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ON THE DISCRIMINANT OF THE ARTIN COMPONENT

Ulrich Karras

Introduction

By a normal surface singularity (V, p) we understand the germ of a
normal complex surface V at the singular point p. Let 03C0: M - V be the
minimal resolution. Laufer, [12], has shown that there exists a 1-convex
flat map w: 9N - R over a complex manifold R of dimension m =
dimCH1 (M; 0398M) which represents the semi-universal deformation of
the germ of M at the exceptional set E, see also [7]. If (V, p ) is rational,
i.e. R103C0*OM = 0, then w simultaneously blows down to a deformation of
(V, p ). This procedure yields a holomorphic map germ (D: (R, 0) ~ (S,
0) where ( S, 0) denotes the base space of the semi-universal deformation
à: (V, p) ~ (S, 0) of the given rational singularity. Results of Artin, [1],
say that the blowing down map (D is finite and that the germ of the image
Sa : = 03A6(R) is an irreducible component of the deformation space ( S, 0)
which is also called the Artin component. The aim of this paper is to

study the base change given by 4Y, the discriminant 0394a : = à n Sa of the
Artin component, and the singularities of the fibers corresponding to
generic points of 0394a.

Basic examples are provided by the rational double points (RDP’s)
which arise as singularities of quotients of C2 by actions of finite

subgroups of SL2(C). Let r be the weighted dual graph associated to the
minimal resolution of such a singularity. Then it is well known that such
r correspond uniquely to the Dynkin diagrams which classify those
simple Lie algebras having root systems with only roots of equal length.
It is the work of Brieskorn, [2], which makes this connection more

precise. In particular it turns out that the map germ 0: (R, 0) - (S, 0)
can be represented by a Galois covering whose group of automorphisms
is the Weyl group of the corresponding Lie algebras. Further the dis-
criminant à c S of the semi-universal deformation 8 is an irreducible

hypersurface such that the fiber over a generic point of à has an ordinary
double point as its only singularity. Our main result, Theorem 2, gener-
alizes these results to arbitrary rational singularities. In this general case,
the group of automorphisms which represents the map germ (D: (R,
0) ~ (Sa’ 0) is isomorphic to a direct product of Weyl groups which
correspond to the maximal RDP-configurations on the minimal resolu-
tion of the given rational singularity.
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A crucial point is to verify smoothability of the exceptional divisors
which "carry the cohomology of M ", see Theorem 1. The author’s main
result in [8] plays a significant role in the proof of it. As an application of
our method it is shown that the smoothings of a given divisor occur on
irreducible components of the same dimension for which we can give an
explicit formula. Assuming the smoothability, this has been proved by
Wahl, [19], in the formal category. Here we carry out a different proof
using the concept of weak lifting introduced by Laufer, [11].

Under the smoothability condition, the essential parts of Theorem 2
have been also already stated in [18], [19] but Wahl’s approach only
works well for the deformation theory taking place on the category of
artin (resp. complete) local C-algebras. The reason is that it is not known
yet if there exists an analytic semi-universal deformation of 1-convex
spaces with isolated singularities. This has been only proved in the

smooth case, [12]. So we cannot use Wahl’s arguments in a straightfor-
ward way.
Our proof is based on an explicit description of the action of the direct
product of Weyl groups on the deformation space R of M, see §3.

NOTATIONS AND CONVENTIONS: We write hi(X; F: = dimCHl(X; F),
~(F) := 03A3(-1)lhl(X; F), 0  i  dim X, and use the standard symbols
(9, O, 03A9k in order to denote the sheaf of germs of holomorphic functions,
the tangent sheaf and the sheaf of differential k-forms. There will be no

systematic distinction between germs and spaces representing them
whenever there is no serious likelihood of confusion.

ACKNOWLEDGEMENTS: Part of this paper was done during my stay at the
Max-Planck Institut für Mathematik in Bonn. 1 appreciate very much the
pleasant and stimulating atmosphere 1 encountered there.

§ 1. Smoothing of cycles

1.1 Let 7T M - V be the minimal resolution of a normal surface

singularity ( h, p ) with exceptional set E. In this paper we additionally
assume that the minimal resolution is good, i.e. the irreducible excep-
tional components El, ... , Er are smooth and have normal crossings. A
cycle D on M is a divisor on M which is given by an integral linear
combination of the irreducible exceptional components. Suppose D is a
positive cycle. Then the corresponding curve (supp(D), (9D) will be also
denoted by D. By the topological type of D we understand the weighted
dual graph associated to the embedding of supp(D), the support of D, in
M together with the multiplicities of the irreducible components of D.

1.2 Let y: 9N - Q be a flat map which represents a deformation of the
germ (M, E ) over the germ of a complex space Q at a distinguished



113

point 0. We may always assume that y is a 1-convex map and that each
fiber mq is a strictly pseudoconvex manifold with a well defined

exceptional set Eq, [15]. By lff we denote the union of the exceptional sets
Eq, q ~ Q, provided with the reduced complex structure.

1. 3 One says that a positive cycle D on M lifts to the germ ( Q, 0) if there
exists a complex subspace e of 9Y such that, after possibly shrinking of
Q, the restriction 03BB : = 03B3|D: D ~ Q is a deformation of D = D0 which is
also called a lifting of D over (Q, 0). Equivalently, a lifting of D is given
by a relative Cartier divisor -9 on 9N whose intersection with M = m0
gives D. This concept yields a contravariant functor .PD ( -) from the
category of germs of complex spaces to the category of sets which is
defined by

FD((Q, 0) ) : = set of equivalence classes of

( M, E ) over ( Q, 0) together with a lifting of D.

Let Def(( M, E), - ) denote the deformation functor of (M, E), and let
C 1 denote the 0-dimensional germ (0, C~t~/(t2)). Then it turns out that,
via the well-known identification of Def(( M, E), CI) with H1( M; 0398M),
we have a natural isomorphism

where y* is induced by the homomorphism y : 0398M ~ OD(D) of sheaves
which can be locally described as follows. If 0 is a vector field near a

point x E M and f(z) is a local defining equation for D near x, then
03B3(03B8) = 03B8(f), compare [19], [11], [7].

Furthermore it can be shown without any difficulties that there exists

a semi-universal formal lifting, i.e. YD(-) has a hull in the sense of
Schlessinger on the category of 0-dimensional complex spaces. Unfor-
tunately it is not known whether there exists a lifting which is semi-uni-
versal with respect to germs of complex spaces of arbitrary dimension. To
avoid this unpleasant difficulty at least in the case of reduced parameter
spaces, Laufer, [11], has introduced a weaker notion of a lifting.

1.4 Suppose that Q is reduced. Then a positive cycle D weakly lifts to the
germ (Q, 0) if for each q e Q, q near 0, there is a (necessarily unique)
cycle Dq &#x3E; 0 on Wèq such that D and Dq are homologous in W. Note
that the family of cycles {Dq}, q ~ Q, also called a weak lifting of D,
does not define in general a Cartier divisor on 9JZ. But his is true if Q is
smooth. So a positive cycle lifts to a smooth space if and only if it weakly
lifts. By semi-continuity X(9q) = ~(D) for a lifting of D. Hence, using a
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resolution of given parameter space Q, it can be readily seen that

X(Dq) = X(D) and Dq · Dq = D · D for a weak lifting (D. 1 of D over
(Q, 0), too. Now the point is that to each deformation y : m ~ Q of (M,
E) over a reduced space Q there exists a maximal reduced subspace (QD,
0) c (Q, 0) to which a given positive cycle D weakly lifts, [11; Proposi-
tion 2.7].

1.5 Throughout this paper, w: m ~ R denotes a flat 1-convex map with
smooth parameter space R which represents a versal deformation of the
minimal resolution germ (M, E) of the singularity (V, p), i.e. the

Kodaira-Spencer map T0 R ~ H1(M; 0398M) is surjective. If this map is
also injective, then w represents the semi-universal deformation of (M,
E), see [12] or [7; §7].

Standard arguments in deformation theory show that the obstruction
space ob(2D) for the functor FD(2013) is given by

where 3"’"J is the sheaf of germs of infinitesimal deformations of D. If
there are no obstructions, then the notions of lifting and weak lifting
coincide. More precisely, if supp(D) is connected and h1(J1D) = 0, then

(i) RD is smooth,
(ii) fibers of À: C - RD are generically smooth,
(iii) codim R D = h1(OD(D)),

see [13; Theorem 3.5], [7; 11.8]. Clearly, h1(J1D)= 0 if D is reduced.

1.6 From now on assume h0(OD) = 1, e.g. take D to be the fundamental
cycle. Note that the vanishing of H1(J1D) implies that h0(OD) = 1 if

supp(D) is connected, [7]. Then straightforward computations show that

where Dred = LE, Ei c supp(D). Thus it is easy to find examples of D
(even in case of rational singularities of multiplicity  4) for which

H1(J1D) does not vanish. Now a major problem is to find useful weaker
conditions that guarantee that D is smoothable over RD.

1.7 PROPOSITION: Suppose D admits a decomposition D = 03A3ki. Di, ki  0,
1  i  s, such that h1(J1D) = 0 for 1  i  s. Then R contains an irreduci-
ble component of codimension

Using 1.5, the proof is clear since RD ~ ~1  i  sRD, by hypothesis.



115

1.8 Without loss of generality assume Dred = E. Then

where the R E ’s are smooth subspaces of R of codimension = h1(OE(El))
which transversally intersect in a smooth subspace E, see 1.5 and [11]. If
w represents the semi-universal deformation, then dim E =

h1(8M(log E)), [17]. But note that 03A3 is the moduli space for the functor
of equitopological deformations of M introduced by Laufer, [10] see also
[7; 11.14.3]. Hence w induces a locally trivial deformation of every
positive cycle Y over E. Thus D cannot be smoothable over E.

1.9 DEFINITION: Assume that Dred = E. Then a decomposition D = Lkl .
D,, 1  i  n, ki  0, is called a good decomposition of D if

1.10 Let R’D be an irreducible component of RD at 0. By [11; 2.1-2.2],
there exists a nowhere dense analytic subset S of R’D such that w induces
an equitopological deformation over R’D - S. Hence the topological type
of weak lifting of D is uniquely determined over R’D - S. Let t E R D - S,
t near 0, then we call t a generic point of R’D and a positive cycle Dt on
Wèt which is homologous to D in WC a generic weak lifting of D. We may
always assume that t is a smooth point of R’D.

1.11 LEMMA :

a ) Assume that Dred = E. Then, for every irreducible component R’D of R D
at 0, the support of a generic weak lifting Dt of D is the full exceptional set
of Wè t.

b ) Suppose the support of D is not smooth. If D admits a good decomposi-
tion, then, for every irreducible component R’D of RD of maximal dimen-
sion, a generic weak lifting Dt of D is not topologically equivalent to D. In
particular the pairs ( M, E) and (mt, Et) are not of the same topological
type.

PROOF. Let t be a generic point of R’D. Denote by (Vt the deformation of
mt over a sufficiently small representative of the germ (R, t ) induced by
(V. By the openness of versality, [12], wt represents a versal deformation
of the germ of Wè t along Et. It is obvious that a sufficiently small
representative of the germ (R’D, t ) is the maximal reduced subspace of R
to which Dt weakly lifts with respect to wt. Now suppose that Et ~
supp( Dt ). Then it would follow from Theorem 3.6 in [13] that the
deformation over the germ (R’D, t ) is not equitopologial; a contradiction
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to the generic choice of t, see 1.10. To prove part b), assume that R’D is
of maximal dimension. Then codim R’D  codim L. So we can verify our
assertion by similar arguments as before.

THEOREM 1: Suppose (V, p ) is a rational singularity. let 03C9 : m ~ R be a

flat 1-convex map which represents the semi-universal deformation of the
minimal resolution germ ( M, E) of (V, p). If D is a positive cycle on M
with ~(D) = 1, then we have:

(i) If R’D is an irreducible component of R D, then, for generic t ~ R’D,
the cycle Dt is smooth and is the ( full ) exceptional set of mt,
t ~ 0.

(ii) dim R’D = h1(0398Ml) + 1 + D · D
(iii) RD is smooth if D is almost reduced, i.e. D is reduced at the non-2

curves.

REMARK: It is most likely to expect that the R D’s are irreducible but we
cannot yet prove it.

1.12 COROLLARY: Assumptions as in Theorem 1. Then D is the only
positive cycle which weakly lifts to R’D and satisfies ~(D) = 1.

PROOF : Take Y to be an arbitrary positive cycle with ~(Y) = 1 which
weakly lifts to R’v. Then Y weakly lifts to a cycle Yt on WC t where t is a
generic point on R’D as in (i). Since ~(Yt) = 1 and Dt is the full

exceptional set of mt, we observe that Yt = Dt. Hence Y and D are
homologous in M. But this is only true if D = Y because the intersection
form on M is negative definite.

1.13 PROOF oF THEOREM 1: The last statement follows immediately from
1.5 and 1.6, see also [11]. So it remains to prove (i) and (ii). First let us
assume that D admits a good decomposition. Then we can continue as
follows.
We may assume that D is supported on the full exceptional set E.

Recall that ~(D) equals 1 if and only if D appears as part of a

computation sequence for the fundamental cycle Z on M. Hence h0(OD)
= 1 and there are only finitely many positive cycles Y on M which
satisfy Y  D and ~(Y) = 1. We do induction on this number N to verify
the first statement.

If N  6, then D is automatically reduced and we are done, see 1.5.
For N &#x3E; 6 consider an irreducible component of R D at 0, say R D, and let
Dn t E R’D, be a generic weak lifting of D. By 1.11 the support of Dt is
the full exceptional set of mt.

Dt is smooth. (1.13.1)

Recall that a sufficiently small representative of the germ (R’D, t ) is the
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maximal reduced subspace to which D, weakly lifts with respect to the
versal deformation wt of 9Rt t induced by w, compare the proof of 1.11.
By definition of a generic point, 03C9t determines an equitopological defor-
mation over (R’ , t ). Denote by Nt the number of positive cycles F  Dt
on 9R t which satisfy ~(F) = 1. We observe that Nt = 1 if and only if Dt
is smooth. If 1  Nt  N, then, by induction, it follows from 1.11b) that
wt is not equitopological over (R’D, t ) yielding a contradiction. If Nt = N,
then it can be readily seen that there exists a curve C on R’D passing
through 0 such that all points SEC, s ~ 0, are generic points of R’D and
such that every cycle Y  D with ~(Y) = 1 weakly lifts to C. Therefore w
is an equitopological deformation over C. This implies that D, and D are
of the same topological type. Now it is not difficult to see that a good
decomposition of D induces one of Dt. Thus it follows again from 1.11b)
that wt is not equitopological over (R’ , t ) yielding a contradiction. This
finishes the proof of (1.13.1) and hence of (i).

To do the second part, recall that the Kodaira-Spencer map pt : 7§ R -
Hl(8’)R ) associated to wt is surjective. Thus we know from 1.5 that Dt
lifts to a smooth subgerm (RDt, t) of (R, t) of dimension

see 1.3. But dim Ker 03B3t* = h1(0398m) + 1 + Dt · Dt, compare 1.5. Putting
together, we obtain formula (ii) since Dt · Dt = D · D and (RDt, t) =
(RI D 

It remains to check that every positive cycle D with ~(D) = 1 admits a
good decomposition. We again do induction on N. We may assume that
N &#x3E; 6 and that D is not reduced. Recall that ~(D) = 1 if and only if D
is part of a computation sequence for the fundamental cycle Z = Ez/ ’ El,
1  i  r., see [11;3.1]. Thus there is an irreducible component of D, say
Ek, such that ~(D - Ek) = 1 and Ek · (D - Ek) = 1. We claim that
D = D - Ek + Ek is a good decomposition. By induction and application
of previous arguments,

Now suppose that 2013D·D  codim E = L( ei - 1), 1  i  r, where el =

- Ei · Ei. Then it would follow that - Z ’ Z  codim Y- since D - D  Z ’ Z
as it can be readily seen. But this is impossible because

- Z. Z  codim . (1.13.2)
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To prove this inequality, we first show:

Z admits a good decomposition Z = d1Z1 + ... + dnZn such that

By the Main Lemma in [8], there exists a reduced, non-irreducible cycle
L  Z with ~(L) = 1 which additionally satisfies following property:
There is a positive integer k such that k · L  Z and z, = k for every
irreducible component E, satisfying Ei · L  0. We set Zl := L and
denote by Z2, ... , Zn the irreducible components E, of E which do not
appear in L or satisfy El · L = 0 and z, &#x3E; k. Then we can write Z = 03A3dlZi,
1  i  n, with dl  1 and d = k. We assert that this decomposition of Z
is a good one. Since h1(J1Zl) = 0 for 1  i  n, we have codim R Z =
h1(OZl(Zi)), 1  i  n, see 1.5. By Riemann-Roch we get h1(OZl(Zi))=
- 1 - Zi - Zl for 1  i  n. Since any irreducible component El with

El · Z, = 0 does not give a contribution to Z, - ZI, it is clear that

Now we can prove the inequality in (1.13.2). By 1.7 there exists an
irreducible component of R Z at 0, say R’Z, such that codim R’Z 
03A3h1(OZl(Zi)), 1  i  n. Let t be a generic point of R’Z, and let Z, be a
generic weak lifting of Z. Recall that Z, is the fundamental cycle on mt,
see the proof of Proposition 2.3 in [8]. By Theorem 3 in [8] Z, is
smoothable. Therefore Z, is smooth for otherwise 03C9t does not induce an
equitopological deformation over the maximal reduced subgerm of ( R, t )
to which Z, weakly lifts, compare our arguments in the proof of Lemma
1.11. So we can conclude as above that codim R z = -1 - Z · Z. Gather-
ing together, we get

It remains to show that this inequality is strict. First we observe that the
family {Z1,..., Zn} satisfies the hypothesis of Corollary 3.9 in [9]. Hence
there exists a 1-convex deformation 03C8 : X- B of M over a smooth curve
B to which Z lifts. Furthermore, if X : LT- B denotes the induced
deformation of Z, it turns out that As := supp(Fs), s ~ B, is a connected
component of the exceptional set of AI; and that es is the fundamental

cycle on AS, compare [9]. It is clear that AS blows down to a rational
singularity. Let As = As,l U ... ~ ASs,ns be the decomposition into irreduci-
ble components. Then, for s ~ 0, ns = n and As,i · AS,t = Zi - Z,, 1  i  n.

Applying (1.13.3) to !!l’s, s =1= 0, yields the strictness of the inequality
above for es - es = Z ’ Z. This completes the proof of Theorem 1.
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§2. The main result

2.1 Let (p: m ~ Q be a 1-convex map which represents a deformation of
the minimal resolution germ (M, E) of a rational singularity (V, p).
Consider the unique relative Stein-factorization

i.e. i is a normal Stein space and T is a proper, surjective holomorphic
map such that 03C4*m = Ox and T is biholomorphic on m - 03B5. Since
( h, p ) is rational, it is known, [15], that Cp is flat and 03C4|mt: mt ~ xt is
the Stein factorization of 9Rt, t ~ Q. Hence (x0, x), x := 03C4(E), is

isomorphic to (V, p ) and  : x ~ Q defines a deformation of (V, p). We
say  arises by simultaneously blowing down of cp. Conversely, consider a
deformation 03B4: y ~ Q of the rational singularity (V, p) such that 5 is

isomorphic over Q to the relative Stein factorization of a deformation
cr : m ~ Q of M. Then we call the diagram

a simultaneous resolution of 03B4.

2.2 One can generalize the construction above as follows. Let A c E be
an exceptional subset (not necessarily connected). Then (p induces a
1-convex deformation f : N ~ Q of a strictly pseudoconvex neighbor-
hood N of A. Blowing down of A yields a 1-convex normal space M*
which has singularities corresponding to the connected components of A.
Let E* be the exceptional set of M*. Then it is a rather easy excercise to
show that the relative Stein factorization with respect to f extends (after
possibly shrinking of m) to a commutative diagram

where T* is a proper holomorphic map and (p* is a 1-convex deformation
of M* inducing the deformation f of the singularities of M*. We say p*
arises by partially blowing down of 99 relative A.

2.3 Let *: V ~ S denote the semi-universal deformation of ( h, p ). Re-



120

place ~ by the semi-universal deformation w : m ~ R of (M, E). Then w
blows down simultaneously to a deformation w : B ~ R of (V, p). Hence
there exists a map-germ 03A6 : (R, 0) ~ (S, 0) uniquely determined up to
first order which yields the cartesian diagram

By a result of Artin, [1], one knows that + is a finite map and that the
image Sa : = 03A6 (R) is an irreducible component of S, the so called

Artin-component. Via the identification T0R  H1(M; 0398M), the kernel
of the tangent map T003A6:T0R ~ To S can be identified with the local
cohomology group H1E(M; 0398M). It turns out that

Hence 03A6 is a local embedding if M does not contain any - 2 curve. For
more details compare [16]. Following result is the analytic version of
Proposition 6.2 in [19].

2.4 PROPOSITION: Let deS be the discriminant of the semi-universal
deformation  of a rational singularity (V, p), and let 0394a := à rl Sa be the
discriminant of the Artin-component. Then

where 0394D := 03A6(RD) and A + is the set of positive cycles D on the minimal
resolution M with ~(D) = 1.

PROOF: Let R* := ~RD, D E A+. Suppose there is a t E R - R*, t near
0, such that the exceptional set Et of 9N, t is non empty. Let C be an
irreducible component of Et. Then C must appear in some irreducible
component é’ of éC m. Let Q := 03C9(03B5’). It follows from [11; Theorem
2.1] ] that é’ defines a weak lifting of a cycle Y ~ 039B+ over Q. But this
gives a contradiction. Hence the fibers of w are Stein manifolds over
R - R*, and we are done.

2.5 The matrix -(Ei·Ej) 1  i, j  r, defines an inner product (, )
on H := H2(M; R). Consider the finite sets
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It is easy to see that each element of 039B’+ is supported on an exceptional
subset of E which blows down to a RDP. Associating to each element of
A its fundamental class, we may consider A as a subset of H. Each
element D of A’ := A + U A’_ defines a reflection, say sD, at the hyper-
plane HD orthogonal to D which is given by

NOTATIONS:

(i) By W we denote the subgroup of GL ( H ) which is generated by
the reflections SD, D ~ 039B’. It is easy to check that SD sends

A,-(DI into itself and D to - D.
(ii) Let A denote the union of all - 2 curves on M, and let Al’’’.’ An

be the connected components of A. We call Ai a RDP-configura-
tion and A the maximal RDP-configuration on M.

2.6 LEMMA:

(i) If (V, p) is a RDP, then A = A’ and A is a root system of H with
039B+ as the set of positive roots. The group W is the Weylgroup of
this root system, and the associated Dynkindiagram is given by
the weighted graph r associated to the minimal resolution M.

(ii) Suppose (V, p) is rational. By Wi, 1  i  n, denote the Weylgroups
corresponding to the RDP-configurations Ai on M. Let Hi,
1  i  n, be the subspaces of H generated by the irreducible
components of Ai. By restriction one obtains a faithful represen-
tation W - GL( ~ Hi). Furthermore the induced action is

equivariantly isomorphic to the action of Il W, on ~ Hi.

PROOF: The first part is an easy exercise, see also [19; Lemma 6.6]. The
statements in (ii) follow immediately from (i) and (2.5.1). Therefore, to
prove (iii), it suffices to check the identity for reflections sD where D is
carried on a - 2 curve. But this can be easily done.

THEOREM 2: Let 7r: M ~ V be the minimal resolution of a rational surface
singularity (V, p).

( i ) There is an analytic W-action on ( R, 0) such that
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( ii) 03A6: ( R, 0) - (Sa’ 0) is a Galois covering and its group of automor-
phism is W. Further, Sa is smooth.

(iii) 0394a = ~ 0394D where D E A + runs through a fundamental set of the
W-action on A.

(iv) 0 D is an irreducible component if R D is irreducible.
(v) dim 0394’D = dim Sa + D - D + 1 for each irreducible component 0394’D of

là
(vi) Over a generic point of à’ , the fiber of the semi-universal deforma-

tion ~ : V ~ S has a cone singularity of degree d D - D as its
only singularity.

§3. Proof of Theorem 2

The last two statements of the theorem are easy corollaries of Theorem 1.

The crucial point is to define an action of W on R and to show that it is
the "right" action. Note that we cannot argue as in [18] since it is not

known if there exists a semi-universal deformation of strictly pseudocon-
vex spaces with isolated singularities. We retain the notations of previous
sections.

3.1 Let MA denote a strictly pseudoconvex neighborhood of the maximal
RDP-configuration A on M. Then MA is a disjoint union of strictly
pseudoconvex neighborhoods, say M,, of the RDP-configurations A,,
1  i  n. The semi-universal deformation w : m ~ R induces deforma-

tions of ( MA, A), respectively ( M,, Al), which we denote by 03C9A : 9N A - R,
and w, : ml ~ R respectively.

3.2 PROPOSITION: Let w : 9N - R be a sufficiently small representative of
the semi-universal deformation of ( M, E). Then there is a product decom-
position R = Ro X RI X ... X Rn which satisfies following properties:

(i) R o X {0} = n RA where the AIJ’s run through the set of irreduci-
ble components of A,, 1  i  n.

(ii) The restriction of 03C9 to R1  R 2 X ... X R n is a representative of a
semi-universal deformation of ( MA, A), say q: N ~ R1  ... X Rn. Fur-
ther there is an isomorphism h : 9JI A ~ R0 X X such that the following
diagram commutes:

(iii) The restriction of 11 to R,, 1  i  n, is a representative of a
semi-universal deformation of ( M,, Al), say q,: Nl ~ R,. Further there is
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a commutative diagram

where h; is an isomorphism.

PROOF: The obstruction map yA for lifting all - 2 curves sits in an exact
sequence

where YA = ~ 03B3*lJ, 1  i  r,, 1  i  n, see 1.3. For each RDP-configura-
tion A, we can consider the exact sequence analogous to (3.2.1):

Note that H1(0398Ml(log Al)) = 0 since rational double points are taut.

Now recall Laufer’s construction of the semi-universal deformation w,
[12]. Take a Stein cover  = {US}, 1  s  1, of M such that LÇ ~ Us ~ Ut
=A for r =1= s =1= t. Let { 03B8(1)qs}, ... , { 03B8(m)qs} be a set of cocycles in Z1(u; 0398M)
which represent a basis of H1(0398M). Take R to be a small polydic in Cm.
Then 9Y will be obtained by patching together the sets Us  R, 1  s  l.
The transition functions are of type

where hqs(x, t ) is defined by integration along t1 · 03B8(1)qs + ... + tm · 03B8(m)qs
for time 1. Now the point is to choose the set of cocycles above in a
suitable way. First we arrange it that the cover * satisfies following
requirements:

(a) To each singular point y of E there exists a unique neighborhood
Us E u with y ~ US.

(b) ui := {Ull-1+1,..,Ull} l0 := 0, is a cover of Mi, 1  i  n, and
u* := {Us|s &#x3E; l n is a cover of a strictly pseudoconvex neighbor-
hood M* of E* where E* contains precisely the irreducible

components Ei of E with Ei · Ei ~ - 2.
Let d o  d  ...  dn be an increasing sequence of integers such that
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Then we may choose cocycles {03B8(J)qs}, dl-1  j  dl, which represent a
basis of H1(8M) and vanish on Uq ~ Us if Uq ~ Us ~ M,. It follows from
the exact sequences in (3.2.1) and (3.2.2) that the corresponding cohomol-
ogy classes in H1(8M) are linearly independent and do not sit in the
kernel of the obstruction map 03B3A. Finally let {03B8(1)qs}, ... , {03B8(d0)qs} by
cocycles which define a basis of H1(0398M(log A)). Since H1(8M (log A)) =
0, we can arrange it that these cocycles vanish on U. rl US if (Uq ~ Us) ~
M* = . It is now clear how to complete the proof of Proposition 3.2.

3.3 DEFINITION: Let g : (R, 0) ~ (R, 0) be an analytic automorphism.
Then g* : B R R ~ R is the relative Stein-factorization of the pull
back g*03C9 : m  RR ~ R of w via g. We call g a SR-automorphism
(SR := simultaneous resolution) if cj : 3 - R and g* : B X RR - R are
representatives of isomorphic deformations of ( h, p ) over ( R, 0). By 9
we denote the group of SR-automorphisms.

3.4 Suppose g is a SR-automorphism of R. Then we have a cartesian
diagram

In [1; Theorem 1], Artin has shown that the functor Res is representable,
see also [7; Satz 9.16] for an analytic version which is weaker but
sufficient for our purposes. From this it follows that the diagram com-
mutes :

So (D factorizes via the quotient R/G. Note, since Res is representable, a
SR-automorphism is already uniquely determined by its first-order map.

3.5 ELEMENTARY TRANSFORMATIONS: Let C be a -2 curve on M. Then C
lifts to a smooth hypersurface RC ~ R, see Theorem 1, and the lifting
03BB :  ~ RC defines a trivial deformation of C. As in 3.2, w induces a
deformation 99: 1- R of a strictly pseudoconvex neighborhood X of C.
Same arguments as in the proof of Proposition 3.2 show that there is a
smooth 1-dimensional subgerm (B, 0) of ( R, 0) such that R = B X R c
and that following holds: The restriction of T to B := B X {0}, say
~C : xC ~ B represents the semi-universal deformation of (X, C). Fur-
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ther, we have an isomorphism

over R = B X Rc. Clearly, f induces a trivialization of À :  ~ R ç. Since
C does not lift to B, the normal bundle of C in Etç may be identifies
with OC( -1 ) ~ OC ( -1 ). Let aç : mC ~ q"c be the monoidal transforma-
tion of 1,, with center at C. The inverse image of C is a rational ruled
surface Eo = P1 X P1. The proper transform is its diagonal. By [5], see
also [6], Lo can be blown down to I? 1 ;; C in two different ways. One

gives nothing but ~C : xC ~ B. Let ~*C : x*C ~ B be the deformation
obtained from the other blowing down which again represents a semi-
universal deformation of (X, C). Thus there is an automorphism
T : ( B, 0) ~ ( B, 0) of order two inducing çfi from CfJc’ It is a straightfor-
ward excercise to check that T is actually a SR-automorphism. Now
consider the monoidal transformation a : R ~ 9N of 9J( with center at W.

Using the trivialization f, it is obvious that the inverse image of rc, call it
’, has a neighborhood U which is isomorphic to RC X Ric. Further, the
corresponding isomorphism is compatible with the mappings w - (J U and
«p,c X id) * «Jc X id) : RC X RC ~ B X RC. thus we may identify ’ with
03A30 X Rç, and it makes sense to say that we blow down ’ in two

difl’erent directions. By construction, this procedure yields a SR-automor-
phism 03C4C : (R, 0) - (R, 0) of order two which is necessarily given by
TC = T X id and is called the elementary transformation of ( R, 0) defined
by C.

3.6 COROLLARY: We retain the notations of 3.5. Let Aij be an irreducible
component of A,, and let 03C4ij be the induced elementary transformation of
( R, 0). Then the restriction Till R, defines an elementary transformation of
( R,, 0) with respect to the semi-universal deformation w,: 9J( - R,.

We omit the easy proof.

3. 7 PROPOSITION: Let W* be the group of SR-automorphisms of (R, 0)
generated by the elementary transformations defined by all -2 curves on M.
Then W* is isomorphic to W, and the induced action of W on (R, 0) is

faithful and compatible with that one on A, i. e.

s(R,) = R,(D) forsE Wand D ~ 039B+

Here we use the convention R D =: R - D for D E A+.
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PROOF: Let g be a SR-automorphism of ( R, 0). By 3.4 and Proposition
2.4, g induces an automorphism of T := ~ RD, D ~ 039B+. Suppose ( T’, 0)
is an irreducible component of ( T, 0). Then Corollary 1.12 says that there
exists a unique cycle Y ~ 039B+ such that T’ c R y. Hence

g(RD ) = RY for a unique Y ~ 039B+.

It follows from the definition of the elementary transformation 03C4lj that

the deformations w : 9N - R and 03C4ij03C9 : 9X R R ~ R are isomorphic over
the complement R - RAij* Applying the arguments given in [3; Remark
7.8], the corresponding isomorphism induces a reflection

We observe that (3.7.1) defines a representation

Thus, because of Lemma 2.6, it still remains to show that

À is a faithful representation. (3.7.3)

The point is to compare it with the representation p : W* -

GLC(H1(0398M)) which is given by the linearization of the action of W* on
(R, 0). By 3.4 and the fact that the functor Res is "representable", it

follows that

p is a faithful representation.

The obstruction map 03B3ij to lifting the - 2 curve Aij yields a direct sum
decomposition

Recall that Alj(C1) = H1(0398M(log Aij)). So 03C1(03C4ij) is a reflection on

H1(0398M) which is -1 on the line H) (DM) and + 1 on H1(0398M(log Ai)))’
On the other hand, it follows from [4; 1.10] and the proof of Proposition
3.2 that there is a direct sum decomposition

Further Proposition 3.2 and Corollary 3.6 imply that 03C1(03C4ij) is + 1 on
each of above direct sum components which is not equal to H1At(0398M) and
that 03C1(03C4ij) | 1 Hl, (0398M) is a reflection which is -1 on H1Aij ( OM ) C H1Ai (8M)
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~ H1(0398Ml) and + 1 on H1(0398Ml(log Aij)). The latter may be identified
with H1(0398M(log Aij)) ~ H1Al (0398M). Hence the direct sum components of
H1(8M) in (3.7.4) are p(W*) invariant subspaces. Let p,, 0  i  n,
denote the restriction of p to H1(0398M(log A)), i = 0, respectively to

H1Al(0398M). Then we have 03C1 = 03C10 ~ 03C11 1 ~ ... ~ 03C1n. Let W,*, 1  i  n , be
the subgroup of W generated by the elementary transformations 03C4ij,
1  j  nl. Then 03C1l(W*k) = 1 for k ~ i, and 03C1l:W*l ~ GLC(H1Al(0398M)),
1  i  n, is the linearization of the action of W,* on ( R,, 0). Hence there
is a natural isomorphism

Thus, to prove (3.7.3), it suffices to show that 03BB : W*l ~ HL(H) is a

faithful representation. Since W* acts on ( R;, 0), this is true if we knew
that the induced representation À, : W*i ~ GL(Hl) is faithful.
Now we recall the commutative diagram, see [19; (6.21.1)]:

where yA, is the obstruction map to lifting all irreducible components of
Ai. Let /31 denote the isomorphism H1(0398Ml) ~ H2(Mi; C), and let 03BBCi
denote the complexification of 03BBi. Then straightforward computations
show that 03B2i induces an equivalence between the representations pi and
03BBCl. Since p, is faithful, we are done.

3.8 PROPOSITION: The blowing down map 03A6 : R - S factorizes via the
quotient RI W and the induced map 03A6 w : RI W - S is a local embedding at
0. Further R/ W is smooth and 9 =- W.

PROOF: Let N be the normal strictly pseudoconvex space which one
obtains from M by blowing down the maximal RDP-configuration A.

Since H1(8N)  OC, it follows that there exists a formal deformation

: X--+ T of N which is semi-universal for the functor Def(( N, Y), -)
on the category of artin C-algebras. Here Y is the exceptional set of N.
General obstruction theory shows that T is smooth. In a natural way, the

deformations m : m ~ R and ~: Y’- S define formal deformations, say
w : 9N - R and e:  ~ S, which are hulls for the corresponding deforma-
tion functors on the category of artin C-algebras. Let 4Y : R - S be the
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induced formal blowing down morphism. Then 0 factorizes via T, i.e.
there exists a commutative diagram

such that ~*03BE : N RR ~ R is isomorphic to the formal deformation of
N which one obtains by partially blowing down of w relative A, see 2.2,
and such that there is a cartesian diagram, see [18]:

Now Lipman’s result in [14] implies that c is an isomorphism. Further it
can be easily checked that 03C4i acts on R such that - 03C4lj = fi. Hence -
factorizes via the quotient R/ W. Since the action of W is faithful, it
follows from [18; Thm. 1.3] and Prop. 3.7 that T and R/ W may be
identified. Putting altogether it follows that R/ W is smooth and that 03A6W
necessarily defines an isomorphism between ( R/ W, 0) and (Sa’ 0).

To finish the proof of Theorem 2, it still remains to check statement

(iii). But this is an immediate consequence of Corollary 1.12.
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