forms

The notations for the discriminant quadratic forms are explained in
section 4.4. In order to give a uniform description of the discriminant
quadratic forms of the series In, it is necessary to use also the following
notation: ( k/m ), where k, m E N, denotes the finite quadratic form (G,
q), where G is a cyclic group of order m and q takes the value ( k/m )
(mod 2Z) on a generator of G.
Two cases need an extra explanation. The symbols q1(n) resp. q (n)

stand for the finite quadratic forms defined on the finite abelian groups
G(n)1 resp. G(n)2 by the following matrices with respect to a standard set
of generators (where the diagonal entries have to be taken mod 2Z, the
other entries mod Z):
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Table 4: Dynkin diagrams

Here we give Dynkin diagrams of the hyperbolic sublattices (section 5.1).
Below (in Figure 2) is an explanation of the symbols used. We draw the
schemes of the corresponding graphs (section 5.4). Note that the first

diagram in each entry of column I4 H I*n is a diagram of I 4 . For more
information we refer to section 5.

Table S: Extension of the Tables 2-4 for g = 2

This table presents the extension of the Tables 2-4 for g = 2 at the

right-hand side defined in section 5.4. It shows the strange duality
considered at the end of section 5.2. Note that the right column of the
original column Ii is replaced by the corresponding column for I2. The
notation is as above.

Table 6: Small fundamental valuations

This table shows the small fundamental valuations (section 5.5), which
exist according to Theorem 5.5.2. A small fundamental valuation 1 : S -
N - {0} corresponds to a small fundamental vector x = 03A303BElel. We have
additionally indicated in an entry: a vertex v, with ( x, e, ) = 1 resp. 2 by

the number 03A303BE, in the lower left corner, and (x, x) in the lower right
corner.
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