
COMPOSITIO MATHEMATICA

AMASSA FAUNTLEROY
Geometric invariant theory for general
algebraic groups
Compositio Mathematica, tome 55, no 1 (1985), p. 63-87
<http://www.numdam.org/item?id=CM_1985__55_1_63_0>

© Foundation Compositio Mathematica, 1985, tous droits réservés.

L’accès aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CM_1985__55_1_63_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


63

GEOMETRIC INVARIANT THEORY FOR GENERAL ALGEBRAIC
GROUPS

Amassa Fauntleroy

Compositio Mathematica 55 (1985) 63-87.
@ 1985 Martinus Nijhoff Publishers, Dordrecht. Printed in The Netherlands.

The solutions of many of the moduli problems which occur in algebraic
geometry involve the construction of orbit spaces for the action of an

algebraic group on a suitable variety. In most cases the groups involved
are reductive. Mumford in [10] worked out the theory of reductive group
actions, particularly those arising from linear representations in the affine
cone over a projective space, to a point sufficient for applications to
moduli problems. With a view toward similar applications of more
general algebraic groups acting on quasi-projective varieties, this paper
studies the problem of constructing quotients of varieties under the
action of arbitrary connected linear groups.

Our approach is to first treat the case of unipotent groups and then to
reduce to the cases in which Mumford’s geometric invariant theory
applies. Section 1 of this paper discusses the case of unipotent groups
acting on quasi-affine varieties. We give necessary conditions for the
existence of a quotient and give a complete description of proper actions
with a quotient.

In section 2 we give a local criterion for the action of a connected
unipotent group G on a quasi-affine variety X to be properly stable (c.f.
2.1) under the assumption that the ring of global sections 0393(X, Ox) is
factorial. We define stable points XS(G) of X and in (2.2) we give an
inductive procedure for constructing the quotient of XS(G) by G when
the action on X is proper. Finally, in sections 3 and 4 we apply these
results to the problem of constructing quotients by general connected
linear groups.

Most of the results of this paper are valid in any characteristic.

However, we have assumed that the ground field has characteristic zero
in order to avoid too many p-pathologies. In this paper all ground
fields-generally called k - are algebraically closed. The word ’scheme’
here means reduced, irreducible algebraic scheme over k. A variety is a
separated scheme. Points of a scheme are assumed closed unless other-
wise stated. All algebraic groups are affine and we identify 0393(X, Ox)
with the subring of k(X) consisting of everywhere defined rational
functions on the scheme X.
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0. Generalities on group actions

This section gives a brief summary of the results on actions of algebraic
groups on varieties which will be used in the following sections. They are
given here essentially for convenience of reference.

0.1. Let G be an algebraic group acting rationally on a scheme X. A pair
(Y, q ) consisting of a scheme Y and a morphism q : X - Y is a geometric
quotient of X by G denoted X/G if the following conditions hold:

(i) q is open and surjective
(ii) q*(OX)G = OY
(iii) q is an orbit map; i.e., the fiber of closed points are orbits.
The action of G on X is said to be locally trivial if each point x e X is

contained in a G-stable open subset U of X which is equivariantly
isomorphic to G X S for some scheme S.

THEOREM 0.1 (Generic Quotient Theorem [12]): Let G act on an algebraic
scheme X. Then there exists a G-stable open subset U of X such that
Y = U/G exists and Y is a quasi-projective variety.

In general the determination of the open set described in 0.1 is a
non-trivial task. However, for reductive algebraic groups somewhat more
can be said. Let G be reductive and a finite dimensional rational
G-module. Let P(V) denote the associated projective space consisting of
lines through the origin in V and let R be the ring of polynomial
functions on V (with respect to some basis). A point v e P(V) is called
semi-stable if there exists an invariant nonconstant homogeneous element
fER with f(v) ~ 0. A point v E P(V) is stable if it is semi-stable and
the orbit G· v is closed.

THEOREM 0.2 ( Mumford; [10: 1.10]) : Let G and V be as above and let X be
the set of stable points of P(V). Then X is open and Y = X/G exists.

The only other result of a general nature aside from Mumford’s
theorem is a result due to Seshadri which we now describe. If G is a
connected algebraic group acting on a scheme X, then the action is said
to be proper if the map G X X ~ X  X given by (g, x) - (gx, x) is

proper.

THEOREM 0.3 (Seshardi [16]): Let G be a connected algebraic group acting
on a variety X such that for each point x in X the isotropy subgroup of G at
x is finite. Then there exists a morphism p : Z - X such that

(i) Z is a normal variety, G operates on Z and p is a finite surjective
G-morphism
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(ii) G operates freely on Z, the geometric quotient W = ZIG exists and
the quotient map q : Z ~ W is a locally trivial principal fibre space
with structure group G.

(iii) If the action of G on X is proper then the action of G on Z is proper
and W is separated.

(iv) k(Z) is a finite normal extension of k(X) and the canonical action
of Aut(k(Z)/k(X)) on Z commutes with the action of G.

In the situation described in 0.3 we will call (Z, W, p) a Seshardi
cover of X.

When X is a variety on which the connected algebraic group G
operates then a quotient map can be characterized in a slightly different
way. If q : X - Y is a surjective orbit map and Y is a normal variety,
then Y is the geometric quotient of X mod G. This is the content of [1;
6.6]. The fact that q is open follows from Chevalley’s result [1; AG 0,
10.3]. This condition is often the easiest to check.

Recall that a scheme Q is called a categorical quotient of X by G if
there is a morphism q : X ~ Q such that whenever f : X ~ S is a mor-
phism constant on G orbits, then there is a unique morphism h : Q - S
with f = h 0 q. Clearly, a geometric quotient is a categorical quotient. If G
is reductive and acts linearly on Pn, that is via a linear action on the
affine cone An+1 over Pn then x ~ Pn is semi-stable provided there is a
G-invariant section s E H0(Pn, OPn(m)) for some m &#x3E; 0 with s(x) ~ 0.
The set of semi-stable points U of Pn is open and a projective categorical
quotient of U by G exists. [11; Theorem 3.21.]

There is a similar result for unipotent groups. Let H be a connected
unipotent group acting on a normal quasi-affine variety V. We assume
that the stability group of each point of V is finite. Let B = f(V, Ov)
and A = BH. There is a canonical morphism c : V - Spec A. A point
v E h will be called semi-stable if dim c-1(c(v)) = dim H. Let Vss de-
note the set of semi-stable points of V.

THEOREM 0.4 [4; Proposition 6]: The set hSS is open and H-stable in V.

There exists a quasi-affine variety Q and a morphism q : Vss ~ Q constant
on H-orbits satisfying the following:

Given any variety W and a morphism f : Vss - W constant on H-orbits,
there is a unique map h : Q - W such that f = h 0 q.

If further B = f(V, Ov) is factorial and U is any open set in V, stable
under the action of H, such that Y = U/H exists and U - Y is affine,
then U c hSS. If Y is separated then the natural map Y - Q is an open
immersion. This result is generalized in 3.4 of the present paper to

arbitrary connected groups acting on quasi-projective varieties.
Finally we want to make explicit mention of a result due originally to

Rosenlicht concerning invariant rational functions [15]. If H is unipotent
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and acts on a quasi-affine variety X then any invariant rational function
is a quotient of global invariant functions. Unfortunately if f is such a
rational function and f is defined at a point x E X there may be no way
of expressing f as a/b with a, b global invariants and b(x) ~ 0. This
observation escaped us in [5] but was pointed out to the author by
Mumford. It explains the need for our factoriality assumptions in sec-
tions 2 and 3 of this paper. 

*

1. Necessary and suf f icient conditions f or the existence of quotients

Let X be a normal variety on which the connected unipotent group G
operates via the morphism a : G  X ~ X and let ~ := 03C3  1 : G  X ~ X
X X. We will assume throughout this section that X is quasi-affine and 0
quasi-finite. We put B = 0393(X, Ox) and denote by A the subring of
G-invariant functions of B.

DEFINITION 1.1: The variety X X X can be considered in a natural way as
an open subscheme of Spec(B ~ B). The G-diagonal of X, denoted
G V 0(X) is the closed subset defined by the common zeroes of the
functions a 0 1 - 1 ~ a, a E A.

Note that the image of 03A6 is always contained in G V 0394(X).

LEMMA 1.2: Let G, X and 03A6 be as above. Assume that a geometric
quotient Y = X/G exists and is affine. Then Im 03A6 = G V 0394(X).

PROOF: Since Y is affine we have Im 03A6 = (q X q)-1(0394(Y)) is closed in
X  X where q : X - Y is the quotient map. On the other hand 0394(Y) is
defined by the ideal in 03A6(Y, OY) generated by {a ~ 1 - 1 ~ a : a ~
0393(Y, OY) = A} so (q  q)-1(0394(Y)) = G V 0394(X). ~

DEFINITION 1.3: Let G and X be as above. We say that the action a is
stable if Im 03A6 = G V 0394(X). We call a point x E X stable if there exists a
G-stable open neighborhood U containing x such that the action of G on
U is stable. We note by XS(G) the set of stable points of X.

THEOREM 1.4: Let G and X be as above. The set Xs(G) is open and
G-stable in X. Moreover a geometric quotient Y = Xs(G)/G exists as an
algebraic scheme.

PROOF: The definition of Xs(G) implies that this set is open and that
G - Xs(G) = Xs(G). Since the existence of a geometric quotient is local on
Xs(G) it suffices to show that if G acts stably on an open set V c Xs(G)
then VIG exists and is quasi-affine.

* In this regard see [10: p. 154].
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Let A = f(V, OV)G and consider the canonical morphism q : V ~

Spec A. It is evidently constant on G orbits and separable. Suppose x
and y are in the same fiber of q (above a closed point). Then a(x) = a(y)
for all a E A. But this means (x, y ) E G V 0394(V) = Im 03A6 so that x and y
are in the same G-orbit. Hence q is an orbit map We next show that A
can be replaced if necessary by a finitely generated subring R of A.
Indeed V is locally noetherian and quasi-compact and at each point of
G V 0394(V) the functions {a~1-1~a:a~A} generate the ideal of
G~0394(V). Using quasi-compactness we can find a finite family of

functions {a03B1: a03B1~ A, a E 11 such {a03B1~1-1~a03B1:03B1~I} defines G
V 0394(V) at each point. Let R be the smallest finitely generated k-subalge-
bra of A which is normal, contains all the a a and has the same quotient
field as A. Then q’ : Vu Spec R will define a separable open orbit map
from to Y = q(V) with Y c Spec R open hence quasi-affine. By [1; 6.6]
Y is the geometric quotient of V by G. This proves the theorem. 0

REMARK: Even though the quotients above are constructed using rings of
invariants, they can in fact be non separated schemes (cf. [6; Example 2]).
Note that we have not assumed - indeed we cannot - that rings of
invariants are actually affine rings; i.e. finitely generated k-algebras.
Indeed, it appears that the "14th Problem" is not the issue here!

COROLLARY 1.5: Let G and X be as in the theorem. If X/G exists then
X = Xs(G).

PROOF: Let Y = X/G and {Y03B1} an affine open cover of Y. Apply Lemma
1.2 to the covering ( U,, = q-1(Y03B1)} of X. 0

Recall that the action of G on X is separated if the image of 03A6 is

closed in X X X.

COROLLARY 1.6: Jf (1 is separated then Y= XS(G)/G is a variety.

PROOF: Since Xs(G) is G-stable and open, the image of V restricted to
G X XS(G) is closed in XS(G) X XS(G). By [10; p. 13] this implies that Y
is separated. D

DEFINITION 1.7: The action of G on X is called properly stable if

X = Xs(G) and 0 is proper.

THEOREM 1.8: Let X be a normal quasi-affine variety on which the

connected unipotent group G acts. Assume that the action of G on X is
properly stable and let Y = X/Go Then the quotient map q : X ~ Y is affine
and X is locally trivial. Conversely, if Y = X/G exists, is separated, and X
is locally trivial then the action of G is properly stable.
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PROOF: Let Z ~ X be a Seshadri cover of X (see Theorem 0.3) Then
W = Z/G is separated and hence the natural map p : W - Y is finite. If
Yo c Y is an open affine, then W0 = p-1(Y0) is affine and hence Zo =
q-1(W0) = G x Wo is also affine.

Consider the commutative square

It is immediate that Zo = p-1(X0) so Xo = p(Z0) is affine. Thus q is an
affine map. Further the separable degree of p is 1 F | where r =

Aut(k(Z)/k(X)). Let To = p(0 X W0). Then the natural map G X To -
Xo is surjective and since p factors as G  W0 ~ G  T0 ~ X0 and the
separable degree of the first map in |0393|, it follows that G X To ~ Xo is
bijective. Now p is proper and G  W0 ~ G  T0 is proper. It follows
from [2; 5.4.3] that G X To - Xo is proper hence finite so that Xo is

trivial as a G-space.
Assume conversely that X is locally trivial and Y = X/G is separated.

Let {Y03B1} be an affine open cover of Y and {X03B1 = q-1(Ya) = G X Y03B1} the
corresponding affine open cover of X. Since the property of properness
of a morphism is local on the range it suffices to show that 03A6:03A6-1(X03B1 X
X03B2) ~ Xa X Xp is proper for each pair of indices a, /3.

Now 03A6-1(X03B1 X X03B2) = G X (X03B1 ~ Xp) and we may factor (D as follows:

where the morphism 03C8 is T X 0394Y with 0394Y the diagonal morphism of Y
and T( g, h) = ( gh, h) an isomorphism. Since Y is separated 0394Y and
hence 03C8 is a closed immersion, thus proper. This proves the theorem. 0

REMARK: In principle one should be able to strengthen the converse to
the case where X is locally trivial in the finite radicial topology. Theorem
1.8 is similar to Propositions 0.8 and 0.9 of [10].

COROLLARY 1.9: Let X be a normal variety on which the connected

algebraic group H operates. Assume Y = X/H exists, is separated and that
q : X ~ Y is a locally trivial principal H-bundle. Then the action of H on X
is proper.

PROOF : The proof of the converse of 1.8 is independent of any particular
property of the group G. 0
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It may happen that properties of the variety X force the geometric
quotient Y = X/G to be well behaved. We give an important special case
of this phenomena next.

DEFINITION 1.10: A variety X is called quasi-factorial if it is quasi-affine
and r( X, Ox) is a unique factorization domain. Any open subset of a
quasi-factorial variety is quasi-factorial. In particular, any open subset of
affine space is quasi-factorial.
PROPOSITION 1.11: Let G be a connected unipotent group acting on the
quasi-factorial variety X. Assume that the action of G on X is properly
stable. Then Y = X/G is quasi-factorial.

PROOF: By [Theorem 0.4] there exists a quasi-affine variety Q and a
morphism 99: X ~ Q making Q the categorical quotient of X by G. But
Y being a geometric quotient is also a categorical quotient hence Y = Q.
Since 0393(Y, QY) = 0393(X, OX)G is factorial by [9] Y is quasi-factorial. D

REMARK: It is easily seen that this is a result about unipotent groups. If
X is the cone over Pn for example, then X is certainly quasi-factorial
and X ~ Pn is a principal Gm bundle, but Pn is evidently not quasi-af-
fine.

2. Local criteria f or properly stable actions

Let X be a quasi-affine variety on which the connected unipotent group
G operates. We have defined stability in the last section as a local

property on X. However, the notion of properly stable is a global
property of the morphism 03A6:G  X ~ X  X. In this section we will
show that if X is quasi-factorial then properly stable is actually a local
property of the action of G on X (Theorem 2.4). We also investigate the
connection between the set of properly stable points XPS(G) and the set
Xps(N) where N is a normal subgroup of G. Throughout this section X
denotes a quasi-factorial variety and G a unipotent algebraic group. We
assume the base field k has characteristic zero and put B = r( X, Ox).

THEOREM 2.1: Suppose the connected unipotent group G acts properly on
the quasi-factorial variety X. Then the following hold:

(1) There exists an algebraic space Y and a morphism q : X - Y making
Y the geometric quotient of X by G in the category of algebraic
spaces.

(2) If A = BG the square

commutes where the horizontal maps are the canonical ones.
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(3) Let Yo = f y E Y:|c-1(c(y))|  ~}. Then Yo is open in Y and c/Yo
is an open immersion.

(4) If Yo is as in (3) then q-1(Yo) = XS(G).
Further, if k = C and X is nonsingular, then Y is a complex manifold.

PROOF: Let (Z, W p) be a Seshadri cover of X (note that since X is
quasi-affine and V is proper, the stability groups are finite). Now G acts
properly on Z by [Theorem 0.3] so W is a variety. By [8; p. 183]
Y = W/r exists as an algebraic space. This quotient is clearly the

geometric quotient of X by G. This proves (1). The assertion (2) is

immediate.To see (3) consider the commutative diagram

where R = r( W, Ow) and the horizontal maps are again the canonical
ones. If y0 ~ Y0 and w~03C0-1(y0) we also have |c-1(c(w))|  ~. But
c : W ~ Spec R is birational so by Zariski’s Main Theorem, c is an open
immersion in a neighborhood of w. Thus if Wo = 77’’BYo) then c : Wo
Spec R is an open immersion so Wo is quasi-affine. Clearly Wo is
r-stable so Yo = 03C0(W0) is open in Y. As Yo = Wo/r, Yo is also quasi-af-
fine. Now from this it follows that Xo = q-1(Y0) has a quotient (viz Yo )
in the category of algebraic varieties and by [Theorem 0.4] Y0 ~ Spec A is
an open immersion.

To see (4) note that X0 = q-1(Y0)~Xs(G) and that G acts properly
on any open G-stable subset. By Proposition 1.11 XS(G)/G exists and is
quasi-affine. Using this fact and the definition of the Seshadri cover
(Z, W, p ) it is easily verified that

(a) if W0 = {w ~ W:|c-1(c(w))|~} then 03C0(W0) = Yo.
(b) if Zo = p-1(Xs(G)) then Zo = q-1(Wo).

It then follows that q(Xs(G)) = (q 0 p)(Z0) = (03C0 ° q)(Z0) = 03C0(W0) = Yo
Thus Xs(G)~ q-1(Y0) and the desired equality follows.

Finally, if k = C and X is smooth then for each x E X we can find a
smooth subvariety Tx transversal to the orbit of x under G. By [10;
Appendix 1] this implies Y is a smooth algebraic space over C, i.e. a

complex manifold. D

Let H be a closed subgroup of G. Note that if G acts properly on X
then so does H. Indeed, 03A6H:H  X ~ X  X is the composition H X X
~ G  X ~ X  X and the first map being a closed immersion (hence
proper) implies the composition (DH is proper provided V is proper.

THEOREM 2.2: Let G act properly on X and let N be a closed normal
subgroup of G. Let Xo = Xs(N) and Yo = Xo/N. Then G/N acts canoni-
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cally on Yo and this action is again proper. Further if q : Xo - Yo is the

quotient map then XS(G) = q-1(Y¿(GIN).

PROOF: Let B = 0393(X, OX) and let Y be the quotient of X by N in the
category of algebraic spaces given in 2.1. Then G/N acts on Y and it is
clear that c:Y ~ Spec BN is a G/N morphism. It follows from the

defining properly of Yo that G/N acts on Yo. Now the natural map
Spec B - Spec BN is also a G-morphism where G acts on BN via the
natural map G - GIN. Hence Xo = q-1(yO) is G-stable and G acts

properly on Xo.
Note that if x = h - x’, h E N, then g · x and g · x’ are in the same N

orbit: for g·x=g(h·x’)=(gh)·x’=(h"g)·x’=h"(g·x’), h"EN.

Now consider the diagram

Here 03A60 = Q X ly, as usual. The vertical maps are quotient maps for the
action of N X N. If we let N X N act on G X Xo by (h1, h2) ( g, x ) =

(h1gh-12, h2x) then V is N X N equivariant and G/N X Yo is still the

quotient of G X Yo by N X N since N is normal in G. Since (h1g· x, h2·
x) and (g·x, x) have the same image in Yo X Yo for all h1, h2~N,
g e G, x E Xo the square commutes. By [3; 1.3] 0. is proper which

proves the first assertion of the theorem.
Now since G acts properly on X, the map Xs ~ XSjG is a locally

trivial principal G-bundle by Theorem 1.8. It follows that XSIN exists so
Xs~X0 and is N-stable. Then q(Xs) is open in Yo and G/N acts
properly stably on it by the first part of the theorem. Clearly XS/G is the
quotient q(Xs)/(G/N) so Xs~q-1(Ys0(G/N)). Conversely, since

YoS(GjN)/(GjN) exists, this quotient must be a geometric quotient of
q-1(Ys0(G/N)) by G. Thus q-1(Ys(G/N))~Xs(G) and the desired

equality follows. D

COROLLARY 2.3: Let G act properly on X. Then a point x in X is unstable if
there exists a 1-dimensional subgroup H of G such that x is unstable for H.

PROOF: We argue by induction on dim G. If dim G = 1 there is nothing
to prove. Let H be a proper one dimensional subgroup of G with x not
in Xs(H). 1 dam there is a normal subgroup N of G with H c N and
dim N  dim G. Granting this claim we have, since dim N  dim G,
x~Xs(N). But by the theorem Xs(G)=q-1(Ys0(G/N))~Xs(N) so
x ~ XS(G).
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To establish the claim recall that if Hl = NormG(H) then dim Hl 
dim H (cf [13; p. 140]). Thus defining Hi+1 = NormG(Hi) we obtain a
normal series H  H1  H2  ...  Hp = G. Put N = Hp _ 1 if p &#x3E; 1
otherwise N = H. 

The next result is an extension of a result in [5] to arbitrary unipotent
groups. In the context of the present development it establishes that the
properness of an action is local on X.

THEOREM 2.4: Let X be a quasi-factorial variety on which the connected
unipotent group G operates. If the action of G on X is locally trivial, then
03A6 : G  X ~ X  X is proper. In particular Y = X/G exists and is quasi-
factorial.

PROOF: We argue by induction on dim G. If G = Ga this is just Theorem
7 of [5]. Assume then that dim G &#x3E; 1 and let N be a 1-dimensional
connected central subgroup of G. Now if Xo is an open G-stable subset
of X with Xo = G X Yo then Xo = N X ((G/N) X Yo ) by [13; p. 150] so
Xo is also trivial as an N-stable open subset of X. Since X can be covered
by such sets it follows that N acts locally trivially on X and hence the
action is properly stable. Thus by 1.11 X/N is quasi-factorial again. The
action of G/N is clearly locally trivial on X/N and it is proper by the
induction hypothesis. Thus Y = X/G = (X/N)/(G/N) is quasi-factorial
and X - Y is a locally trivial principal G-bundle with Y separated so by
Corollary 1.9 the action of G on X is proper. 0

The above results say that an action of G on a quasi-factorial variety
X is properly stable if and only if it is locally trivial. Theorem 2.2 suggest
we look for the set of properly stable points by looking for properly
stable points Xps(N) of a proper normal subgroup N and then finding
the properly stable points of Y(N) = XP’(N)IN. Since we may always
choose N to be one-dimensional i.e. N = Ga it seems worthwhile to give a
description of properly stable points in this case. If Ga acts on the

quasi-factorial variety X (with finite stability groups) then for each
f E B = 0393(X, Ox) we can write

If 03C3*: B ~ B ~ k [ Ga ] = B[T] is the co-action then we have

In this case we call n the Ga-order of f and fn the weight form of f.
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PROPOSITION 2.5. Let Ga act on the quasi-factorial variety X. Then a point
x in X lies in Xps(Ga) if and only there exists a function f E r(X, Ox) of
Ga-order n for some n such that

(i) f(x) = 0 and
(ii) if fn is the weight form of f then fn(x) ~ 0.

In this case there exists such a function of Ga-order 1.

PROOF: If x E U c X with U Ga-stable affine and isomorphic to Ga X Y
then U ~ Spec B[h-1] for some h E B Ga since X is quasi-factorial. Then
the coordinate function T on Ga gives rise via this isomorphism to a
rational function a = f/h m with a(t· x ) = a ( x ) + t for each x ~ V, t ~ Ga.
It follows that 03C3*f = f + Thm. This proves the only if part of the
statement provided we adjust f by a suitable constant.

Conversely if (i) and (ü) hold write 03C3*f = 03A3ni=0fiTi. A straightforward
computation shows that fn is invariant and that 03C3*fn-1=fn-1+nTfn. If
we put b = n . fn and a = fn - 1 then 03C3*a = a + bT. It follows (cf. Lemma
5 of [5]) that Xb is trivial and the Proposition follows easily from this
fact. 0

COROLLARY 2.6. Let X be a quasi-factorial variety on which the connected
unipotent group G acts. Assume that the stability group of each point of X is
finite. Then the set of properly stable points Xps(G) of X is non empty.

PROOF: We argue by induction on n = dim G. If n = 1 then G = Ga and
we choose any non constant non invariant function f in B = r( X, Ox)
and apply the proposition to fn-1’ fn. Then Xfn is trivial so the action of
G is properly stable. 

In the general case let N be a one dimensional central subgroup of G.
Then Xps(N)~~ and by Theorem 2.2 (proof) Xps(N) is G-stable. Thus
G/N acts on Y = Xps(N)/N. By induction Yps(G/N)~~ and Xo =
q-1(Yps(G/N)) is open non empty in X and G acts properly stably on
it. 0

3. Semi-stability and stability f or general algebraic groups

Let G be a connected linear algebraic group with unipotent radical H.
Let V be a normal quasi-projective variety on which G acts and suppose
L E Pic( ). A G-linearization of L is a G-equivariant morphism a from V
into a projective space Pd on which G acts such that 03B1*OPd(1) = L.

Let V be a fixed projective, normal, G-variety and 03B1:V~Pd a
G-equivariant immersion into a projective space on which G operates
linearly; i.e., via a linear action on the cone Ad+1 over Pd. Let L =
03B1*OPd(1). Let C(V) be the affine cone over V minus the origin and
Cp(V) the normalization of C(V). Then since G acts linearly on Pd it
acts on C(V) and hence by [16; Sec. 6] on Cp(V). We say that the action
of G on Tl is regular if for almost all v E V, dim G. v = dim G. If the
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action of G on Tl is regular then so is the action on C(V) and Cv(V). We
assume from now on that the action of G on V is regular. Let R be the
coordinate ring of C,(V) and let A = RH.

Recall that a point x E C,,(F) is called semi-stable with respect to H if
dim c -1 ( c ( x )) = dim H where c : Cv(V) ~ Spec A is the canonical map.
We denote by Cssv(V)(H) the set of semi-stable points of Cp(V). By [0.4]
Cssv(V)(H) is open H-stable and there is a quasi-affine variety Y and a
morphism q : Cssv(V)(H) ~ Y constant on H-orbits satisfying a universal
mapping property. Moreover, Y is an open subvariety of Spec A so for
each y E Y there is a non constant function f in A with f(y) ~ 0. We
call a point v E V semi-stable for H if there exists x E Cssv(V)(H) lying
over v. We denote by Vss(H) the set of semi-stable points for H in V.
Evidently Vss(H) is open an H-stable in V.

Let X be a G-variety. A pair (Y, q) where Y is a variety with trivial
G-action and q : X - Y a G-equivariant morphism will be called an
s-categorical quotient if whenever f : X ~ T is a morphism from X to a
variety T constant on G-orbits there is a unique morphism f : Y - T such
that f = f°q.

THEOREM 3.1: Let (V, L) be a G-linearized projective variety and H the
unipotent radical of G. Then Vss(H) is G-stable and an s-categorical
quotient W of Vss(H) by H exists and is quasi-projective. Moreover, G/H
acts regularly on W, W carries a natural G/H linearization and q : VSS( H)
- W is a G-morphism.

PROOF : Let X = C,, ( h ) be the normalization of C(V), B = 0393(X, OX) and
A = BH. Then G/H acts on A and A is a graded subring of the naturally
graded ring B. Let c: X ~ Spec A be the canonical map. Then x E
Xss(H) if and only if dim c-1(cx) = dim H. But c is evidently G-equiv-
ariant. Thus dim C-1C(g. x ) = dim C-1(g . cx ) = dim g(c-1c(x)) =
dim c-1(cx)) and hence x~Xss(H) implies gx~Xss(H). Since the
natural map Xi V is G-equivariant, Vss(H) is also G-stable.
Now by Theorem 0.4 there is an s-categorical quotient Y of Xss(H)

by H and Y - Spec A is an open immersion. Since Y is the image of
X SS( H), Y is G/H-stable in Spec A. Let Ao c A be a finitely generated
graded k-subalgebra of A satisfying

(i) A o is integrally closed and G/H-stable.
(ii) Y - Spec A o is an open immersion.

Such an A o exists because G (via G/H ) acts rationally on A and Y is
locally of finite type and quasi-compact. Note that for each y E Y there
is a homogeneous element a E A of positive degree such that a(y) ~ 0.
Now put Po = Proj Ao. Then GIH acts on Po and OP0(m) gives a
G/H-linearization if m = l.c.m (d1, d2,...,ds) if A0 is generated over k
by its elements of degree d1,..., d S"
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Now Y c Spec Ao - (0) so the image W of Y in Po is open. Evidently,
W is G/H-stable and = Po has a G/H-linearization. The action of
G/H is regular on W if and only if it is regular on Y. But G acts

regularly on X so also on X SS( H ) and it follows easily that G/H acts
regularly on Y.

It remains only to show that W is an s-categorical quotient of Vss(H)
by H. By our construction Spec Ao - (0) - Po is a principal Gm-bundle
and Y is Gm-stable. Thus Y - W is the geometric quotient of Y by Gm so
in particular it is a categorical quotient. Since Ao c B we have a natural
rational mapping V = Proj B - Po. This mapping is regular on Vss(H)
because A o c B and if v E Vss(H) then there exist a C= A o homogeneous
of positive degree with a0(v) ~ 0. The image of the restriction q of this
mapping is evidently W. We have q constant on H-orbits and G-equiv-
ariant. Let T be a variety and g : vss(H) ~ T a morphism constant on
H-orbits. Then we get a map g : Xss(H) ~ T constant on H-orbits and
hence a unique map  : Y - T with  = g. But the map  is evidently
constant on Gm-orbits in Y so we get a unique map 03B2 : W - T such that
03B203C0 = , qr : Y - W the quotient map. Since

commutes we have  = 03B203C0Y = 03B2q03C0X = g = g03C0X. Since Vss(H) is the

quotient of X SS( H) by an action of Gm, 03B2q = g as desired. ~

DEFINITION 3.2: Let V be a normal projective variety on which G
operates and L in Pic(V) a G-linearized ample invertible sheaf. A point
v of V is semi-stable with respect to this linearization if there is an
invariant section a of Ln for some n such that a(v) =1= 0 and v E Vas(H).
A point v in V is stable if there is a G-invariant section a of Lm for some
m such that v E Vpsa(H) and the action of G on Tla is closed. We denote
by Vss(L) (resp. Vs(L)) the set of semi-stable (resp. stable) points.

THEOREM 3.3: Let V be a normal projective variety on which the connected
algebraic group G operates. Let L in Pic(V) be a G-linearized very ample
invertible sheaf. Then

(i) An s-categorical1quotient of Vss(L) by G exists and is quasi-projec-
tive.

(ii) If Cp(V) is quasi-factorial, then a quasi-projective geometric quo-
tient of Vs(L) by G exists.
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PROOF: Let q : Vss(H) ~ W be the s-categorical quotient of Vss(H) by
H = Rad uG. Let Po = W, A o be as in the proof of 3.1. By enlarging A o if
necessary we may assume that there is a finite set of homogeneous
elements of AG0 say al, ... , ar representing invariant sections of various
powers of L such that Vss(L)~Uri=1Val. Note that Vss(L) is open and
G-stable and that g(Vss(L) is open and G (i.e. G/H ) stable in W. It

follows from 3.1 and the definitions that Opo( m ) is G’ = G/H linearized
and that q(Vss(L))~Pss0(Op0(m)). If Q is the categorical quotient of
Pss0(Op0(m)) by G’, then the image Q of q(Vss(L)) in Q is the categorical
quotient of q(VSS(L» by G’. It follows that the composition

makes Q the s-categorical quotient of Vss(L) by G. This gives (i).
Now let 03C0: Cv(V) ~ V be the natural projection. From the definition

of V’(L) it follows that X = 03C0-1(Vs(L)) is contained in Cp(V)PS(H).
Denote by Vps(H) the image of Cv(V)ps(H) by qr and let W’ =

q(Vps(H)) c W. Then we have

LEMMA: Vps(H) is G-stable and the restriction of q : Vss(H) ~ W to
Vps(H) makes W’ the geometric quotient of Vps(H) by H.

Granting the lemma we proceed with the proof of ii). First, W’~
q(Vs(L)) and both these sets are open and G/H-stable in Po. Let

Lo = OP0(m) be the G/H-linearized sheaf constructed in the proof of 3.1.
We may assume as above that q(Vs(L))~~ti=1(P0)b, bi G/H-invariant
sections of suitable powers of Lo with the action of GIH on (P0)bl
closed, i = 1,...,t. By [10: 2.2] q(Vs(L))~Ps0(L0). Let (~, YI) be the
geometric quotient of Ps0(L0) by G/H and Y the image of q(Vs(L))
under (p. It follows that Y is the geometric quotient of Vs(L) by G.

It remains only to prove the lemma. Let X = Cv(V) and put B =
r( X, Ox). By Corollary 2.6 Xps(H) ~ ~. Let U c X be an H-stable open
subset of X with U/H affine. Since A = BH is factorial, U/H =

Spec A[a-1] for suitable a E A. Let g E G be fixed. Then HgU= gHU=
gU so gU is stable. The group G acts on A via the homomorphisms
Tg : A ~ A given by Tg(a)(x) = a(g-lx). We claim gU/H ~

Spec 03C4gA[(03C4gb)-1]. Using the commutative square

it is easy to see that gg is a separable morphism constant on orbits. Now
let fa generate A[a-1] over k. Then f03B1(x) = f03B1(y) for x, y E U and all a
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if and only if x = h · y for some h E H, i.e. the fibers of q are H-orbits.
But (03C4gf03B1)(g·x)=f03B1(g-1·g·x)=f03B1(x) so 03C4g(f03B1)(g·x)=03C4g(f03B1)(g·y)
for all a if and only if x = h· y for some h E H if and only if gx = ghy =

h’gy(HG!) i.e. the fibers of qg are also H-orbits. By [1; 6.6] qg is a

quotient map. This gU c X’(H). Applying this result to an arbitrary
element of G implies XS(H) is G-stable.
Now the map 7r : X - V is G-equivariant and so 03C0(Xps(H)) = Vps(H)

is open and G-stable. Note that Xps(H)~Xss(H) and we have a
commutative diagram

where Y is the s-categorical quotient of Xss(H). The image, say Y’, of
Xps(H) in Y is the geometric quotient of XP’(H) by H. Thus W’ = 7r(y’)
is the geometric quotient of Vps(H) by H. It is evidently G/H-stable in
W This proves the lemma and completes the proof of the theorem.

REMARK: Let M be an n-dimensional G-module and P = P(M) the
projective space of lines through the origin in M. If r  n let G ( r, M ) be
the Grassmann space of r-planes in M. Then P and G ( r, M) carry
natural G-linearized very ample invertible sheaves and the hypothesis in
(ii) of the theorem are satisfied in both cases [15].

In [10] a criterion for stability is given in terms of 1-parameter
subgroups. We give now an analog in this more general setting of the key
result used to establish this criterion. Recall that a 1-parameter subgroup
of G is a homomorphism À : Gm ~ G. We put G(03BB) = Image(03BB)· H. The
group G(03BB) is a closed connected subgroup of G of semi-simple rank 1.
If 7T : G - G/H is the natural projection then 03C0 induces a 1-parameter
subgroup À = 03C0 o 03BB of G/H. Let A ( G ) (resp. 039B(G/H)) denote the set of
1-parameter subgroups of G (resp. G/H).

LEMMA 3.4. qr induces a bijection 03C0*: 039B(G) ~ 039B(G/H).

PROOF: Fix a maximal torus T of G and let P = T· H. Every G(03BB) is

conjugate to a subgroup of P. If x e 039B(G/H ) then G ( x ) = [03C0-1(Im(x))]0
is conjugate to a subgroup of P. Say G(x)g(x)~P. Then if T(x) is a
maximal torus of G(x)g(x) then T( x ) c T so T( x ) is given by a 1-param-
eter subgroup 03BB0(x):Gm ~ T. Define À by 03BB(03B1)=(03BB0(x)(03B1)g-1(x).
Then 03C0 o À = x. Since H is unipotent 03C0 o 03BB = 03C0 o 03BB1 if and only if À = 03BB1.
Indeed, 03C0(03BB(03B1)) = 77(Xl(a» if and only if 03BB(03B1)03BB1(03B1)-1~ H. This means
03BB(03B1)03BB1(03B1)-1 = e so À = À1. 0



78

Let ( h, L) be as above and B the ring of regular functions on Cv(V).
We shall say that the action of G on V is k-noetherian if BH is a finitely
generated k-algebra. In this case BG is also finitely generated as a

k-algebra.

PROPOSITION 3.5: Let V be a normal projective variety on which the

connected algebraic group G operates. Let L in Pic(V) be a very ample
G-linearized invertible sheaf and assume that the action of G on ( h, L) is
k-noetherian. Then

1. A point v in V is semi-stable if and only if it is semi-stable for G(03BB)
for all À in 039B(G).

2. If Cv(V) is quasi-factorial, then v in V is stable if and only if it is

stable for G(03BB) for all À E 039B(G).

PROOF : Let Po = Proj A where A = B H, B = r( Cp(V), OCv(V)). The s-cat-
egorical quotient (q, W) of VSS( H) is canonically identified with an
open subset of Po. Let Lo = OP0(m) be the natural G-linearized invertible
sheaf on Po. Then Vss(L) = Vss(H) ~ q-1(Pss0(L0)) and Vs(L) =
Vps(H)~q-1(Ps0(L0)). But Pss0(L0) and Pos(LO) are determined by
039B(G/H) by [10: 3.2]. The proposition now follows in a straight forward
manner from lemma 3.4. We leave the details to the reader.
A somewhat more useful criterion is the following result.

PROPOSITION 3.6: Let G, V and L be as above. Assume that G is a closed

subgroup of a reductive group M which acts on V and that the G-lineariza-
tion of (V, L) is the restriction of an M-linearization of ( h, L). Suppose
Cv(V) is quasi-factorial. Then if v E Vss(H) (resp. VS(H» is semi-stable
(respectively stable) with respect to M, it is also semi-stable (respectively
stable) with respect to G.

PROOF : Since every M-invariant section of L is also G-invariant the
assertion with regard to semi-stability is clear. Suppose s is an M-in-

variant section of Lr some r and the action of M on Vs is closed. Since G
is closed in M, the action of G on Vs is also closed. The proposition is
then an immediate consequence of the definition of stability. 1:1

4. Applications and examples

In this section we discuss several examples of actions of nonreductive
groups to which the foregoing theory can be applied. The last two
examples are based on work of Mori [19] and Catanese [18]. We begin by
recalling Mumford’s 1-parameter subgroup criteria.

Let G be a reductive algebraic group acting linearly on a vector space
V. This gives an action of G on the associated projective space P(V)
which is linear with respect to 0(l). Recall that a point x E P(V) is
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stable if (i) there is a homogeneous polynomial f E S(V*)G such that
f (x) * 0 and (ii) the action of G on the affine open G-stable subset

P(V)f is closed. A point is semi-stable if and only if the first condition
holds. The point x E P(V) is said to be a properly stable point if it is
stable and the dimension of the stability group of x in G is zero. Let
À : Gm ~ G be a 1-parameter subgroup of G. With respect to a suitable
basis of V, the action of 03BB(Gm) can be diagonalized. Thus 03BB(03B1) =
diag(03B1r0,..., arm ). If x E P(V) and v E V lies over x then we can write
v = v0 + v1 + ... + vm vi in the rr-eigenspace of À. Then define

03BC(x, 03BB) = max{-ri|i such that vi ~ 0}.

THEOREM [10; 2.1]: A point x E P(V) is stable ( res. semi-stable) if and
only if it(x, À) &#x3E; 0 ( resp . p.(x, 03BB)  0) for all 1-parameter subgroups 03BB.

We also have [10; 2.2] for x G P(V) and any v(x) E Tl lying over x:
(i) x is semi-stable if and only (0) is not in the closure of the orbit of

v(x).
(ii) x is properly stable if and only if the map 03C8v(x) : G - V given by

g ~ g · v(x) is proper.
(iii) If P(V)s (resp. P(V)ss) denotes the set of properly stable points

(resp. semi-stable points) of P(V) then a geometric (resp. cate-
gorical) quotient of P(F)’ S (resp. P(V)ss) by G exists and is

quasi-projective (resp. projective).
When G c GL () contains the scalar matrices Z then the above

criterion cannot be applied directly. However, we can modify it slightly
as follows. Let G c GL(V) be a reductive subgroup containing the center
Z of GL ( h ). Let G’ = G~SL(V). If XJ denotes the set of properly
stable points of G’ in P(V) then XJ is G-stable and XJ/G exists and is
quasi-projective since Z acts trivially on Xô and XJ/G = XJ/G’.

4.2. First examples

Let P c SL(2, C) be the Borel subgroup of upper triangular matrices in
SL(2, C). Then P acts on S2(2) in a natural way. The group P is the
semi-direct product of Pu = Ga and Gm and we can choose affine coordi-
nates for the vector space V = S2(2) say x, y and z so that the action
of P is given by

where « E Gm, a E Ga, aa e P. The Pu invariant functions are generated
over C by z and y 2 - xz and Vz is the set of properly stable points of Pu .
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Let f:V~A2 be the map induced by the ring inclusion C[u, v] ~
[x, y, z], f*(u) = y2 - xz, f*(v) = z. Then f is P equivariant and
P/Pu ~ Gm acts on A 2 by ( u, v) ~ 03BB(u, 03BB-2v). The open set A 2 v is

Gm-stable and in fact A2v/Gm exists and is affine. Thus VZIP exists and is
affine.
On the other hand if we consider the natural action of P on W =

S3(2) then 0393(W, OW)Pu = [a, b, c, d ] with one relation a2d = b3 - c2
and P/Pu acts by

The set of properly stable points for Pu is Wa U Wb. Again we can map W
to A 4 by [u1, u2, u3, u4] ~ r(W, OW ) ul ~ a, u2 ~ b, u3 ~ c, u4 ~ d.
Let Y = A 4 u i = 1, 2. Then Yi/Gm exists and is affine for i = 1, 2. Thus a
quotient Q as algebraic scheme exists. On Y = Y1 U Y2 the points
(1, 0, 0, 1) and (0, 1, 0, 1) have distinct orbits. But the closures of both
these orbits in A 4 contains (0, 0, 0, 1). Thus Q is certainly not quasi-af-
fine. However, T = Proj [u1, u2, u3, u4] is quasi-projective if we declare
the grading to be of type (3, 2, 3, 0). Then T is the geometric quotient of
A4 - (0) mod Gm and since u21u4 - u32 + u23 is homogeneous with re-
spect to this grading, its image in T is a geometric quotient by Gm . But Y
is open and Gm-stable in the variety u21u4 - u32 + u23 = 0 thus, it has a
quotient by Gm. The usefulness of weighted projective spaces will reap-
pear in a later example. Note here that the use of invariants of Gm in
[u1, U2, U3, U4] (u4 is the generator of the ring of invariants) does not
lead to a quotient.

4.3 Morphisms of projective spaces

Let 03A6(d)~Hom(Pn, Pm) be the set of all morphisms ~:Pn ~ Pm
such that ~*OPm(1) = OPn(d). It is well known that 03A6(d) is a quasi-
projective variety. Let ’¥(d) be the cone over 03A6(d) identified with m + 1
sections in H0(Pn, O(d)). Then 03A8(d) is an open subset of the affine

space of dimension N = ( m + 1) dim H0(Pn, O( d )). For 03C8~ ’¥(d) we
let sj(03C8) be the j-th component section of 03C8 = (s0(03C8),..., sm(03C8)). Each
sj(03C8) can be naturally viewed as a polynomial of degree d in homoge-
neous coordinates x0,...,xn of Pn. Denote by ’¥(d, j) the set of all
03C8~ ’¥(d) such that xg occurs in sj(03C8) with non zero coefficient. The fact
that 41 induces a morphism Pn ~ Pm ensures us that 03A8(d) =
Um+1j=003A8(d, j). It is easily seen that ’1’( d, j) is open in ’1’( d).

Let v~ = [1, 0,...,0] in Pn and P the stability group of v~ in

G = PGL ( n ). If H = Rad u P then H ~ Gna and if h = (h1,..., hn)~H
then h acts on Pn by
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The group G (and so also P) acts on 03A6(d) by (g~)(v) = cp(g-lV) and
this action lifts to an action of SL(n + 1, C) on *(d).

LEMMA: The action of H on 03A6(d) is properly stable. In particular
03A6(d)/H exists and is quasi-projective.

PROOF: Let H’ be the preimage of H under the natural isogeny SL(n +
1) ~ PGL(n). The action of SL(n+1) on ql(d) exhibits a natural

linearization of the action of SL(n + 1) on 03A6(d). Let ~0~03A6(d) and
suppose 410 lies over it in 03A8(d). We can assume that % E ’¥(d, i).
Define Wi(03C80) to be the closed subset of ’¥(d, i ) defined by the

condition:

Let (3: H X Wi(03C80) ~ 03A8(d, i ) be the morphism 03B2(h, 03C8) = h·03C8. We
will show that 03B2 is bijective onto its image. Indeed, if (3(h1, 03C81) =
03B2(h2, 03C82) then h103C81 = h203C82 so 03C82 = h03C81 where h = h-12h1. Let si(03C81) =
03BB0xd0 + ... +03BBnxdn + M1 and si(03C82) = 03BC0xd0 + .. .+ 03BCnxd + M2 with M1,
M2 forms of degree d in xo, ... , xn not containing any monomials of the
form axf, 03B1 ~ . Then we have

Since h · 03C81 = 03C82, evaluating both functions at Voo gives 03BB0 = 03BC0. Since
4’l’ 03C82~Wi(03C80) we have 03BBj = 03BCj j = 1,..., n . But h · 03C81 = 03C82 implies
xi + 03BB0hdj = 03BCj and so 03BB0hdj = 0 all j. But 03BB0 ~ 0 because 03C8~03A8(d, i )
thus hdj = 0 all j; i.e., h = e in H. Since Wi(03C80) is easily seen to be
normal (indeed it is the intersection of ’¥( d, i ) with a linear subvariety)
we have by Zariski’s Main Theorem (the characteristic is zero) that 03B2 is
an open immersion. It follows that 03A8(d, i ) is locally trivial. But then
%P(d) is also locally trivial and being open in an affine space is also
quasi-factorial. By Theorem 2.4 the action of H on O(d) is properly
stable so by definition 3.2 the action of H on 0(d) is properly stable.
We next show that 03A6(d)/P exists and is quasi-projective. Let

03C0 : SL (n + 1, ) ~ PGL ( n , C) be the canonical isogeny and put Q =

03C0-1(P)0. Then Rad uQ is naturally isomorphic to H. It is easy to verify
that Q ~ GL(n,)·H.

LEMMA: Every point of 03A6(d) is properly stable for the action of SL(n +
1, C).

PROOF: Let À be a 1-parameter subgroup of SL(n + 1, C). Replacing À
by a suitable conjugate if necessary we may assume
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(cf. [10: Chapt. 3]). Let Ç G 03A8(d) lie over ~ E 03A6(d). Fix j, 0  j  n. For
at least one i between 0 and m we have

For t ~ Gm, we then have

Now the basis of H0(Pn, O(d)) ~ ... ~ H0(Pn, O(d)) (m + 1 copies)
given by monomials of degree d in each factor diagonalizes the action of
À. For the corresponding coordinates we see that in the i-th factor the
coordinate of si(03C8) corresponding to xdj gives the character dj. Since
03BB(03C4)~ SL ( n + 1, C), det 03BB(t) = 1 so 03A3nl=0rl = 0. It follows that at least

one rJ is positive and one is negative. From this it is clear that

is positive so by the numerical criterion [10 : 3.1] 99 is a stable point for
SL ( n + 1, C). Since the stability groups are 0-dimensional, (p is actually
a properly stable point and the lemma is established.

COROLLARY: Every point of 0 (d) is properly stable for the action of P.

PROOF: By Proposition 3.6 every point is properly stable for the action of
Q and it follows immediately that every point is also properly stable for
the action of P.

The example of Mori

Let d, n, m be as above. Let Xc pm be an n-dimensional subariety,
~0:Pn ~ X a morphism such that ~*0OPm(1) = OPn(d) (here ~0 : p n -
Pm by composing with the inclusion X c P m). Let j:{v~} ~ X be the
restriction of To to {v~} and put 03A6(d, j, X) = {~ ~ 03A6(d) : ~(Pn)~ X,
~|v~ = j}. 1 claim P acts on 03A6(d, j, X) and in particular on the
component containing ~0. Further, a quasi-projective quotient of this
component by P exists.

Note first that since P fixes v~, (g~)(v~) = ~(v~) for all 99 so if

cplv = j then g·~|v~ = j all g E P. Next let e : 03A6(d)  Pn ~ Pm be the
evaluation morphism

If P acts diagonally on the product 03A6(d)  Pn then e becomes a

P-equivariant morphism where P acts trivially on P’. Hence e-1(X) is
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closed in 03A6(d) x pm and is P-stable. Let Z = e-1(X) and p1 : Z ~ 03A6(d)
the restriction of the projection onto the first factor. Note that [ TOI ]  Pn
c Z. Let En = { z ~ Z : dim p-11(p1(z))  n}. Then En is closed in Z (cf.
[1; A.G., 10.3]). Since p 1 is proper p1(En) is closed in 03A6(d). But z E En
if and only if p-11(p1(z)) = p1(z)  Pn and this holds if and only if
p1(z)(Pn)~X. Now let Z«po) be the component of En containing
[~0] Pn. Then

(1) p1(En) = 03A6(d, X) and
(2) p1(Z(~0)) = 03A6(d, X, j) are closed

P-stable subsets of 03A6(d, X). Thus both have quasi-projective geometric
quotients since 03A6(d) does. This example is based on a construction of
Mori in his proof of Hartshorne’s conjecture [19].

4.3. Moduli of surface with K2 = pg = 1

The last example is taken from a paper of F. Catanese [18]. Let S be a
smooth minimal surface with pg = K2 = 1 where pg is the geometric
genus and K the canonical divisor. Then the canonical ring R(S) =
~~m=0H0(S, O(mK)) gives rise to a scheme P = Proj R(S) which is a
weighted complete intersection of type (6,6) in Q = Proj C[xo, yi, y2,
z3, Z4] with R = C[xo, yi, y2, z3, Z4] a graded ring having deg xo = 1,
deg yl = 2, deg zj = 3 (i = 1, 2, j = 3, 4). Here type (6,6) refers to the
degree of the two homogeneous polynomials F and G in R which define
P.

Catanese shows that the polynomials F and G may be written in the
form F = z23 + x0z403B1(y) + A(y) and G = z24 + x0z403B2(y) + B(y) where
03B1(y) and 03B2(y) are linear in y0 = x20 , y, and y2 and A ( y ), B(y) are
cubic forms in yo, y, and y2. For a general choice of a, 03B2, A and B the
complete intersection F = G = 0 in Q is smooth and hence isomorphic to
a minimal surface with pg 

= K 2 = 1.
Let G1 be the subgroup of Aut Q determined by the substitutions

and the involution i which permutes Z3 and z4. Then the connected

component H of the corresponding algebraic group À is isomorphic to a
semi-direct product
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where P is the group of matrices

Tl is given as

and the semi-direct product structure is given by

THEOREM [18; 1.9]: If X and X’ are defined by two pairs of canonical
equations (F, G) and (F’, G’) then they are isomorphic if and only if
( F, G) and ( F’, G’) are in the same orbit under the action of the group fi.

We want to consider the problem of constructing the moduli space for
these surfaces defined by canonical forms F and G. A straightforward
computation shows that if h = do . p - t with d o E Gm, p E P, t E Tl then

and

The unipotent radical of fi = Hu = Pu = G2a. We look at the action of this
group next.

Let a(y) = a0y0 + a1y1 + a2y2, 03B2(y) = b0y0 + b1y1 + b2y2. Then if
pu = (d10, d20) ~ Hu we have
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If

then we can find unique d10, d20 with pu(a1y1 + a2y2) = 03B1(y) and
pu(b1y1 + b2 y2 ) = 03B2(y). If D( a, 03B2) = 0 then the stability group of a( y ),
l3(y) is positive dimensional. Next write

and

Then a straightforward computation shows the following relations:

4

The same relations hold with a¡jk replaced by b¡jk throughout. Using the
same argument as above we can conclu de the following.

PROPOSITION: Let W be the affine space of dimension 26 parametrizing
the canonical forms F and G. Then a point w E W is properly stable for the
action of Hu if the rank of the following matrix is two:

An interesting connection exists between this matrix and the following
result of Catanese.

THEOREM [10: 3.1] : Let S be a smooth weighted complete intersection of
type (6,6) defined by the vanishing of the canonical equations F and G.
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Then the local universal deformation space has a smooth base of dimension
18 and the differential of the local period mapping JL is injective if and only
if the determinant of the following (generically invertible) matrix

A(a, /3, A, B) is non zero.

If the determinant is expanded along the last column then it can be
readily seen that det 0394(03B1, 03B2, A, B) ~ 0 implies M(F, G) has rank 2.

Thus if Wo is the open subset of W where det 0394(03B1, 03B2, A, B) ~ 0 then
W0394 is Hu stable (because the entries of 0394(03B1, 03B2, A, B ) are invariants) and
a quasi-factorial quotient of W0394 by Hu exists. In fact W0394/Hu is rational
since W0394 ~ W0394/Hu is a locally trivial principal H,,-bundle.
Now H/Hu is reductive and standard techniques can be applied to

this group acting on W0394/Hu to construct (at least generically) a quotient.

REMARK: Catanese appeals to a theorem of Geiseker to show that a
moduli space exists. The construction of moduli spaces of smooth varie-
ties sitting as complete intersections in weighted projective spaces can be
handled slightly differently however. This topic will be discussed by us
elsewhere.
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