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0. Introduction

According to a theorem of Brieskorn [2], cf. [28], the semiuniversal
deformation X - U of a simple singularity of type Ar, Dr, or Er can be
embedded into the adjoint quotient x : G - T/ W of the corresponding
simply connected complex Lie group G

At other places ([29], [30]), using results of Looijenga and Pinkham ([19],
[27], [22]) we have indicated how at least the "simple" part X’ - U’ of
the semi-universal deformation X - U of a simply elliptic or cusp
singularity of degree  5 can be embedded into a partial adjoint quotient
 ~ J/W for a certain infinite-dimensional group G attached to a

Kac-Moody Lie algebra. Such groups contain a Tits system ( B, N ) such
that T = B r1 N is a finite-dimensional torus and W = N/T is an infinite
cristallographic Coxeter group ([21], [26], [33]). Following Looijenga [18]
one may specify a domain 3Rc T on which W acts properly discontinu-
ously. Thus !TjW inherits the structure of an analytic space, in fact that
of a complex manifold. The subset cg c G on which one can define a map
to 37 W consists of all elements conjugate into B with " T-part" lying in
1.

In this paper we shall describe a step towards the goal of extending the
partial quotient 9 W to allow for an embedding of the full semiuni-
versal deformation X - U. In [19] Looijenga showed how to identify the
base space U with a partial compactification W of 5;/W. His con-
struction of !TjW parallels procedures in the compactification theory for
arithmetic quotients of hermitian symmetric spaces. The space !TjW is
obtained as a W-quotient il7W of an extension g- of f which can be
described in terms of the infinite root system involved, cf., [18]. Our aim
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here is to show that this partial compactification turns up naturally when
one considers the representation theory of the group G. Thus this article
may be considered as a supplement to [18].

To be more precise, let us first recall the classical finite-dimensional
situation.

Let G be a semisimple simply connected complex Lie group of rank r.
Let p, : G - GL(Vi), i = 1,... r denote the fundamental irreducible repre-
sentations and ~i:G~, ~i(g) = trace pl ((g), the corresponding char-
acters. Then the adjoint quotient of G, i.e., the quotient in the category of
algebraic varieties of G by its conjugation action, is given by the map

Let T c G be a maximal torus, N c G its normalizer in G and W = N/T
the corresponding Weyl group. Then the restriction of X to T induces an
isomorphism Ruz C r

The proof of this fact is the object of the classical exponential invariant
theory (cf. [1] or [32]).
Now let G be a group attached to a Kac-Moody algebra g with Tits

system ( B, N ) and torus T = B r1 N. Let 03C0:N~N/T=W be the

projection onto the Weyl group W and let s = dim T. Then there are s
fundamental, in general infinite-dimensional, irreducible representations

In this paper we only consider the restriction of these representations
to N and we specify a domain N~ N on which the characters

can be defined. This domain is the union X= ~wN(w) of its connected
components N(w)=N~03C0-1(w). Here w runs through the set W p of
pure elements of the Weyl group W (cf. 6.2).
We shall show that the map



5

factors through Looijenga’s partial compactification

inducing a local isomorphism from :f¡w near "infinity" to an open
subset of Cs. Here T : /- À is a surjective prolongation of the identity
map

sending each component %(w), w ~ 1, onto a boundary component of
e.

This result indicates that unlike the case of the simple singularities
where the semiuniversal deformation is based at the subregular unipotent
conjugacy class of the corresponding Lie group, simply elliptic or cusp
singularities are not related to (pro-) unipotent elements in the corre-
sponding groups. Instead, it seems that we now have to look at the
elements in the group whose behaviour under the representations resem-
bles that of Weyl group elements of infinite order. We hope that a further
analysis of this point will finally allow to complete the full program
mentioned before.

1. Kac-Moody algebras

Kac-Moody-Lie algebras are infinite-dimensional generalizations of semi-
simple Lie algebras. Their study was independently started by Kac and
Moody ([8], [24]). In this chapter we shall give a quick description of their
construction and some basic properties. Our presentation differs slightly
from the usual ones in that we start the construction from a so-called
root datum (cf. 1.4.). This seems to be more appropriate for the discus-
sion of associated groups (cf. [33]) and also avoids some unnecessary
technical complications (i.e. artificial roots). Moreover, relevant geomet-
ric aspects show up only after enlarging the usual Kac-Moody algebras in
the way we introduce them (cf. [5], [3], [18]). For discussion of examples
(i.e., in the affine case) we refer to [8], [25], [3], [30].

l.l. Cartan matrices

Let r be a natural number, r &#x3E; 1. An r X r integer matrix A = «A¡})) E
M,. (71 ) is called a (generalized) Cartan matrix if it has the following
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properties:

1.2. Coxeter diagrams

To each Cartan matrix A E Mr(Z) we associate a Coxeter diagram in the
following way:

There are r vertices numbered from 1 to r, and two vertices i and j,
i ~ j, are connected by an edge if and only if Aij ~ 0 (~ Ajl ~ 0). In
addition, such an edge is valuated by an integer mij according to the
following list:

However the valuation 3 will be suppressed, for simplicity.

EXAMPLES:

1.3. Classification of Cartan matrices

A Cartan matrix A is called indecomposable if the corresponding Coxeter
diagram is connected. If A is not indecomposable, we may, after possibly
rearranging indices, write A as a direct sum
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of indecomposable Cartan matrices Ai, i = 1,..., n.
According to Vinberg ([35]) the indecomposable Cartan matrices may

be divided into three classes:

(1) the spherical ones, or those of finite type, corresponding to the
classical root systems of type Ar, Br, Cr, Dr, E6, E7, E8, F4, G2-

(2) the euclidean ones, or those of affine type, which correspond to the
affine root systems (cf. [20]). They comprise the Cartan matrices of
the extended Dynkin diagrams.

(3) the remaining ones, which are neither spherical nor euclidean, are
called of general type.

EXAMPLE: Consider the Coxeter diagram Tp,q,r, p, q, r E N.

This diagram determines uniquely a corresponding Cartan matrix, which
we also denote by Tp,q,r. Then Tp,q,r is of spherical, resp. euclidean, resp.
general type if the sum

is greater than 1, resp. equal to 1, resp. smaller than 1. To any such

diagram corresponds an isolated hypersurface singularity in 3 which is
either simple, resp. simply elliptic, resp. a cusp. For other diagrams
attached to related singularities cf. [19].

1.4. Root data

Let A E Mr(Z) be a Cartan matrix. A root datum for A is a triple
(X, ~, ~) consisting of

- a free Z-module X of finite rank,
- a free indexed subset v = (hl,..., hr} c X,
- a free indexed subset 0394 = {03B11,..., 03B1r} ~ X* = Homz(X, Z), such

that 03B1j(hi) = Aij for i, j = 1,..., r.
The elements al E A (resp. hi ~ v) will be called the simple roots (resp.
the simple coroots). Let s be the Z-rank of X. We call s the dimension
and r the rank of the root datum.

1.5. The construction of Kac-Moody algebras

Let (X, ~, ~) be a root datum for a Cartan matrix A E Mr(Z). We let g
be the complex Lie algebra generated by X and the elements e;, f;,
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i = 1,..., r subject to the following relations:

for all h, h’ E X and i, j = 1,..., r.

The elements of X will generate a commutative subalgebra  = X ~z 
in g, and g will decompose into a direct sum of finite-dimensional
eigenspaces

Here, for a E 6* = Hom(, C) we put

Let reg denote that ideal of g which is maximal among the ideals
intersecting trivially . Then g = g/r is the Kac-Moody algebra associ-
ated to the root datum (X, v, 0394). According to a recent theorem of
Gabber and Kac ([4]) the ideal r is zero in case the Cartan matrix is

"symmetrizable". This condition is fulfilled for all matrices of spherical
or euclidean type as well as for those whose Coxeter diagrams are trees.

Let (X, v, 0394) and (X’, v’, à’) be two root data for A of dimensions
s and s’, s  s’, and let g and g’ be the corresponding Kac-Moody
algebras. Then it is easily seen that g’ is isomorphic to a direct sum of g
and a commutative Lie algebra  of dimension s’ - s. It is also easily
seen that such root data exist (cf. for example [35] §5). If A is inde-

composable one has s  r + corank(A). It is also possible to construct
algebras in the above way by starting from a root datum (X, ~, 0394) in
which v or 0 are not necessarily free (for the Q-classification of such
data, cf. [35] §5). The resulting algebras are easily obtained as subquo-
tients of Kac-Moody algebras associated to root data in the sense of 1.4.
A glance at the defining relations for a Kac-Moody algebra g shows that

(1) the commutator subalgebra c = [g, g ] is generated by the h l, el,
f, i=1,...,r,
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(2) the quotient g/g ’ is isomorphic to b = /{h1,.. , hr},
(3) g is a semidirect product g ~ gc  b.
We have g = gc if and only if det A =1= 0 and dim X = r. The algebra

gc is the one which usually has been called the Kac-Moody algebra g ( A )
associated to A. When det A = 0 this algebra is associated to a "singular"
root datum (X, ~, 0394) in which à is not free.
When A is decomposable into a direct sum of Cartan matrices Ai,

i = 1, ... , n, then the commutator subalgebra g(A)c is a direct sum of the
commutator subalgebras g(Al)c.

It turns out that g(A) is finite-dimensional if and only if A is a direct
sum of spherical matrices. In such a case g(A) is the corresponding
semisimple complex Lie algebra.

1.6. The root decomposition

Let A be a Cartan matrix, (X, B7, d) a root datum for A and g the

Kac-Moody Lie algebra associated to this datum.
Like in the case of g , the image of X in g generates a commutative

subalgebra = X ~z. With respect to 1) there is a decomposition into
finite-dimensional eigenspaces

having the following properties:
(1)  = g o, i.e. 1) is its own centralizer.

Let 1 = {03B1~*B{0}|g03B1 ~ {0}}. The elements of 2 are called the roots
of  in g.

(2) 03A3 = 03A3+~03A3-, where 2 - (Y. ’) and 03A3+ = 03A3 ~.0394. In particu-
lar 03A3 ~ X* ~ *.

(3) A c Y-, hence - 0394 ~ 03A3, and g al (resp. g-03B1l), al E 0, is spanned by
the image of el (resp. fi) in g. 

For simplicity, we shall henceforth denote the images of X, el, fi, in g
by the same symbols.

Define

ut= ~ ga and b = h ~ u+

We shall call h resp. b a standard Cartan subalgebra resp. Borel

subalgebra.

l. 7. The Weyl group

Let W denote the group of automorphisms of X generated by the
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reflections

The group W is called the Weyl group of (X, ~, ~) or g. Its con-

tragredient action on X* is given by analogous formulae

Using for example the geometrical analysis as developed in 4.2, one can
prove that (W, {s1, ..., sr}) is a Coxeter system whose Coxeter diagram is
exactly the diagram associated to the Cartan matrix A in 1.3, cf. [10],
[26], [35].

The action of W on X induces naturally actions on X 0 z R for any
ring R, in particular on h, as well as on h*.

Let p : g ~ gl(g) be the adjoint action of g, and 03C1i:~2 ~ ~(g) the
restriction to the ôt2-subalgebra generated by e, and fi. Then p, decom-
poses into a direct sum of finite-dimensional representations. From this
fact one deduces the following:

(1) The Weyl group W permutes the roots.
(2) dim g a = dim g03C9(03B1) for all a E 3l, w e W.
The set 03A3R = {w(03B1)|03B1 ~ Il, w E W} is called the set of real or Weyl

roots. The complement 03A3I = 03A3B03A3R is called the set of imaginary or
complementary roots.

One has 03A3I =)1 if and only if 2 is finite. For more information on the
structure of 2 we refer to [12].
We have dim g03B1 = 1 if 03B1 ~ 03A3R. For Lie algebras of general type the

dimensions of the root spaces g03B1, a E 03A3I, are unknown, in general.
Let 03B1 ~ 03A3R be a real root. Then there are w - W and a c= A such that

a = w(03B1i). Define

We call Sa the reflection associated to a.

2. Représentations of Kac-Moody atgebras

In this chapter we describe the theory of the so-called standard represen-
tations of a Kac-Moody algebra g. When g is finite-dimensional these

representations coincide with the usual finite-dimensional representa-
tions. For the details of the theory we refer to [10], [11], [5].
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2.1. Weights

Let g be the Kac-Moody algebra attached to a root datum (X, v, 0394),
and let h = X 0 C be its standard Cartan subalgebra.
An element 03C9 ~ h* is called a weight if 03C9(hi)~ Z for all i = 1,..., r.

A weight w is called dominant if 03C9(hi)~N for all i = 1,...,r. Any
dominant weight wi with the property 03C9i(hj) = 03B4ij, j = 1,..., r, is called
an i-th fundamental dominant weight.
. In the context of Lie algebras the integral structure of a root datum is
without any importance. Since this will be different when dealing with
groups we define: A weight 03C9~h* is admissible for (X, v, 0394) if

03C9~X*~h*.
We say that the root datum (X, v, 0394) is simply connected if one may

choose fundamental dominant weights wi in X*, i = 1,..., r. In this case
we may write

where Q is the sublattice generated by the h l, i = 1,..., r, and where D is
the common kernel of the functionals 03C9i: X ~ Z. Moreover, if we put
b = D 0 C we may write g as a semidirect product

The set of all weights P then has the following form

2.2. Standard representations

Recall the notations (cf. 1.6.)

Let ô/I ( g), (b), (u-) denote the universal enveloping algebras of g,
b, u - respectively. We then have 03BC(g) = 03BC(u-)·03BC(b).

Let 03C9~h* be a dominant weight, defining a one-dimensional repre-
sentation 03C9 of b :
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Let V(03C9) = 03BC(g)~03BC(b)03C9 be the induced module of g. As an h-space
V(03C9) is isomorphic to 03BC(u-)~03C9. By V03C9 we denote the quotient of
V(’) by the maximal g-submodule which does not contain the line
1 ~ 03C9. This g-module V03C9 has the following properties:

(1) hw is irreducible.
(2) As an b-module V03C9 decomposes into a direct sum of finite-dimen-

sional eigenspaces V03C9 = ~03BC~h*V03C903BC, where V’ {v E v03C9|h·v =
03BC(h)03BD for all h ~h}. An element of p ~h* is called a weight of
V03C9 if V03C903BC ~ {0}.

(3) Any weight p of hw has the form

(Hence: if w is admissible for a root datum then it also is.)
(4) V) is the image of 1 ~ 03C9, and dim Tlw = 1.
(5) With respect to the at’2-subalgebra of g generated by a triple ei,

h l, f the module V03C9 decomposes into a direct sum of finite-dimen-
sional ôt2-modules.

From (5) we get:
(6) The set of weights of V03C9 is stable under the action of the Weyl

group W. Moreover we have dim V03C903BC = dim V03C9w(03BC) for all w e W.
Properties (3) and (4) mean that V03C9 is a highest weight module with
highest weight w. An element v E V,,, v * 0, is called a highest weight
vector. Recall u v = 0 by construction. The modules V03C9 are called the

standard modules of g.

2.3. Formal characters

Let ZP denote the set of all functions P ~ Z, where P is the group of
weights. To each element p E P we associate the function e(03BC): P ~ Z
defined by e(03BC)(03BC’)=03B403BC03BC’. The Weyl group W operates naturally on P
and hence on ZP.

Let Yw be the standard module of g corresponding to the highest
weight w. Since the weight spaces of V03C9 are finite-dimensional the

formal character of hw

is a well defined element in ZP. Because of dim V:(JL) = dim V03C903BC, for all
w e W, the character ~03C9 is a W-invariant element in ll p.
When the Cartan matrix of g is symmetrizable there is an analogue of

Weyl’s character formula for xw due to Kac [10].
Later we will interpret these f ormal characters as actual functions, cf.

Chapter 5.
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3. Groups attached to Kac-Moody algebras

In this chapter we want to attach a group G to a Kac-Moody algebra g.
There are actually many possibilities to do so. We shall restrict ourselves
to a group which is minimal with respect to a set of natural properties,
and which suffices for the limited purposes of this paper. In [30] we
consider a completion of G.

The study of groups G attached to g was started by Moody - Teo,
Marcuson, and Garland ([26], [21], [7]). Recently Tits gave a uniform
treatment ([33], [34]). He defines the groups by an amalgamation process.
A different amalgamation procedure has also been proposed by Kac ([9],
[11]).

3.1. Definition of the groups

Let A E Mr(Z) be a Cartan matrix, (X, v, 0) a root datum for A and g
the corresponding Kac-Moody algebra. The group G we want to associ-
ate with g, more precisely with the root datum (X, v, 0394), may be
characterized by the following properties:

G is generated by subgroups T, Xi , Y , i =1, ... , r

where

(1) T is the torus X~z* = Homz(X*,*) with character group
X*, 

(2) Xi (resp. Yi) is the image of an additive one-parameter subgroup xi
(resp. y;): C - G normalized by T such that

for all tE T, cEC.
Furthermore, we require

(3) For any standard representation

with admissible highest weight io there is a homomorphism

such that for all i = 1, ... , r, cEe, t ~ T, v ~ V, we have
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and

if v EVIO
Note that the exponential series applied to v reduce to polynomials since
the action of e and fi is locally nilpotent on V03C9, cf. 2.2.

(4) For any admissible weight w which is non-zero on each connected
component of v, the kernel of the representation

is contained in T. (Here we say that a subset of v is connected if
the corresponding set of vertices in the Coxeter diagram is con-
nected).

The existence of such a group G follows from the work of Tits ([33],
[34]). One may deduce it also from the work of Marcuson ([21], see [30]).
When the Cartan matrix is of finite type we obtain a finite-dimensional
reductive group. There is also a more explicit description when the
Cartan matrix is affine, due to Garland, cf. [7].

3.2. Subgroups

Let N c G be the subgroup generated by T and the elements ni(c),
c~*, i = 1,..., r, where

Then N contains T as a normal subgroup, and N/T is isomorphic to the
Weyl group W introduced in 1.7, cf. [21], [33].

For the limited purpose of this paper we won’t use the Borel subgroup
B c G which together with N forms a Tits system in G. However, for
completeness, let us quickly give the definition.

Let b c g be the standard Cartan subalgebra (corresponding to T)
and 2 c X* ~h* the root system of b in g. For any real root 03B1~03A3R we
choose a w e W such that a = w(03B1i) for some 03B1i~ A. Let n E N be an
element which projects onto w E W and define

This is an additive one-parameter group normalized by T via the

character a.
Let U c G be the group generated by all Xa, a ~03A3+. Then U is

normalized by T and B := T  U.
Let J~{1,..., r ) be a subset and
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the corresponding submatrix of the Cartan matrix A. Denote {hi|i~ J},
resp {03B1i|i ~J}, by ~’, resp. A’. Then ( X, p’, A’) is a root datum for the
Cartan matrix A’. Let G’ be the group associated to the root datum

(X, p’, A’). Exploiting the defining properties of G’ and G one estab-
lishes a natural isomorphism from G’ onto the subgroup of G generated
by T and Xi, Y, i~ J. In particular, if A’ is of finite type the last group
is a finite-dimensional reductive subgroup of G.

4. Looijenga’s theory

In this chapter we will give a survey over Looijenga’s work [18]. We first
discuss his analysis of the Weyl group action on b, T and certain
subdomains EQ, f. In the real case such an analysis was also done by
Vinberg [35], both following the pattern of Bourbaki’s treatment [1].
Finally we describe the construction of the partial compactification of
J/W and its analytic structure.

Starting from section 4.3 we shall assume that the root datum given is
a simply connected one. We are interested only in this situation. The
results for arbitrary root data may be easily derived from this special case
(cf. [28] 4.5).

4.1. Uniformization of the torus

Let G be the group attached to a root datum (X, v, 0394). Many of the
constructions involving the torus T = X~z * can be formulated (some-
times easier) in terms of the Cartan algebras = Lie T = X~z. In the
following we shall consider T as the quotient of b by the lattice X, and
we fix the exponential map

obtained from the exact sequence

by tensoring with X.

4.2. The Tits cone

Let (X, v, 0394) be a root datum and W the corresponding Weyl group, cf.
1.7. Here we want to study the action of W on the real vector space
V = X ~zR. Let
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be the open, resp. closed (anti-) fundamental chamber. The Tits cone I is
the union of the W-translates of C

J = W. c.

Then we have

(1) 1 is a convex solid cone in V.
(2) C is a fundamental chamber for the action of W on I.
(3) Let v E I. Then the stabilizer Wv={w~W|w(v)=v} of v is

generated by the reflections Sa E W with 03B1 ~ 03A3R, 03B1(v) = 0.
(4) W acts properly discontinuously on the interior I of I, in particu-

lar for any 03BD ~ I there are only finitely many 03B1 ~ 03A3R vanishing on
v.

(5) 1 = I = V if and only if W is finite, i.e. if and only if the Cartan
matrix of (X, v, 0394) is of finite type.

REMARKS: Of course, similar results hold when we replace C by the
" true" fundamental chamber - C. We can also consider fundamental
chambers and Tits cones in the dual V*. Again, there are analogues
statements.

4.3. Looijenga’s domain

From now on our basic root datum (X, v, 0394) is assumed to be simply
connected. Let D ~ h = V ~R = X ~z denote the tube domain

Denote the semidirect product W  X of the Weyl group W with the
lattice X by W. Then we may extend the complex linear action of W on
EP c b to an action of W by letting X operate on C via translation in the
real direction

One can show that this action of W on 9 is again properly discontinu-
ous. Moreover, the stabilizers of points in -9 are generated by reflections
(here we need the simply connectedness). Thus the quotient space CI 17V
is a complex manifold.

Note that 3R= CIX is a domain in the torus T, and J/W = D/W.

4.4. Boundary components

Let (X, B7, b.) be a simply connected root datum as in 4.3. Let v’ be a
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subset of v, A’ the corresponding subset of A, and

the "orthogonal sets" of v’ and A’.
Let X( p’) = X/Z· p’, and denote the projection of B7"’* into X( B7’),

resp. the injection of 0394’* into X(v’)* by the same symbols, v’* and 0394’*.
Then (X, p’, A’), (X, v’*, 0394’*), and (X(~’), v’*, ~’*) are again simply
connected root data.
We say that v’ is a special subset of v if either v’ =àJ or all

connected components of v’ are of infinite, i.e. non-finite, type.
Let 1) v’ be the subspace of b generated by a special subset v’ of B7.

We shall call h~, as well as its W-translates special subspaces of 1) of
type ~’. Note h = {0}.

For any special subspace ’ ~ h let D(h’) denote the image of e in
the quotient 1)/f)’. In particular D({0}) = 9. Define

Then W acts naturally on this union, and we have

and

Here We, B c A, denotes the subgroup of W generated by the reflections
sa, a E 0.

Furthermore the quotient N(h ~’)/Z(h v’) is isomorphic to the ex-
tended Weyl group

of the root datum (X(v’), v’*, 0394’*) operating in the natural way on
h/h~’ = X(~’)~z and properly discontinuously on the subdomain
D(h~’)~h/h~’.
A topology on 9 is defined in the following way. Let x E D(h’),

h’~h special, be a point of D. Then a subset 4Y of D is called an open
neighborhood of x if

(1) x ~ u
(2) u~D is a convex open subset of !!2, invariant under the stabilizer

WxofxinW
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(3) If h" is special, h"~h’, then U~D(h") equals the projection of
U~D under the map h ~ l) Il) ".

With respect to this topology W acts by continuous transformations.
The orbit space  = / is locally compact, Hausdorff, and admits a
countable basis for its topology. In fact M is a complex Stein manifold
as we will see in the next section.

Note that since each boundary component D(h’) of  is stable under
the translation group X we obtain a toral analogue of :

4.5. Analytic functions on Ç)/W

Now we shall describe the analytic structure on the orbit space if = Ç)/W.
First we note that if is naturally stratified

where M( p’) is the smooth quotient of

or equivalently, the quotient of D(h~’) by N( 1) ~’)/Z(h ~’). A continu-
ous function on an open set d/I c M is said to be holomorphic if it
induces an analytic function on each stratum U~ M( v 1), B7’ c p spe-
cial.

With this analytic structure M turns out to be a Stein manifold. An
essential tool in the proof of this result are the following functions. Let
w E X* be a dominant weight (cf. 2.1). Define the value of the function
S03C9:  ~  at the point x ~ D(h’) by

Then this series converges uniformly and absolutely on compact subsets
of p)( 1)’) for any special h’~h and defines a -invariant continuous
function on . In other words, it defines a holomorphic function on
 = /.
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5. Holomorphy of characters

In this chapter we shall show that the formal characters of a standard
representation can be interpreted as holomorphic functions on a subdo-
main of the manifold M. The first results in this direction are due to
Lepowsky and Moody [15] who treat the rank two hyperbolic case. It was
shown by A. Meurman [23] that already in this case the characters have
poles on M c M outside this subdomain. The domain of convergence we
shall obtain here is not an optimal one. Under the assumptions of a
symmetrizable Cartan matrix one can exploit the Kac-Weyl character
formula for a finer investigation. Such an analysis was recently carried
out by Kac and Peterson [14]. They give a precise description of the
domain of convergence in that case.

Our approach is inspired by Looijenga’s [18].

5.1. A shrinking of the domain D

Let A E Mr(Z) be a Cartan matrix and (X, p, 0394) a simply connected
root datum for A. Let V = X ~z R and h = X ~z . For a positive real
number c define

Let Ic be the convex hull of W.Cc, the set of W-translates of Cc. We
define

and for any special subspace h’~h we let Dc(h’) denote the image of
p)c in h/h’. Then

is an open -stable subset of  meeting each boundary component.

5.2. Some estimates

Let g be the Lie algebra associated to (X, ~, ~) and hw a standard
representation of g with highest weight w E X*. Denote the set of

weights of V03C9 by P’. Then P03C9 is a W-stable subset of 03C9 - N.

{03B11,..., 03B1r}, cf. 2.2. For each element p = w - 03A3ri=1ci03B1i in P w we define
the depth of it (relative co) by
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LEMMA 1: Let J1. be a weight of V(A) of depth n. Then dim V03C903BC  r n.

PROOF ([15]): By construction of hw we have dim V03C903BC  dim U(u-)n,
where U(u-)n is the subspace of U(u-) spanned by the r n products
fi1· ....·fin, ij~{1,...,r}. Therefore dim V03C903BC  rn.

LEMMA 2 : Let v E Cc and p E P03C9 such that 03BC(v)  n. Then depth03C9(03BC) 
(n - 03C9(v))/c.

PROOF : The weight p has the form 03BC = 03C9-03A3ri=1ci03B1i. The condition
03BC(v)n then reads

or, since c  -03B1i(v),

c . depth03C9(03BC)n-03C9(v).

LEMMA 3 : Let K ~ Ic be a compact subset and 03BC ~ P03BC such that

min{03BC(v)|03BD~K}n. Let b :=min{03C9(v)|v~K}. Then dim V03C903BC 
r(n-b)/c.

PROOF : Let H c JC be a convex compact polyhedron containing K such
that the extremal points Ho of H lie in W-translates of Cc. Since a linear
function on H attains its minimum at an extreme point v0 ~ Ho we get
03BC(v0)  n. Let w E W and v E Cc be such that v = w(v0). Then

and depth03C9(w(03BC))(n-03C9(v0)/c(n-b)/c by Lemma 2. Hence by
Lemma 1

For any subset S of JC and any real number n we define AS,03C9(n) to be
the number of p E P03C9 such that min{03BC(v)|03BD~S}  n.

LEMMA 4: Let K c JC be a compact subset and let b = min{03C9 (v)|03BD~ K 1.
Then the number AK,03C9(n) is zero for n  b and of the order of n’’ as

n - + oo. 

PROOF: (cf. [18]): As in the proof of Lemma 3 we choose a convex
polyhedron H~Ic, containing K such that the vertices Ho lie in

W-translates of Cc. Then we have
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Using the W-stability of P03C9 and Lemma 2 we get

The right hand side is zero for n  b and of the order of nr as n - + 00.
From this our claim follows.

5.3. Character functions

Let ~03C9 = 03A303BC~P03C9dim V03C903BCe(03BC) be the formal character of the standard
representation V03C9, cf. 2.3. We want to associate to xw a W invariant
function, also denoted by ~03C9,

which induces a holomorphic function on c/. Let x ~ Dc(h’), h’ cl
special, be a point of c. Define

PROPOSITION: For any special subspace h’~h the series xw converges
uniformly and absolutely on compact subsets of Dc(h’). The resulting
function on c is W-invariant and continuous. In particular, Xw induces a
holomorphic function on c/.

PROOF: Since the restriction of X w to some boundary component is
obtained by omitting terms it is sufficient to prove the first claim for

Dc({0}) = ec.
Let K’~Dc be a compact subset and let K~Ic be the compact

image of K’ under the projection Im:Dc = V + iIc - Ic, u + iv H v.

Note that, because of compactness, K is already contained in some Ia,
a &#x3E; c. For any u + i v E K’ we have
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(by Lemma 3 and 4), for some b,

where E = 203C0 - (log r)/a, and E &#x3E; 0 since a &#x3E; c = (log r ) /2 gr.
That ~03C9 is a W invariant function reduces to the fact that for a special

subset v’ c v and a dominant weight v the set {03BC~ W.v|03BC|~’ ~ 0}
forms an orbit under Wo,, cf. [18] 2.2 and 3.3.

The proof of the continuity of xw is the same as the one given in [18]
3.4 for the function Sw. The only modifications to be made have already
shown up in the convergence arguments above.

6. Factorization of characters

In this chapter we define a domain .ffe N, and we show that the
restriction to X of the character of every standard representation factors
over Looijenga’s partial compactification /W. The definition of N and
the factorization require some more investigations of the Weyl group
action on the dual Tits cone, cf. 6.2, 6.3.

6.1. Algebraic traces

In all this chapter we let G be the group associated to a simply connected
root datum (X, ~, 0394) of dimension s and rank r. Let g be the corre-
sponding Kac-Moody algebra.

Let w E X* be a dominant weight,

the corresponding standard representation and

the lift of p to G, cf. 3.1. The vector space V03C9 decomposes into a direct
sum V03C9 = ~03BC~P03C9V03C903BC of finite-dimensional weight spaces.

For each weight 03BC E P03C9 we denote the injection V03C903BC  V03C9 by i03BC and
the obvious projection V03C9 ~ V03C903BC by 03C003BC. Let RJL(n) be the composition
wJL 0 R(n) 0 iJL for nEN. 

’

We say that n~ N is of algebraic trace class if the sum
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is absolutely convergent for all dominant weights w e X*.
Let n e N be of algebraic trace class and let m E N be arbitrary with

image w in W. Then we have

Thus mnm -1 is also of algebraic trace class and

We call tr03C9(n) the algebraic trace of n on V03C9.

REMARK: The notion of trace introduced above is a naive one but
sufficient for the limited purpose of this paper. If one wants to consider

arbitrary elements in G one has to use the analytic trace defined for
(pre-) Hilbert spaces. This requires the existence of a positive definite
hermitian form on V03C9 which should be invariant under the action of a

"compact form" of G. Such a form has been constructed by Garland in
the affine case (cf. [6], [7]). For symmetrizable Cartan matrices the
existence is proved by Kac and Peterson [36].

6.2. Types of Weyl group elements

Let C* = {03C9 ~V* = X* ~R|03C9(h)0 for all h E v 1 be the true dual
fundamental chamber and I* = W.C* the corresponding TIts cone. Let
(I*)w={03C9~I*|w(03C9)=03C9} be the fixed point set of a Weyl group
element w E W. We call

the subspace associated to w.
After replacing w by a suitable conjugate in W we may assume that

(I*)W supports a face of C*, i.e. C* ~ (I*)w contains an open nonvoid
subset of (I*)w. Then 1)w is generated as a complex vector space by a
subset v’ of ~. It follows from 4.2 that w is an element of Wo., the
subgroup of W generated by the reflections sh, h E v’, on V* (equiv-
alently by the reflections sa, « E A’, on V, where A’ c A is the subset

corresponding to v’c ~). The subset p’ c p is well defined up to

conjugation by W. Abusively we call hw and w of type p’.
For any subset p’ c p there are elements w E W of type v’. Choose

some ordering of the elements of p’

and correspondingly
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Let si E W, i = 1,..., k, denote the associated fundamental reflections.

LEMMA: The product w = SI ..... sk is of type B7’.

PROOF : We are easily reduced to show

Let w E I*. Then w(03C9) = w implies

and

The left side is a rnultiple of al, whereas the right side is a linear
combination of 03B12,..., ak. Since A’ c A is free both sides must be zero.

Inductively we get si(03C9) = 03C9 for all i = 1, ... , k. Thus 03C9(hi) = 0 for
i = 1,..., k which proves our assertion.

REMARK: If the Coxeter diagram of v’ is a forest, then w is a Coxeter
element of W~’ which up to conjugation in Wo, is independent of the
ordering of p’ (cf. [1] V, 6.1). The proof above is an adaptation of
Steinberg’s ([31] 7.6) to our situation.
Any subset v’ c v may be decomposed as the disjoint union of

connected components. We assemble the components of finite (resp.
infinite) type into the finite part v" (resp. the infinite part p’°°). Thus
p’ is the disjoint union

Let w E W be of type p’. According to the decomposition of p’ into
finite and infinite part we have a decomposition of h o,.

and, by conjugation, one of hw

We say w, or b w, is of

finite, resp. infinite, resp. mixed, resp. pure type

if
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Note that the neutral element 1 E W is of pure type. Mixed elements

may be infinite or finite.

6.3. Decomposition of Weyl group elements

Let w E W be an element of type p’. According to the decomposition
p’ - B7’0 U B7’00 the Weyl subgroup W~’ also decomposes as a product

Let g e W be an element such that w e gW~’g-1. Then we may split w
as a product

where w°~ gW~’og-1 and w’ e gW~’~g-1.

PROPOSITION 1: The element w° ( resp. w’) is of type ~’° ( resp. ~’~).

PROOF : Without loss of generality we may assume w E W,,.
In case the Cartan matrices for v’° and p’°° are nonsingular one

reduces the situation easily to that of a direct sum of root data where the
claims are trivial. For the general case we give a somewhat more

complicated argument. It is sufficient to prove

b w o (resp. b wis generated by ~’° (resp. ~’~)

or

Since WO E wv’o and w °° E W v,oo the right-hand sides are contained in
the left-hand sides. By conjugating w° in W v’O and WOO in W v,oo we may
also assume

where p ° and ~~ are subsets of p’° and p’°°, cf. 4.2. Because of
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or

we get B7° = B7’° and ~~ = ~’~ which had to be shown.

PROPOSITION 2: An element w E W is of finite (resp. infinite) type if and
only if w is of finite (resp. infinite) order.

PROOF: We may assume that W is infinite. Otherwise the claim is trivial.
We need to prove only one statement. Assume that w~W is of finite
type. Then w° = w, w~ = 1, and wo is contained in a finite subgroup of
W. Thus w is of finite order. Conversely assume w is of finite order, say
Iwl. Let x E 1* be some element in the open Tits cone. Since this cone is
convex the element

is also contained in 7*. Furthermore j* does not contain 0, therefore x is
a non-trivial fixed point of w. By 4.2 we get that hw is contained in

{h~h|x(h) = 0} which is of finite type since x E I*. Therefore hw, and
w, are also of finite type.

6.4. Normalizer elements

’Let T c G be the standard torus of G and N c G, NT, the subgroup
introduced in 4.2. Then there is a natural projection N - N/T = W. Let
V’ c V be a subset. We say that an element n E N is type v’ (resp. of
finite, infinite, mixed, or pure type) if its image w in W is of the

respective type.

PROPOSITION: Every element n c- N of mixed type is conjugate under G to
an element in N of pure type.

PROOF: Let n be of type V’ = ~’° U v’", and A’, AIO, 0’°° the

corresponding subsets of A. Let G°, resp. G°°, be the subgroup of G
corresponding to the root datum (X, p’°, 0’°), resp. (X, p’°°, ~’~).
Both groups centralize each other, and their product G°· Goo in G is the

subgroup G’ corresponding to the root datum (X, v’, A’). After replac-
ing n by a conjugate in N we may assume n E G’. Using 6.3 we
decompose n as a product n = non’ with n° ~ N ~ G ° of type ~’° and
n~ ~N ~ G~ of type ~’~. Then n ° is a semisimple element in the
finite-dimensional reductive group G° and conjugate in G° to an element
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of T. Since G° centralizes G~ we may thus conjugate n to an element
tn 00, for some t E T, which is of pure type B7’00.

REMARKS: In the proof above we have used the fact that for a finite-di-
mensional reductive group G every element n E N is conjugate into T.
Let N(w) denote the set of all n E N mapping onto a given element
w E W. Then the conjugates of N( w ) in T form a W-stable closed

subvariety of T, of the dimension of Tw = { t ~ T|w(t) = t}. However, it
is not possible, in general, to define a morphism of algebraic varieties
N(w) - T mapping each element n E N(w) to a G-conjugate in T. This
is possible only after replacing N( w ) by a finite cover. The obstructions
are already present in the case of GL2.
We shall denote the pure elements in W, resp. N by WP, resp. NP. Let

N(w) be the set of elements of N mapping onto w E W = N/ T. Since,
according to the proposition above mixed elements of N are conjugate to
pure elements we shall from now on concentrate on pure elements only.
(In the case of symmetrizable Cartan matrices the analytic traces for a
mixed element and its pure conjugates will coincide). To simplify investi-
gations further we shall distinguish a class of representatives in N for the
elements in W = N/ T.

Let w E W be of type B7’, ~’~ v, and let g E W be an element such
that w e gW~’g-1. Let G’ be the commutator group of the subgroup of
G corresponding to the root datum (X, v’, A’). We say that a repre-
sentative n(w) of w in N is well-chosen if n(w)~ g6"g’B where g E N
represents g.

6.5. The domain N~ N

Let T’ c T be a subtorus. We say that T’ is special if l)’ = Lie T’ is

special in h = Lie T. Since any special subspace b’ ~ h is generated over
C by its intersection with X there is always a special subtorus T’ c T
with h’ = Lie T’. We define

Let c = (log r) /2qr and

the extended domain introduced in 5.1, 5.3. Let c be the quotient of
Ç¿ c by X. Then



28

where Jc(h’) = Dc(h’)/X is a domain in the quotient torus T/T’, T’

being the subtorus of T with Lie T’ = h’. We thus have g-c c T.
Let w E WP be a pure element and Tw c T the associated special

torus (corresponding to f) w)’ Let n(w) be a well chosen representative of
w in N(w). Then N(w) = T.n(w). We define

by

Since all well chosen n ( w ) differ only by elements in TW, the definition of
03C4w is independent of the choice of n(w). Note that for 1 E Wp the map
Tl coincides with the identity map T ~ T.

The union of all Tw, w E WP, defines a surjective map

We define JV=T-1(!TC), and N(w) = N~N(w) if w E WP. Then N
(resp. S( w» is an open subset of NP (resp. N( w )).

6.5. The factorization

Let us first collect some auxiliary results.
Let v’ be a connected special subset of v and A’ the corresponding

subset of 0. It follows from [35] and [18] that there is an element

such that a(x) = 0 (resp. a(x)  0) for all a E 0’ if p’ is of affine (resp.
of general) type. We then have the following two statements:

LEMMA 1 ([18] 2.2): For all w E I * we have w(x)  0.

LEMMA 2 Let p E I* be such that 03BC(h) = 0 for all h E B7’. Then p + a is
not contained in I * for all a E à’.

PROOF: First assume that v’ is of general type. Let a e A’. Then

(jn + 03B1)(x)  0 since 03BC(x) = 0 and 03B1(x)  0. Thus p + a OE I * by Lemma
1.

Now let v’ be of affine type. Then (p + a)(x) = 0 for a E A’. It
follows from [18] 1.13, 1.17 that all elements 03C9~I* with 03C9(x) = 0 are
multiples of the fundamental imaginary root 8 which has the form
8 = 03A303B1~0394’d03B103B1, d03B1~ Z, d a &#x3E; 0. Since v’ has rank at least two we obtain
that p + a OE R.03B4 and thus p + a ~ I*.



29

Let R03C9 : G ~ GL(V03C9) be a standard representation as in 6.1. Then the
set P03C9 of weights in hw is contained in I * n X, cf. [5], [11].

LEMMA 3: Let w E Wp be a pure element and n(w) E N a well chosen
representative of w. Then n (w) acts as the identity on the weight spaces V,
03BC~P03C9~(I*)w.

PROOF: Let v’ be the type of w. By similar arguments as in the proof of
6.3, Proposition 1, we see that it is sufficient to consider the case of a
connected type p’. Furthermore, we may assume that w E W~’ and
n(w)~G’, where G’ is the commutator group of the subgroup of G
associated to the root datum (X, v’, A’). We will prove that the whole
group G’ acts trivially on weight spaces l§" with p E P - n (I*)w. Let
p E P03C9 ~ (I*)w. Since w is of type v’ we have JL(h) = 0 for all h E v’.
Thus Lemma 2 implies that any nontrivial vector v~ l§" is a highest
weight vector for a representation of G’ on a subspace of Tlw containing
v. Let V be a smallest such subspace. Then it follows from [11] that v is
a standard module. However, the weight it is trivial on T r1 G’. Therefore
V = C v and G’ acts trivially on V. Applying this to all v~ V03C903BC, v ~ 0,
gives the desired result.
Now we can come to the proof of our main result. Let ~03C9: c ~  be

the W invariant function introduced in 5.3. We may consider ~03C9 as a

function on c. According to our choice of the exponential map h - T
(cf. 4.1) ~03C9 has the following form:
Let T’ c T be special, 1)’ = Lie T’, and t = t · T’ an element in Jc(h’) c
T/ T’ . Then

THEOREM: Each element n EX is of algebraic trace class and tr,, (n) =
~03C9(03C4(n)) .

PROOF: Let w E Wp be pure and n(w)~N(w) a well chosen representa-
tive of w. Let Tw be the special torus associated to w. In the notations of
6.1 we denote 03C003BCR03C9(g)i03BC by R03BC(g). Then, for n = tn(w) ~N(w) we
have:
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By the results of 5.3 this gives the absolute convergence of the series
tr03C9(n) for n EE X(w) and proves what we claimed.

6.6. Fundamental characters

Let 03C91,..., 03C9r ~ X* be fundamental dominant weights as defined in 2.1
(we assumed (X, v, 0394) to be simply connected). Then we may decom-
pose X into a direct sum

where Q is the sublattice of X generated by v, and where D is the
common kernel of the wi . We may embed a basis {03C9l}i=r+1,...,s of D * as
dominant weights into X* by extending the wi, i = r + 1,..., s, trivially
on Q. Then X* = ~Si=1Z03C9l.

Let R; : G - GL(V03C9l) denote the corresponding standard representa-
tions. For i = r + 1,..., s the space V03C9l is one-dimensional and G oper-
ates on it by the character 03C9i which, in this case, lifts from T to G. For an
element n E N of algebraic trace class we denote tr03C9l(n) by ~i(n). Let

be the map defined by ~(n)=(~1(n),...,~s(n)) and X:c/W ~ s
the factor of X given by 6.5, Theorem. Let gr : s ~ s-r be the projec-
tion onto the last s - r coordinates. Since the situation is well known for

(X, ~, 0394) of finite type, we shall now assume that p is of infinite type
and furthermore connected. Then v itself is a special subset of v. Let
Mc(~)~c=c/W be the corresponding stratum, cf. 4.5. Then the
restriction of w 0 k to Mc(~) induces an analytic isomorphism from
Mc(~) to an open subset U~s-r.
Now assume that v is of general type. Then it follows from Looijenga’s

work [18] that X induces an isomorphism from a neighborhood of
Mc(~) onto an open subset of s.

In the case that v is affine one has more specific but also less
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complete information. First one can assume c = 0, cf. [14]. Then the set
U has the form U = {u~(*)s-r~v(u)|1} for some nontrivial char-
acter v:(*)s-r ~ * . For u G 4Y let u = (03C0°~)-1(u) and ru =
03C0-1(u). Then X(u)~ru, and X induces an isomorphism from Mu
onto ru for all u in a dense open subset 4Y ’ of U. It was recently shown
by Peterson that 4Y’ = 4Y in case v is not of type EJ1), Ei1), E(1)8, E6(2),
F4(1) (in the notation of [11], cf. [14]).
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Note added in proof: Since the completion of this paper some progress has been made on
the program mentioned in the introduction. Thanks to an idea of Looijenga there is now a
set-theoretic extension of the composition NP - t - T/W to a conjugation-invariant map
G - T/ W. However, an analytic definition of this map over T/ W in terms of characters is
still lacking. For details cf. my Habilitationsschrift "Singularitäten, Kac-Moody-Liealgebren,
assoziierte Gruppen and Verallgemeinerungen", Universitât Bonn, March 1984. This work
also supersedes the previously planned elaboration of [30].


