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Introduction

Horikawa has given a complete description of the family of all numerical
quintics, that is, the smooth surfaces of general type with pg = 4, q = 0,
and ci = 5. This family has two 40 dimensional components, 1 and II. 1 is
the component parametrizing quintic surfaces in p3 with at worst

rational double point singularities. The other component, II, parame-
trizes numerical quintics, S, on which the linear system |KS| 1 has one
simple base point P. These components meet transversely in a 39

dimensional sub-locus of II called IIb. Horikawa shows, by analytic
methods, that if S G IIb then

and that there is one obstruction to deforming S whose leading term is of
the form xy = 0. In particular, there are small deformations of any such
S that are smooth quintic surfaces in P3.

At the Montreal summer conference on Algebraic Geometry in August
1980, Miles Reid posed an open problem [Reid]. The problem is to give
an explicit algebraic family, Y, such that,

(1) St is a smooth quintic surface in P3, for t ~ 0 and
(2) So is a smooth member of IIb.
Again, Horikawa shows that the canonical map,

is an embedding for t ~ 0, while

is a 2 to 1 map onto a quadric cone. Thus the "canonical model" of the
family, J, in p3 is a family of smooth quintics degenerating to a
doubled cone pulse a plane.

* This work forms a major part of the author’s doctoral thesis written at Harvard

University in 1982 under the advice of Phillip Griffiths. I wish to thank Phil again for all
his help and patience.
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Note that given such an explicit family, the generic hyper-plane
section of St would be a smooth plane quintic curve to t ~ 0. The surface
in II are characterized as ramified double covers of rational surfaces, as
can be seen from the fact that the generic element, C, in 1 Kso 1 is a

smooth hyper-elliptic curve. By the adjunction formula,

or

Thus the generic hyper-plane section of J is a family of smooth plane
quintics for t ~ 0, such that Co is a smooth hyper-elliptic curve. Hence
the firest step in our program is to study hyper-elliptic curves of genus 6
equipped with semi-canonical divisors. Once one sees how to deform
such a curve to a smooth plane quintic it will be fairly straight-forward to
do the same for the surface case.

This observation points to the following very suggestive idea: It is
clear that knowledge of families of surfaces yields knowledge of families
of curves. As will be seen, the methods used here work with equal ease in
either setting. Perhaps there is some deep connection between the study
of pairs, L ~ C, of curves with special line bundles (e.g. giving an
embedding of C in P2) and the study of surfaces of general type. Of
course, this connection will not be made explicit here, but it seems that
this example of the quintics may, in part, point the way to examining it.

The author wishes to give special thanks to Miles Reid whose sugges-
tions and comments were very helpful. Especially nice was the idea for a
purely algebraic proof of Theorem II.

1. Preliminaries

Denote by R(X, D ) the ring,

where X is an algebraic variety, D is a divisor on X, and the multiplica-
tion is the usual "cup" product. In the cases at hand this will be a graded
ring (generally not generated as an algebra by its degree one part!) which
is finitely generated over H0(X, O) = C. Let

be the m-th degree part of R( X, D). In all the computations to follow D
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will be a divisor such that for some m e II, mD~|KX|, the canonical
linear system on X.

By P(en11, en22,..., e"k) we will denote the "weighted projective space,"
[Mori].

where the grading is given by weight(xij) = el.
Let C be a smooth algebraic curve of genus g. C possesses a g’ if there

is a line bundle, L - C, such that:
(1) degc L = d and
(2) dim H0(C, L) = L°(C, L)  r + 1.

Any r + 1 dimensional linear sub-system of 1 L will be called a g" on C.

2. Curves

Consider a family, L ~ C - à such that Lt ~ Ct satisfies,
(1) Ct is a smooth, genus 6 curve for all t,
(2) degc Lt = 5 for all t,

(3) h0(Ct, Lt) = 3 for t ~ 0, and
(4) L, is very ample on Ct for t =1= 0.

By the Upper Semi-Continuity Theorem [Hartshome],

and by Clifford’s Theorem, equality must hold. So, Co comes equipped
with a

where Do is some effective divisor of degree 5 on Co. Now it is simple to
see that either 1 Do has no base point, in which case the morphism

is an embedding, or |D0| 1 has one base point P. In this case Do - P is a
g24 on Co, and hence, by Clifford’s Theorem, Co is hyper-elliptic and,

where Q is a Weierstrass point on Co. Thus, either Co has a very ample
gs or Co is hyper-elliptic.

More can be said about Do = 4Q + P in the latter case. The adjun-
ction formula yields,
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So,

Now, consider the family, KCt 0 Lr 2 = (by def.) Mt ~ Ct. For t ~ 0

the above remark shows that 

and for t = 0,

Since hO(Ct, Mt ) =1, one has

which, of course, implies that Mo ~ OC0 or,

Thus,

so that

This implies that P must be a Weierstrass point on C ! Therefore.

PROPOSITION 1: If C is a smooth, genus 6, hyperelliptic curve, in a family
of smooth plane quintics then its

where the base point P is a Weierstrass point.

Up until this point no indication has been given as to whether or not
such a pair, L0 ~ Co, actually occurs as the "limit" of smooth plane
quintics. The main theorem of this section rectifies this situation.

THEOREM 1: Given a smooth hyper-elliptic curve, C, of genus 6, together
with a Weierstrass point P E C, set
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Then there exists a flat family, L~ l~ 0394, such that

(1) L0 ~ Co is isomorphic to L - C

and

(2) Lt ~ Ct is a smooth plane quintic curve together with the line

bundle that embeds it in P2.

(See [Chang] for a recently published, independent proof.)

REMARK: The theorem and Proposition 1 combine to show that the
closure of the locus of plane quintics in the moduli space of genus 6
curves, m6, consists exactly of the quintics themselves and the locus of
hyper-elliptic curves. Also note that the scheme w25,6[ACGH] (which
parametrizes pairs L ~ C with g(C) = 6, degc L = 5, and hO(C, L)  3)
has two components, W1 and W2, each of dimension 12. The first, W1,
parametrizes the smooth quintics with their unique gl. The second, W2,
parametrizes the smooth quintics with their unique g25. The second, W2,
parametrizes the pairs, L ~ C, where C is a hyper-elliptic curve and
1 L = 2g12 + P, P an arbitrary base point on C. The theorem says that
W1 meets W2 precisely in the co-dimension 1 sub-locus of W2 parame-
trizing pairs, L ~ C, as above, with P a Weierstrass point.

For the proof of the theorem we will need two standard results.

FACT 1: Let S be a graded ring over k and let T be another graded ring
such that

for all n &#x3E; 0 and some fixed d. Then

[Hartshorne Ex. II .5 .l 3 ]

FACT 2: Let C be a smooth curve of genus &#x3E; 2. Then R(C, KC) is
finitely generated (not necessarily in degree one!) and

PROOF OF THEOREM I : Begin by computing R = R(C, P). Recall
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In degree

The sections u 2, v of Oc (2P) form a basis of the g2 = |2P| on C, since
P is a Weierstrass point.

It is clear that there can be no polynomial relation of the form
p ( u, v ) = 0 in R. On the other hand

the number of monomials of degree n in u and v

for 0  n  12. The last equality is from the Riemann-Roch Theorem.
Thus, up to degree 12, the ring is generated by u and v.

In degree 13 we note that 113P is very ample and thus there must be a
new generator! There is exactly one since # {uivj|i+ 2 j = 13} = 7 and

It is easy to see that w is "odd" with respect to the natural involution
i : C ~ C. That is, while

In R(C, P). Set R+ = {x~R|i*x=x} and R-= R - R+. Then R+ is
spanned by the monomials in u and v and R + by monomials in which w
appears to an odd power. Thus W2 E R+ and must be equal to a

homogeneous polynomial of degree 26 in u and v. This can be seen by
computing dimensions as well. For all n, # {uivi|i + 2 j = n} = [ n + 1
and for n  11 h0(C, 0 (NP» = n - 5. So in degree 

2

Thus we must have
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where g26(u, v ) is a weighted homogeneous polynomial of degree 26. (By
considering the effect of i * one sees that the relation cannot have the
form 03BBw2 = wh12(u, v) + g’26(u, v ) with h12 ~ 0 or À = 0). Finally check
that

for n  11.
This means that

and that (by Facts 1 and 2)

Also note that C is embedded in P(l, 2, 13) by the map

Before proceeding one should note that g26(0, v) ~ 0. This is because
C is assumed non-singular. To see this, consider the open set U(v) ~
Proj(R) given by the degree 0 elements in the localization R(v) (i.e. the
open set where v ~ 0). Then

where g13(x) = g13(x, 1) is obtained by replacing u2 by x and v by y in
g26 ( u, v). If g13(O) = 0 then (0, 0, 0) 6 C. But then the Jacobi matrix

has rank 1 at (0, 0, 0) ~ C and so C is singular. Therefore g13(0) ~ 0 and
so g26 (0, v ) =1= 0.

The map
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yields the 2-to-1 covering map

By the Hurwitz genus formula there are 14 branch points of this map on
pl. These break up into two sets. Thirteen of them given by

on P1. And the fourteenth given by

(This is a fourteenth by the fact that g26(0, v ) =1= 0.)
All of these rernarks give

THEOREM I.A: Let C be a smooth hyper-elliptic curve of genus 6. Then

where the grading is

weight(u) = 1

weight( v ) = 2

weight( w ) = 13

and g26(U, v) is a weighted homogeneous polynomial such that (1)
g26(0, v) =1= 0 and (2) g13(x, y) has 13 distinct roots.

REMARK: When U2 = 0 we have w2 = ÀV13. This seems to yield two points
on C namely

However, under the C* action on P(1, 2, 13)

Thus these two points are really the same! This in turn means that u 2 = 0
is indeed a branch point.

As the next step in the proof of Theorem 1 we write down generators
and relations for the subring R ( C, 5P)~R(C, P). Denote this subring
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by R(5). Then R(5) is the graded ring given by

for each d &#x3E; 0. It is easy to see by counting dimensions and the remarks
on the computation of R that

where I = (w2 - g26(u, v )) n R(5). Indeed, these monomials clearly gener-
ate R(5) in degrees 1, 2, and 3. Furthermore any monomial, m, of degree
5 d in R can be written as uivj where i + 2j = 5d or as wuivj where
i + 2j = 5d - 13, since w2 = g26(u, v ). Thus either

Finally it is easy to see that if 51i + 2 j then uivj is a monomial in U5,
U3V, UV2, and V5.

As to the computation of 1 let us set

in R(5).
First there are the "Koszul relations" (Table 1). These can be very

nicely expressed in the following determinantal form:

The non-trivial relations in 1 come from the equation W2 - g26(u, v ) as in
Table 2. These last three equations define C as a Weil divisor on the
determinantal variety of P(13, 2, 32) given by (*). They are obtained
from each other by monomial replacement.
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TABLE 1

TABLE 2

For later reference the form of the fj(xi, y ) will be examined more
closely. By property 1) in Theorem 2 the coefficient of V15 in v2g26(u, v )
is non-zero. Since V15 = y3 this yields

with À =1= 0. Further

and since X3 = uv2 this gives

where Q(xi, y ) is a weighted homogeneous polynomial of weight five
(namely Q(xi, y) = h25(u, v) = g26(u, v) - ÀV13/U). Similarly it is easy
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to see that

Thus we have

where

TABLE 3

and each f is weighted homogeneous of weight 6.
Next the lst syzygies are computed. The first group of these can again

be written in determinantal form,

More precisely the eight 3 X 3 minors of these matrices should each have
determinant zero. Expanding across the top rows yields,



44

The second group of syzygies involves the non-trivial relations r7, rg,
and r9. They are easily derived from the form of the equations in table 3.
Only one of the four will be computed here.

Consider

Thus

Continuing in a completely analogous fashion yields

Collecting all the syzygies gives Table 4.
Note, the curve Co resides naturally in a weighted projective space,

and that the semi-canonical map

is given by the restriction, to Co, of the projection map in P(13, 2, 32 )
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TABLE 4

from the " weighted plane,"

to the standard plane

The single point P E Co which lies in V is, of course, the base point of |L0| 1
and corresponds to the special branch point defined by u2 = 0 in the
discussion above. (Again at first glance

but these " two" points are identified under the C* action).
Finally, on to the deformation of R to the semi-canonical ring of a

plane quintic. The observation that the semi-canonical map is a projec-
tion to P2 suggests that the deformation should somehow "eliminate"
the weighted variables y, zl, and z2. (A more specific motivation is given
in [Griffin].)

To implement this idea proceed as follows:
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and

becomes

These new equations, Rl, R2 and R3 are used to "eliminate" y, zl, and

Z2 when t ~ 0, and when t = 0 R i = ri. Specifically, they give an embed-
ding

for each non-zero t, namely

where

and

Now consider the syzygy

Replacing rl by Ri gives

To extend s1 to a syzygy S1 (which must be done to insure the family C
is flat) one simple alteration is necessary,

Then



47

Note: It was in order to make this last equation work that we added t203BBy
to rl above, instead of the simpler t03BBy. Thus S1 is

Clearly S1 ~S1 as t ~ 0. Similarly one has,

with

Note that in the process of extending s1 and s2, the alterations were
"forced" on r4 and r5 .

Only one more such calculation will be shown. Consider the syzygy

Substituting RI, R2, R4 as above yields

so it r6 becomes

and r7 = R7, r, = R g, and r9 = R9 are unchanged then sl, becomes

REMARK: It as if by magic that the process of extending the syzygies has
"forced" the generic weight five Q(xl, y) down from the degree 6
relations r7, rg, r9 to the one degree 5 equation R6 when t ~ 0!

Here, then, is the family, W, of smooth plane quintic curves with
Co = C:

where
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TABLE 5

where Q(xi, y ) is a weight 5 homogeneous polynomial.

PROOF OF THEOREM I: Given a smooth, genus 6 hyperelliptic curve, C,
one can assume that one of the 14 branch points on P1 ~ Proj(C[x, y])
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of the 2-to-1 map

C 1

is the point (0, 1). Let f(x, y ) be a homogeneous polynomial of degree
13 which vanishes at the other 13 branch points. Take

in Theorem 2 and then set

Finally taking

in table 5 gives the desired family.
Q.E.D.

it is interesting to write down the single quintic equation (with
parameter t ) that gives the plane model of the family W. This is done by
’eliminating" y, Zy and Z2 for t ~ 0 and using R6. The result is:

where

First, note that the plane model of Co is a double conic plus a
TANGENT line. It is clear that for Q(xl, y) sufficiently general (see
Theorem 2) C(xi) is general and thus (* * *) represents a family of
smooth plane quintics for t ~ 0.

Second, in this case, it is easy to explain why only even powers of t
appear in the family above. This means that t - - t gives an involution

on the whole family. To see that there must be such an involution and
that it induces the natural one, i, on C, consider the normal sheaf. The
map
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yields on exact sequence,

which defines the normal sheaf, N.. By [SGAI] the obstruction to

extending 99 to any deformation of Co is an element of

Here J is an ideal in an Artin ring Pli, annihilated by mR. In this case N,
is supported on points and therefore,

for all such J. So, the map 99 can be extended to the complete family W.
This in turn means that there must be an involution on W which induces

i on Co .

3. Surfaces

In order to give an explicit algebraic description of the deformation space
of numerical quintic surfaces we begin with S e II. (i.e. Ks has a simple
base point [Horikawa]). Then just as in the curve case we can construct

By [Mumford] and [Bombieri] one has that R is finitely generated and
that in the case at hand

Then we perturb the defining equations in R to obtain the canonical
ring of a smooth quintic in p3 . These computations can be made in a
purely cohomologica fashion (see [Griffin]) once an explicit realization of
S as a ramified double cover of a quadric cone is seen. However, there is
a purely algebraic method that uses only the constructions in §2 and the
fact that if Co ~|Ks| and Co is smooth then Co is hyper-elliptic, of genus
6, and

To begin recall that the irregularity
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Thus the exact sequence

where Do E |1 2KC|I yields,

By induction and Serre Duality, then,

for all n  0. This means there is a degree preserving surjection

whose kernel is a principal ideal, (xo), with weight xo = 1.
The map above simply expresses the fact that Co is a canonical (i.e.

degree one) hyper-plane section of S. So, by suitable choice of generators
we can write

That is,

We now proceed to find a nice form for Î. In order to see the point of
these manipulations the reader is advised to skip forward to Theorem II
for a clear statement of the result before going through the next few
pages.

Next, for each relation in table 3 there must be a relation in R ( S, KS).
That is, I is obtained from Î by setting xo = 0 so in Rs, we have Table
6, in which the a’s, b’s, c’s, d’s, and e’s are weighted homogeneous
polynomials of the appropriate weight.

Consider

By a change of coordinates,
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TABLE 6

ri becomes

where

So we may assume that r1 has the form

Further, using this relation we may assume that no monomial in any
of the b’s, c’s, d’s, or e’s is divisible by x2. Of course, all of the xi’s in
ri - r9 must be changed but by altering the b’s, c’s, d’s, and e ’s the

form of the relations is unchanged. Continuing the same vein, replacing
y by

where,
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and xl does not appear in any monomial in b12, yields

By similar changes,

and

we can arrange that neither xi nor x2 appears in any monon

Finally by using r2, r3, r4, and rs to reduce d we may assume
of x2y, X1Y, xlz2, X2Z2 appear in d.
Now the syzygies in RS must also descend to those in R. Fo:

s, becomes

which implies,

or

Repeating this process for the next eleven syzygies yields Tal

Let

and remember that a = axo. By the previous remarks,

for some 03B2, y E C. Reducing s, mod xo then yields

Thus
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TABLE 7

(using r1 and r2 E I ). And hence

so

The only generator of I in degree 2 is rl so

If, in the original equations b2 is replaced by b2 - 03BBr1, which has no
effect on Î, we then have

Next, CI has the form

Reducing S3 mod xo yields
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The only degree four relation in I involving x2x3y is x2x3y - x43 which
has no x, in it. Thus E = 0. Likewise for x2z2 the only relation is

x2z2 - x3z1. So T = 0 as well. This leaves

Again after adjusting c2 by an element of I we may conclude that
c2 = SZ2-

Reducing s5 mod xo yields

Since x2z2 - X3ZI involves no xl, we must have 03B2 = 8. This implies

or

or

Once again, adjusting d by an element of Î allows i to be,

It is easy to check that s2, s4, s6, S7, and S8 impose no further
conditions on hi, ci, or d. So far we have,

Setting



56

and substituting into s, in Table 7 yields

or

Thus

Reducing mod xo gives

which clearly implies p2 + a = 0. Recall x, does not appear in b 1 so,

and

Thus

and

The same process applied to S3 gives
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or

Hence

and reducing mod xo gives

or

By the previous work, neither xl nor x2 appear in é’ so

By the relation * * one sees that kl = 0 and then that

Repeating this somewhat tedious routine with s5 in Table 7 yields

or

Thus,

or mod xo,
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Hence

and

Thus

Again s, yields,

and thus

Substituting in s3 gives

and so

Now xl, x2 ~ ci implies that

From ( * * * ) one has,
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Since Tl is the only degree z relation in Î this means,

Finally, s5 gives.

or

So by adjusting d as before we may assume that d" = 0.
This completes the determination of a, bl, b2, Cl, c2, and d. It also

shows that Table 6 has the form

TABLE 8

where the el’s are weight five homogeneous polynomials that satisfy S9
through S12 in Table 7. It is very tedious to determine the actual form of
the el’s and so we leave this task to the patient reader.

Hence,

THEOREM II: Let S be a numerical quintic surface (Pg = 4, q = 0, ci = 5)
such that |KS| has a base point (i.e. S E II). Then
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where Î is generated by relations

and r7, r8, and r9 as in Table 8 above.

Note: Conversely, if the ej’s are suitable, i.e. they satisfy the syzygies
and Table 8 defines a smooth surface, then it is possible to check that this
surface is indeed of Type 2. One simply solves the equations in terms of
xo, xl, x2, X3 over the open sets x0 ~ 0, xi =1= 0, etc. Thus if one has an
explicit description of the suitable el’s (see for example condition 2 in
Theorem I.a) one would have, in some sense, a "parametrization" of the
deformation space of the type II surfaces.

It is clear that S E IIb (i.e. the canonical image of S in p 3 is a singular
quadric) if and only if a = 0. In order to show that any such an S E IIb
occurs as the limit of smooth quintic surfaces in P3 one simply follows
the curve case.

THEOREM III: Given S E IIb there exists a family of surfaces, Y, whose
generic member is a smooth quintic surface in p 3 and such that So = S.

PROOF: First write

S ~ Proj(R(S, KS)) ~ Proj(C[x0, XI, x2, x3, y, zl, Z2
where
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where (x0, x1, x2, x3, y, z1, z2) is of weight five and where the i’s
are determined via the syzygies S9 - S12 in,

Then set

where
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R8 = r8

-qq = rg

As before, it is now easy to check that 5e is the desired family.
Q.E.D.

REMARK: As in the curve case, one can eliminate the weighted variables
to obtain the canonical image of J in I? 3. The image of So is a quadric
cone plus a tangent plane. The computations mimic the curve case and
are left to the reader.

So we have described, algebraically, in the preceeding tables all of the
deformation space of the numerical quintics. Component 1 where 13 = 0
and component II where t = 0 meet in the locus IIb when 13 = t = 0. The
only piece of information we have not recovered that Horikawa shows in
[Horikawa] is that these components meet transversally. This project is
postponed to a later paper.
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