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Introduction

In the present paper, we are concerned only with the field of moduli for a
(complete non-singular) curve or a principally polarized abelian variety.
The notion of fields of moduli was introduced first by Matsusaka [14]
and treated mainly by Shimura. Here the foundation of it follows
Koizumi [9]. Due to his definition, a field of moduli is, roughly speaking,
the infimum of the fields of definition for the members of a geometric
isomorphy class. Shimura [29] showed the fact that in general a field of
moduli cannot be a field of definition, that is, in general there is no
minimal field of definition. In this paper, we will treat a problem that
asks whether or not the field of moduli for a curve or a principally
polarized abelian variety coincides with the residue field at the point on
the coarse moduli space corresponding to them. In characteristic zero,
this problem was affirmatively solved by Baily [1]. Our main purpose is
to give some counter examples in positive characteristic. Our results are
given as follows:

1. In characteristic 2, the field of moduli for a curve corresponding to
the generic point x of the hyperelliptic locus in the moduli space Mg of
curves of genus g  3 coincides neither with the residue field at the point x
nor with the field of moduli for its canonically polarized jacobian variety
(cf. Theorem 4.2 and Corollary 4.3).

2. In characteristic 3, there exists a non-hyperelliptic curve of given even
genus ( 4), for which the problem has a negative answer (cf. Theorem
5.1).

3. In characteristic p, for every g ~ p - 1, there exists a principally
polarized abelian variety of dimension g for which the problem has a
negative answer (cf. Theorem 6.11).

In Section 1, we shall discuss some general theory about the relations
between the fields of moduli and the coarse moduli space. In Section 2,
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for later use, we shall treat cyclic coverings of degree p of Pl in
characteristic p. In Section 3, we remark some easy facts about group
actions on local rings in positive characteristic. The main results will be
given in Sections 4, 5 and 6.

The author would like express his hearty thanks to Professor D.
Mumford for very useful conversations. He also thanks Professor T.

Miyata and Dr. R. Sasaki for pointing out to him some literature on
Theorem 3.4 and for very useful comments on the calculation in the

proof of Theorem 2.6.

Notation

Let S be a set, and a an automorphism of S. Then for an element x of
S, sometimes we denote 03C3(x) = x03C3. Moreover we mean by S03C3&#x3E; the
subset of S consisting of a-invariant elements of S. Let A be a ring, and
M an A - module. We denote by 9t (A) and J(A) the nilradical and the
Jacobson radical of A, respectively. For a subset N of M, we denote by
N&#x3E; = N&#x3E;A the A-submodule of M generated by the elements of N. In
particular, if N = {x1, x2, ... , xn}, we put N&#x3E; = x1,..., xn&#x3E;. For an
integral domain A, we denote by f.f. A the field of fractions of A. For a
local ring A, we denote by MA the maximal ideal of A and by A the
completion of A with respect to the 9RA-adic topology. For positive
integers g and 1, we denote by Ag,l the moduli space of principally
polarized abelian varieties of dimension g with a level y-structure, and by
Mg,, the moduli space of curves of genus g with a level y-structure.

Throughout the paper, a word "curve" means a complete non-singular
curve. In particular, when 1 = 1, Ag,l and Mg,1 are abbreviated to Ag and
Mg, respectively. We denote by 03C0n: Ag,n ~ Ag and 03C0n : Mg, n - Mg the
canonical morphisms. For a prime integer p, we put Ag,l OZFP = (p)Ag,l
and Mg,/ ~ZFp = (p)Mg,l. For a curve C and a polarized abelian variety P,
we denote by kc and k p the fields of moduli for C and P, respectively.
We denote by P(C) = (J(C), 03BB(C)) the canonically polarized jacobian
variety of C.

§1. Fields of moduli

We will start with comparing the definition of fields of moduli for curves
or for polarized abelian varieties from Koizumi ([9], Definition 1.1).

Let 03A9 be a universal domain, and K and K’ be subfields of 03A9. Let Z
and Z’ be geometric objects (practically speaking, curves or polarized
abelian varieties) over K and K’, respectively.

DEFINITION 1.1: We define the geometric isomorphy of Z and Z’ by the
following:

Z - Z’ if and only if there exist a subfield L of 9 containing both K
and K’ and an L-isomorphism Z (j!) KL -=+ Z’ ~K’L.
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Under these notations, we define the field of moduli for Z in the
following way.

DEFINITION 1.2: A subfield kZ of 0 is called a field of moduli for Z, if it
satisfies the following two conditions:

(1) kz = ~L’, where L’ runs over the set {L’ 1 0:) L’: a subfield; 3Z’
over L’ such that Z’ - Z}.

(2) For any automorphism (J E Aut(03A9), Z - Z" if and only if the

restriction of a on k z is the identity, where Z" = Z X Spec K
(Spec K03C3, Spec(r).

In the present paper, we will refer freely to [9] for the foundations
concerned with the fields of moduli, for example, the existence of fields
of moduli for curves or for polarized abelian varieties in every character-
istic, etc.

Next, we will give somewhat general argument over fields of moduli
related with the moduli spaces. In this section we give proofs in the case
of abelian varieties. In the case of curves the proofs are similar.

Let A and B be noetherian complete local rings with fields of
fractions K and L, and residue fields k and l, respectively. We assume
that B is a finite and flat extension of A. Let S’ = Spec B - S = Spec A
be the canonical morphism, and Pl’ P2: S" = S’  SS’  S’ be the
projections to the two factors. Now we shall consider a principally
polarized abelian scheme 9’ = (1’, A’) and a curve rc’, over S’. Under
these notations, we get the following.

LEMMA 1.3 : Assume that ’17: IsomS"(p*1 P’, p*2P’) ~ S" is flat. Moreover,
suppose that there exists a principally polarized abelian variety P over k
such that P’ ~Bl  P ~k l. Then there exist a principally polarized abelian
scheme 9 over S, and isomorphisms P  SS’  P’ and P’ ~Ak  P, which
induce the given isomorphism P’ ~Bl  P ~kl.

Similarly we have

LEMMA 1.3’ : Assume that 03C0 : IsomS"(p81L’, p*2L’) ~ S" is flat. Moreover,
suppose that there exists a curve C over k such that L’ ~Bl  C ~kl. Then
there exist a curve rc over S, and isomorphisms L SS’  rc’ and L ~AK
 C, which induce the given isomorphism L’ ~Bl  C ~kl.

PROOF OF LEMMA 1.3: Obviously, we get the following commutative
diagram:
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Since ir is étale, and B ~A B and B ~A B/MA(B ~AB) are henselian, by
using (EGA IV, 18.5.12), we can see that the following canonical maps
are bijections :

and

Hence, the canonical map

is bijective. On the other hand, by our assumption, there exists a descent
datum

which gives the descent P of 9’ ~Bl. Hence, by the above bijection, there
exists a descent datum

corresponding to 0., and we can descent 9’ over S. Q.E.D.

Here we shall state an easy relation between the field of definition and
the field of moduli.

LEMMA 1.4: Let k be a field of characteristic p(&#x3E; 0), and K a purely
inseparable extension of k. Let P (resp. C) be a principally polarized
abelian variety ( resp. a curve) over K. Assume that k D kp ( resp. k ~ kC).
Then there exists a principally polarized abelian variety Po (resp. a curve
Co ) over k such that

(cf. [26], Proposition 3.2.)

Let n be an integer larger than 2, and 2 = (3, A, a) the universal
principally polarized abelian scheme with level n-structure over Ag,n. For
an element 0’ E Gn = GL(2g; Z/nZ)/{± 1}, we denote 203C3 by the fibre
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product

For a point y E Ag,n, the automorphism a induces a local ring homomor-
phism

and a homomorphism of the residue fields:

Looking at the composition of fibre products:

we get the canonical isomorphism

Similarly we obtain the isomorphism

Now let P be the principally polarized abelian variety over k(y) obtained
from 2|Spec(k(y)) by forgetting the level n-structure. We put x = 03C0n(y) ~ Ag,
where 03C0n : Ag,n ~ Agi is the canonical morphism. Moreover, we set S’ =
Spec(k (y» ---+ S = Spec(k(x)) and p1, p2 : S" = S’ S S’  S’ : the projec-
tions. Under these notations, we get the following.

LEMMA 1.5: There exists an isomorphism
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PROOF: Since 03C0n: Ag,n ~ Ag is a Galois covering with Galois group
Gn = GL2g(Z/nZ)/{±1}, the extension k(y)/k(x) is a quasi-Galois
extension and the canonical map

is a surjection, where Gn(y) is the decomposition group of y (cf. [3],
Chap. 5, §2, no. 2, Théorème 2). Now we take the intermediate field K of
k(y)/k(x) such that k(y)/K is separable and K/k(x) is purely insep-
arable. Then obviously

and

Since k(y)/K is a finite Galois extension with Galois group G, the tensor
product k(y) ~Kk(y) is isomorphic to 03A003C3 ~ Gk(y) by the map a ~ /3 H
(03B103B203C3)03C3 ~ G. If we identify S"red = Spec(k(y) ~Kk(y)) and 03C3 ~ G
Spec(k(y)) by this isomorphism, then

and

Therefore, noticing the surjectivity of Gf( y) - G and (1.1), there exist
isomorphisms

Q.E.D.
Now let 

be a given commutative diagram with discrete valuation rings A and B
and a finite extension u * : A - B. We put p1, p2 : S" = S’ X SS’  S’ : the



337

projections and 11 the generic point of S. Let .9 be the principally
polarized abelian scheme obtained from 21s’ by forgetting the level

n-structure. Under these notations, we get the following.

LEMMA 1.6 : Suppose that AutS’(P) ~ S’ and IsomS"(p*1P, p*2P)~ ~ S"n
are flat. Then Isoms,,(p*.9, p*2P) ~ S" is flat, and so étale.

PROOF : First, we shall show the flatness of

Let C be any discrete valuation ring, and f : Spec C ~ Sréd a given
morphism. Put

Let 03BE and 11’ be the generic points of Spec C and S’, respectively. Then
p’1(03BE) = p’2(03BE) = 11’. In fact, S’ is consisting only of two points. Therefore
If. factors through (S"~)red:

By lemma 1.5, p*1P and p*2 P are isomorphic over (S"~)red; i.e., there exists
a cross-section of

On the other hand, since the structure morphism

is proper, this cross-section can be extended over Spec C. Hence
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is flat, and so étale, over Spec C by our assumption. This implies that

is flat by the valuative criterion of flatness. Moreover, by our assumption,

if flat, and so is

for each associated point z of S". Therefore, (EGA IV, Corollaire 11.4.9)
implies the flatness of

Q.E.D.

From Lemma 1.5 and the definition of fields of moduli, we can
deduce easily the following.

PROPOSITION 1.7: Let P be a principally polarized abelian variety corre-
sponding to a point x E Ag. Then the field of moduli k p of P contains k(x)
and the extension kP/k(x) is purely inseparable. In particular, if x is a
closed point, k p = k(x).

In the rest of this section, we will discuss the conditions of the
coincidence of the field of moduli k p and the corresponding residue field
k(x).

The following is a direct consequence of a property of the field of
moduli.

PROPOSITION 1.8: Let p be a prime integer, and x be a point of (p)Ag. Let
P be a principally polarized abelian variety corresponding to x. Then the
following conditions are equivalent:

(i) kp = k(x).
(ii) For some integer n with n  3 and p  n, and a point y E Ag,n lying

over x, k(y) is separable over k(x).
(iü) For any n and y as in (ii), k(y) is separable over k(x).

In fact, there exists a model (X, 03BB) of P over a separable extension K
of kp (cf. [9], Theorem 2.2). If p + n, Xn ~ Spec K is étale, and so K(Xn)
is separable over K. Moreover, for any n and y as in (ii), k(y) is
contained in K(Xn). Hence, if kp = k(x), k(y) is separable over k(x).
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This implies (i) ~ (iii). On the other hand, the implications (iii) ~ (ii) ~ (i)
are obvious.

The same statement as in Proposition 1.8 is also true for curves.

PROPOSITION 1.8’: Let p be a prime integer, and x a point of (P)Mg. Let C
be a curve corresponding to x. Then the following conditions are equivalent:

(i) kC = k(x).
(ii) For some integer n with n  3 and p + n, and a point y E Me, n lying

over x, k(y) is separable over k(x).
(iii) For any n and y as in (ii), k(y) is separable over k(x).

As in Proposition 1.8, let p be a fixed prime integer, x a point of (P)Agl
and P a principally polarized abelian variety corresponding to x. For an
integer n with p  n and n  3, let y be a point of (p)Ag,n lying over x. We
put S’ = Spec(k(y)) ~ S = Spec(k(x)) and p,, P2: S" = S’ SS’  S’.
Since (p)Ag,n is a fine moduli space, we may assume that P is defined over
k(y), and we can consider the p*P’s. Under these notations, we can
continue the equivalent conditions in Proposition 1.8 as follows.

THEOREM 1.9: The conditions in Proposition 1.8 are equivalent to the

following mutually equivalent conditions.
(iii) For some n and y as above, p*1P ~ p*2P.
(iii)’ For every n and y as above, p*1P ~ p*2P.
(iv) For some n and y as above, IsomS"(p*1P, p*P) S" is flat, and

so étale.

(iv)’ For every n and y as above, Isoms,,(p*P, p*2P) ~ S" is flat, and
so étale.

PROOF : By Lemma 1.5, the implication (ii)’ ~ (iii)’ is obvious. Moreover,
the implications (iii)’ ~ (iii) ~ (iv)’ - (iv) are trivial, so we have only to
deduce (ii) from (iv). We shall prove this by induction on the transcen-
dental degree of k(x) over Fp . If tran. deg(x(x)/Fp) = 0, x(x) is perfect
and our assertion is true by Proposition 1.7. Now we set tran.

deg(k(x)/Fp) = r and we assume our assertion is true for any point
x’ ~ (p)Ag satisfying the condition (iv) and tran. deg(k(x’)/Fp) = r - 1.
Let

and
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endowed with reduced scheme structure. Let

Then qr is a finite surjective morphism. By (EGA IV, Théorème 6.9.1),
there exists a non-empty open set

such that

is flat. Moreover, we choose an affine open neighbourhood at x in
03C0-1(U) such that

becomes flat, where 9 is the universal principally polarized abelian
scheme over (p)Ag,n. Let V’( c V) be the open subset consisting of all
simple points in V. Then since 03C0 is flat over U, 03C0(V’) is open in U. Hence
we can choose a simple point x’ in 03C0(V’) of codimension 1 in T and
y’ E h’ lying over x’. Here we put B = Oy’,T - A = (2x’.T. Obviously A and
B are discrete valuation rings, and trans. deg(k(x’)/FP) = r - 1. We take
the completions:

We denote by k the separable closure of Î(x) in (y), and put

We set J’ = Spec() ~ Y = Spec(Â), and p1, p2 : J" = Y’ YY’  Y’.
Then by the assumption (iv) and the choice of x’ and y’, these satisfy the
conditions in Lemma 1.6. Hence

becomes flat, where Y’ = Y|S’. In particular, this implies that the point
x’ satisfies the condition (iv). Therefore, by the induction hypothesis,
k ( y’) is separable over k(x’), and k() = k ( y’). Since if/= Spec( B ~)
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is a closed subscheme of y" = Spec( ~), (1.4) implies that the

morphism

is flat. Hence, by Lemma 1.3, .9’ can be descended to one on ê. On the
other hand, in our case, (x) is separably generated over k(x) (cf. [13],
(31.F), Theorem 71). Thus we get our assertion. Q.E.D.

Similarly we can show for curves the same results as in Theorem 1.9.
In fact, as in Proposition 1.8’, let p be a fixed prime integer, x a point of
(P).M , and C a curve corresponding to x. For an integer n with p + n and
n  3, let y be a point of (P)A g, n lying over x. Moreover, we set S, S’ and
S" as above. Then we get the following.

THEOREM 1.9’: The conditions in Proposition 1.8’ are equivalent to the
following mutually equivalent conditions.

(iii) For some n and y as above, p*1C ~ p*2C.
(üi) For every n and y as above, p*C p*2C.
(iv) For some n and y as above, Isom s,, (p*C, p*C) S" is flat, and

so éatle.

(iv)’ For every n and y as above, Isoms,, (p*C, p*2C) ~ S" is flat, and
so étale.

Let P be a principally polarized abelian variety of dimension g( 3),
and C a curve of genus g  4. Let xE (p)Ag and y ~ (p)Mg be the
corresponding points to P and C, respectively. Then x (resp. y) is a
simple point if and only if P (resp. C) has only automorphisms ± lp
(resp. 1C). These are results of Popp ([25], Introduction and p. 106,
Theorem) for curves and Oort ([21], Theorem 1. AV.) for abelian varie-
ties. Thus we get the following corollary.

COROLLARY 1.10: Let P be a principally polarized abelian variety of
dimension g( 3), and C a curve of genus g( 4). Let x E (P)Ag and
y E (p)Mg be the corresponding points to them, respectively. If x ( resp. y)
is a simple point of (P)A g (resp. (P)Mg), then k(x) = kp (resp. k( y) = kc.)

Moreover, noticing the facts in the appendix to [28], we get the
following.

COROLLARY 1.11: Let P (resp. C) be a principally polarized abelian
variety of dimension g (resp. a curve of genus g) over a field of characteris-
tic p.

(i) If p &#x3E; 2g + 1, then k(x) = kp (resp. k( y) = kc.)
(ii) If p &#x3E; g + 1, p =1= 2 g + 1 and P is indecomposable, then k(x) = kp

(resp. k( y) = kc.)

Lastly, we shall state a remark on the fields of moduli for abelian
varieties.
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LEMMA 1.12: Let.9 = (X, 03BB X) and f2 = ( Y, 03BBY) be two principally polarized
abelian varieties over a field k of characteristic p. We assume that 2 is

defined over a finite field F contained in k,. Then kgJ is separable over
kP 2, where 9  2 = ( X X Y, 03BBX  03BBY).

PROOF : There exist a separable extension 1 of kP 2, and a model (Z, 03BB)
over 1 such that if we take a suitable extension L of 1 containing k, there
exists an isomorphism

We put

Since 2 and (Z, 03BB) have models over a separable extension l’of 1, the
morphism 03C8 is defined over a separable extension 1" of l’ (cf. [26],
Theorem 3.1). Hence 03C8: Yl" ~ Z,,,. Then, obviously, À ~ll" can be

descended to a principal polarization 03BB" of Zl"/Yl" and (Zl"/Yl", À") is
geometrically isomorphic to .9. That is, 9 has a model over 1 ", and we are
done. Q.E.D.

§2. Cyclic coverings of P1

In this section, we fix an algebraically closed field k of characteristic
p(&#x3E;0).

Every cyclic covering C of degree p over P’ is given by the normaliza-
tion of the plane curve defined by the equation:

with

Here we put
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An automorphism a of order p of C is given by

For a function f and a differential w on C, we denote by (f) and (,w) the
divisors of them, respectively. Then obviously

where Jj’s and Qy’s are the points on C lying over x = oo and x = 0,
respectively, 03B2l is the point lying over x = a, for each i, and 9t i 1 s are the
points on C defined by y = 0 and G(x) = 0. Moreover, the different 9 of
k(C)/k(P1) is given by

(cf. Hasse [8], p. 42). Therefore, by Hurwitz’s theorem,

and the genus g of C is given by

Moreover a basis of differentials of the first kind on C is given as follows.

PROPOSITION 2.1: A basis of H0(C, 03A91C) is given by
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with

Here [ ] means the Gauss symbol.

PROOF: By (2.3) and (2.5), we get the equality

where L = 03A3rj=1lj. Thus we can see that the differentials given by (2.7) are
contained in H°(C, 03A91C). Next, we shall check the linear independence of
differentials given by (2.7). This simple proof is due to Mr. Irokawa.

Since H0(C, 03A91C) is a subspace of k(C) · dx, we have only to check the
linear independence of the functions 03A0ri=1(x - 03B1l)l’xmyn’s. Moreover,
since k(C) is a k(x)-vector space with basis {1, y, .... yp-1}, we can
reduce our problem to the linear independence of 03A0rl=1(x - 03B1l)l’xm
(m = 0, 1,...N(p-n-1)+r-E-2+03A3ri=1(n+1)el/p]). But, since

1;’ s are independent of m, this linear independence is trivial.
On the other hand,

Therefore, the number of the differentials given by (2.7) is calculated as
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follows:

This implies our assertion. Q.E.D.

In particular, let C be a curve defined by (2.1) with n 1= n 2 =... = n r
= 1, el = e2 = ... = er = p - 1 and r  2. Namely, let

with

Then by the above proposition, a basis of the differentials of the first
kind on this curve becomes as follows.

COROLLARY 2.2: Let , C be a curve defined by (2.9). Then a basis of
HO(C, 03A91C) is given by

Moreover a basis of H°(C, 03A9~2C) can be given as follows.
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PROPOSITION 2.3: Let C be a curve defined by (2.9) with p  3 and r  2.
Then a basis of H0(C, 03A9~2C) is given by

Here, (2.12) and (2.13) appear only in the case of p  5.

PROOF: By (2.3) and (2.5), we can easily see that the members of (2.11),
(2.12) and (2.13) are contained in H°(C, 03A9~2C). Obviously the number of
the members of (2.11), (2.12) and (2.13) is 3g - 3. Moreover, since

H0(C, 03A9~2C) is contained in k(C)·(dx/B)2, and (1, y, ... , yp-1} is a

k(x)-basis of k(C), we have only to check the linear independence of the
members of (2.12) and (2.13). Since P(x) and G(x) have no common
zero, by using Sylvester’s resultant, we can see that

are linearly independent. Therefore, the members of (2.12) with i = 0,
1,..., r - 1 and the full members of (2.13) are linearly independent.
Hence, looking at the degrees of the rest of (2.12), we see that the full
members of (2.12) and (2.13) span a (3r - 3)-dimensional vector space.

Q.E.D.

By Corollary 2.2 and Proposition 2.3, we can easily see that the
canonical map

is surjective for p  3 and r  3. Therefore, by Noether’s theorem, we get
the following.

COROLLARY 2.4: Let C be a curve defined by (2.9) with p  3 and r  3.
Then C is non-hyperelliptic.

By virtue of the same argument as in the proof of Proposition 2.3, we
get the following.
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PROPOSITION 2.5: Let C be a curve defined by (2.1) with el = e2 = ... = e,.
= 1. Then a basis of HO(C, 03A9~2C) is given by

where iJ runs over (0, 1, ... , N(2p - j - 2)-4} for each j = 0, 1, ... , p - 1.

In the rest of this section, we shall calculate the p-rank of the jacobian
varieties of the general members among the curves given by (2.9). For our
purpose, we put

and

Of course, sl = 0 and tj = 0 for i ~ (0, 1, ... , r} and j ~ (0, 1, ... , r(p -
1)}. Then

Moreover for each 1 = 0, 1, ... , p - 2, we put

Since yp - Pp -1y = Pp - 1G and y = (yp - Pp - 1G)/Pp - 1, we get the

equality

+ (lower degree terms in yp)dx.



348

Therefore the Cartier operator  acts on the each subspace W0 + W1 +
... + Wl of H0(C, 03A91C), and the induced action of F over Wl = W0 + W1
+ ... + Wl/(W0 + W1 + ... + Wl-1) is represented by the matrix

Here we put

From the equality (2.15), in the expansion of the determinant of A(p), the
term (s1s2 ... sr - 1)p - 1 occurs only in the term tp-lt2p-2...t(r-l)p-r+l.
Hence,

This implies that if we choose a,, a2, ... , ar in a general position, then the
representation matrix of F is non-degenerate. Thus we have obtained the
following theorem.

THEOREM 2.6: Let C be a curve defined by (2.9), and J(C) the jacobian
variety of C. We put P(x)p - 1 = 03A3~i= -~tixi and

Then J(C) becomes ordinary if ’and only if D =1= 0. In particular, if we set a,,
a2, ... , 03B1r in a general position, J(C) becomes ordinary.

§3. Some remarks on group actions

For later use, we shall make some remarks about a linearized group
action on a ring in positive characteristic.
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LEMMA 3.1: Let k be a field of characteristic p(&#x3E; 0), V a k-vector space,
and a an automorphism of V of order p. For a vector x in V, the following
conditions are equivalent:

(i) x + o03C3x) + ... + 03C3p - 1(x) ~ 0.
(ii) The vectors x, 03C3(x), ... , 03C3p - 1(x) are linearly independent. Moreover,

in this case

PROOF. Since the implication (ii) ~ (i) is obvious, we shall prove the
converse. We set V ~ W = x, 03C3(x),..., 03C3p - 1(x), and dim W = n. Then
W is a-stable and 1  n  p. So, for simplicity, we identify V and W. We
take the Jordan canonical form of a so that

where g = E, + T E M(ni X n;; k ) with E; : the unit matrix; T : a torsion
matrix of order n ; and 03A3ri = 1ni = n. On the other hand, formally,

Therefore

This implies that if ni  p for all i, each member ej of the Jordan
canonical basis of V satisfies the equation

But x can be written as a linear combination of ej’s. This contradicts our
assumption (i). Hence som ni must be equal to p, and n = p.

The moreover part is a consequence of an easy calculation. Q.E.D.

COROLLARY 3.2: Let V and Q be as above, and xi, x2, ... xr be vectors of
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V. Assume that

are linearly independent. Then

are linearly independent.

PROOF: We shall prove this assertion by induction on r. For r = 1, our
assertion is contained in the above lemma. So, providing our assertion for
r - 1, we shall prove it for r. For convenience sake, we put V, =

xi, 03C3(xi),...,03C3p - 1(xi)&#x3E; for i = 1,...,r. Then, by, induction hypothesis,

If W = (VI + ... + Vr - 1) ~ Vr ~ (0), then W is a-stable and it contains a
non-trivial or-invariant vector w. Since w is contained in both spaces

Vl + ... + vr_ and Vr, 03C9 can be written as follows:

Hence by our summation, we get

This contradicts the hypothesis ú,) =1= 0. Q.E.D.

LEMMA 3.3: Let k be a field of positive characteristic p, V a finite
dimensional k-vector space, and a an automorphism of V of order p. We
denote by k[[V]] the completion at the origin of the symmetric algebra of v.
Then there exists a Q-stable prime ideal 13 of k[[V]] such that f.f.(k[[V]]/03B2)
is an inseparable non-trivial extension over f.f.(k[[h]]03C3&#x3E;/(k[[V]]03C3n 13».

PROOF: If Vis decomposed into a direct sum of two a-stable subspaces X
and Y; i.e., V = X ~ Y, then

In fact, we take bases (XI, x2,...,xr} and {y1, y2,..., ys} of X and Y,
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respectively. Then every element F of k[[V]] can be written as follows:

If F is a-invariant, since X and Y are a-stable, we can deduce the equality

This implies that

Therefore, by using the Jordan canonical form of a and (3.1), we may
assume that the action of a on V is in the following style: There exists a
basis (XI, x2,...,xn} of V such that

with 2  n  p. In this case, obviously we have canonical inclusions

Hence for our purpose we have only to find out a a-stable prime ideal 13
in k[[V]]j(xn) so that f.f.((k[[V]]/(xn))/03B2) is an inseparable non-trivial
extension over f.f.((k[[V]]/(xn))03C3&#x3E;/03B2 ~ (k[[V]]/(xn))03C3&#x3E;). Therefore, by
induction on n, we can restrict ourselves to the case where n = 2; i.e.,

In this case, we can easily see that

where

Hence if we take the prime ideal (x) as 03B2, then

and this extension is just our required one.
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In fact, the equality (3.2) will be given as follows. The relation

k[[x, y]]03C3&#x3E; ~ k[[x, N(y)]] is trivial. So, we take an element F( x, y ) of
k[[x, y]]03C3&#x3E;. Since the action of Q is a graded ring homomorphism, so we
may assume that F( x, y ) is a homogeneous polynomial of degree d. Then
dividing F(x, y) by N( y ), we get

where Qi (x)’s are monomials and P(x, y) is a homogeneous polynomial
of degree d - p. Since F(x, y)03C3 = F(x, y ), we get the equalities

and

From the latter equality, we get

This equality yields that

that is,

Therefore by induction on the degree d of F(x, y), we get the fact that
F(x, y) ~ k[[x, N(y)]]. Q.E.D.

Lastly, we state here a well-known theorem about the representation
of a cyclic group of prime order p into the group GLn(Zp) of general
linear matrices of size n.
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THEOREM 3.4: Let p be a prime integer, and n a given integer. Let Ao and
A, be the matrices defined bv

and

respectively. If A E GLn(Zp) satisfies the equality

then A is conjugate to a matrix of the type

where E means the unit matrix.

In fact, we can easily get this theorem by modifying the proof of ([2],
Theorem 74.3.)

§4. Characteristic 2 case (for curves)

By the argument of §2, every hyperelliptic curve of genus g over a field
of characteristic 2 is given by
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with

In this case, a basis of H°(C, 03A9~2C) is given by Proposition 2.5. Since
H1(C, 1C) is dual to HO(C, 03A9~2C), we can calculate the action 0*, of the
involution 0 of C, on H1(C, 1C) as follows.

LEMMA 4.1: There exists a k-basis ( ai , a2, ... , ag - 2, ag-1,...,g2g-1, bl,
b2, ... , bg - 1} of H1(C, 1C) such that

and -

(cf. Laudal-Lonsted [10] p. 158 or Oort-Steenbrink [22], p.47).

We choose an odd integer l larger than 2, and a level l-structure a for
C. Then (C, a) defines a point x E M = Mg,¡. By virtue of the above
lemma, there exists a complete system’of regular parameters

of x,M such that

Following Oort-Steenbrink ([22], p. 8), let 2 be the involution of Mg, I
defined by (E, 03B2) ~ (E, -03B2) for every curve E of genus g with level
y-structure /3, and j(’): Mg,l ~ A g, l the Torelli map defined by (E, 03B2) ~
(J(E), 03BB(E), fl). In particular, for l = 1, we put j(l) =j. Obviously jU)
induces the morphism : Vg,l = Mg,l/03A3 ~ Ag,l; i.e., we have a commuta-
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tive diagram (the notations following loc. cit. [22], p. 8):

Under these notations, we shall prove the following.

THEOREM 4.2: Let z be the generic point 01 the hyperelliptic locus ( in the
sense of [10], Definition 2) in (2)Mg(g  3), and D a curve corresponding to
z. Then we have kD ~ k(z).

PROOF : First, we remark a result of Lonsted [11], theorem 4.1) and one of
Laudal-Lonsted ([10], Theorem 3). The first one asserts the irreducibility
of the hyperelliptic locus, and the latter one implies that the hyperelliptic
curves with a level l-structure form a regular subscheme in Mg,l(1  3).
We take a hyperelliptic curve C and choose a point x E Mg,/ as above.

Then by (4.1),

where k = k(x). Let z’ be the point on Mg,/ lying over z, whose locus
contains x, and 13 the prime ideal of êx defining the locus fi. Since a*
acts trivially on

13 contains the variables

Since the dimension of the hyperelliptic locus is 2 g - 1, we see that

Now, x is a Galois covering of &#x26;;0*) with Galois group G = [a], and G is
the inertia group of 13. Hence f.f. (x/03B2) is purely inseparable over
f.f.(x03C3*&#x3E;/03B203C3*&#x3E;). If f.f.(x/03B2) = f.f.(03C3*&#x3E;/03B203C3*&#x3E;), since 03B203C3*&#x3E;x = 03B2,
this covering is unramified at 03B203C3*&#x3E; and we get the equality
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This is absurd, for we assumed g  3. Hence f.f.(/03B2) is not equal to
f.f.(x03C3*&#x3E;/03B203C3*&#x3E;). Moreover, in general, let (A, M) be a local Nagata
domain, and Â the completion of A. Then f.f.( Â ) is separably generated
over f.f.(A) (cf. Matsumura [13], (31.F), Theorem 71). Therefore, we
obtain that k(z’)~k(z). Thus we get our assertion by Proposition 1.8’.

Q.E.D.

COROLLARY 4.3: If D is a curve corresponding to the generic point of the
hyperelliptic locus in (2)Mg(g  3), then kD ~ kP(D).

PROOF: Since P(D) has only automorphisms ± 1P(D) (cf. Matsusaka
[15], p. 790, Theorem), the point x of Ag corresponding to P(D) is a
simple point (cf. Oort [21], Theorem 1.AV.). Hence, by Corollary 1.10,

On the other hand, k(z) contains k(x), and by the above theorem, the
field of moduli kD is not equal to k(z), where z ~ Mg is the point
corresponding to D. Thus we obtain our assertion. Q.E.D.

In the previous paper [28], the author showed that except in character-
istic two, the isomorphism scheme of curves is almost isomorphic to that
of their principally polarized jacobian schemes. But, in characteristic two,
there exists a counter example. In fact, combining Corollary 4.3 with
Theorems 1.9 and 1.9’, we can get easily the following.

REMARK 4.4: Let S be a spectrum of an artin local ring of characteristic
two, and C, C’ hyperelliptic curves over S. Then, in general the canonical
map

is not isomorphic.

§5. Characteristic 3 case (for curves)

Let C be a curve defined by (2.9) over a field of characteristic p = 3. That
is,
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where

Let a be, as in §2, the automorphism of C defined by y H y + P. The
genus of C is given by g = 2(r - 1). By Corollary 2.3, a basis of

H0(C, 03A9~2C) is given by

Therefore

for 1 = 0, 1,..., 2r - 4. Hence, if we choose a level n-structure a of C with
n  3 and 3 + n, and x is the point on M = Mg,n corresponding to (C, a),
by Corollary 3.2, the action a on fflx,M is linearlized. So, by Lemma 3.3,
we get the following.

THEOREM 5.1: Let g be a given even integer. Then there exists a curve C of
genus g over a field of characteristic 3 with ordinary jacobian variety so that

kC ~ k(x), where x is the point on Mg corresponding to C.

COROLLARY 5.2: Let g be as above. Then there exists a principally
polarized ordinary abelian variety P = (X, 03BB) of dimension g over a field of
characteristic 3 so that kP ~ k(y), where y is the point on Ag corresponding
to P.

In fact, we take a curve C as in Theorem 5.1. Furthermore, let x and y
be the points on Mg and Ag corresponding to C and P(C), respectively.
By a result of ([28], Corollary 3.3), kc = kP(C). On the other hand, by our
choice of C, kC ~ k(x) ~ k(y). Thus we are done. Q.E.D.
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§6. Abelian varieties with automorphisms of order p

In this section, we shall discuss our problem for abelian varieties. Our
main tool is Serre-Tate’s theorem. So we will start with the theorem. Let

p be a prime integer, S a scheme with p locally nilpotent on it, and So a
closed subscheme of S defined by a locally nilpotent quasi-coherent ideal
J of (9s. For an abelian scheme X, we denote by X the Barsotti-Tate
group associated to it. Now we fix an abelian scheme Xo over So of
relative dimension g. We set

and

Then Serre-Tate’s theorem can be stated as follows:

THEOREM 6.1 (Serre-Tate): The map (X, i ) ~ (X, i ) gives a bijection from
L(X0; S0~ S) to L(X0; S0 ~ S).
(cf. Messing [16], Chapter V, Theorem 2.3.)

Moreover, let R be a complete local ring with perfect residue field k of
characteristic p, and G’0 and G’o’ be ind-étale and toroidal Barsotti-Tate
groups on So = Spec k, respectively. Let G’ and G" be the liftings of Go
and G"0 to Barsotti-Tate groups on ,S. Then we get the following.

PROPOSITION 6.2: There is a bijection from L(G’0 X G"0; Spec k - S) to
Ext1( G’, G").
(cf. [16], Appendix, Corollary (2.3).)

Now, we reformulate the argument in (loc. cit., Appendix) for our
purpose. We denote by IL the formal scheme

Let R be an artin local ring with perfect residue field k of characteristic p.
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We consider the inductive system of sheaves on S = Spec R:

Then we get a canonical exact sequence of sheaves on S:

By taking the long exact sequence of this sequence, we get an isomor-
phism :

PROPOSITION 6.3: The homomorphism

is an isomorphism. Here RI, (Qp/Zp)1 and p) are the copies of R, Qp/Zp
and p, respectively. Hence we get an isomorphism

(cf., loc. cit., Appendix, Proposition 2.5.)

Next, let (X0, 03BB0) be an ordinary abelian variety of dimension g over
an algebraically closed field k of characteristic p, with a principal
polarization 03BB0: X0 ~ Xo . Then the Barsotti-Tate group Xo associated to
Xo is decomposed into

where G’0 = Xét0 and G"0 = Xdor are the étale and the toroidal parts of Xo, 
respectively. Then the polarization Ào induces the isomorphisms:

Since ÂQ is symmetric, we get the equalities
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Now we choose an isomorphism

and put

Using these isomorphisms, we get a commutative diagram:

Let ao be an automorphism of (X0, 03BB0). Then ao induces the isomor-
phisms :

Here 03C3’1 ~ Aut((Qp/Zp)g) = GLg(Zp) and 02 E Aut(lLg) = GLg(Zp).
Since Ào = âo X oao , we get the equality

that is,

where t02 means the transposed matrix of 02 E GLg(Zp). Let (R, M) be
a complete noetherian local ring with residue field k, and

Then summalizing the above discussion, we obtain the following.
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THEOREM 6.4: There is a bijection

where SMg(l + 9R) is the set of symmetric g X g matrices with entries in
1 + M. Moreover, for an automorphism 00 of (X0, 03BB0), we define 0; and
Q2 by (6.2). Then the action 00 on SMg(l + 9R) through the above bijection
is given by

Here, for g X g matrices U = (uij), A = (aij) and V = (vij), we define uA
and AV as follows:

the ( i , j) component of

the ( i , j) component of

PROOF: Combining Theorem 6.1 with Propositions 6.2 and 6.3, forgetting
the polarization gives an injection

where Mg(1 + 9X) is the set of g X g matrices with entries in 1+M.

Obviously, by the bijections given in Propositions 6.2 and 6.3, the Cartier
dual corresponds to the transposition on Mg(1 + M). Therefore when
A = (aij) ~ Mg(l + 9M) corresponds with a formal lifting X over R of
Xo, noticing the commutative diagram (6.1), X admits a lifted polariza-
tion À of 03BB0 if and only if A = tA. Moreover, by the Grothendieck theory
(cf. EGA, Chapitre III, Théorème 5.4.5), every proper formal scheme
with a lifted polarization is algebraisable. Hence, we get a bijection

Let 03C30 be an automorphism of (Xo, XO), 03C3’1, cr2’cz GLg(Zp) be as
above, and A ~ Mg(1 + M) ~ Ext1R((Qp/Zp)g, ttg) corresponds to an
extension of (Qp/Zp)g by P,g:

Then the " pushing out" of E via 03C3’2: 03BCg ~ 03BCg and the " pulling back" of
E via 03C3’1: (Qp/Zp)g ~ (Qp/Zp)g correspond to the maps of Mg(1 + M):
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and

respectively. On the other hand, obviously via the map

the action Qo on 2«Xo, Ào); Spec k - Spec R) corresponds to the

composition of the "pushing out" via a2’ and the "pulling back" via 03C3’1.
Therefore, noticing the equality (6.3), we obtain the assertion of the
moreover part in the theorem. Q.E.D.

Hereafter, we fix an algebraically closed field k of characteristic p.
Let 1 be an integer larger than 2 and prime to p. Let (Xo, Xo, ao) be a
principally polarized ordinary abelian variety (X0, 03BB0) of dimension g
over k with a level y-structure ao. Then this triplet defines a point x on
Ag,l ~ k. Moreover, let Qo be an automorphism of (Xo, Ào) of order p,
and 03C3’1 be the automorphism, induced by ao, of the étale part G’0 of the
Barsotti-Tate group Xo of Xo. Since GÓ is isomorphic to (Qp/Zp)g, a’
can be seen as an element of order p of GLg(Zp). Therefore, by Theorem
3.4, we can choose an isomorphism

so that u’ becomes the following style:

where Ao and A, are as in Theorem 3.4. Here, let a be the number of
A-10,S in a’, and e be the sizë of E. Under these notation, we get the
following theorem:

THEOREM 6.5: The action of 00 over the completion x of the local ring Ox
at the point x can be linearized if and only if ae = 0.
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PROOF: By Theorem 6.4,

Of course, we take the variables xii using the above ro. Moreover, due to
the same theorem, the action of Qo on the right hand side of (6.6) is given
by

Therefore, we can reduce our problem to the posibility of the lineariza-
tion of the action p of ZIPZ over the f ormal power series ring R in the
following 7 cases, and we complete the proof by the following lemmas
and corollary.

where xi, . = tij + 1 and a = 03C1(1), and so on.
Case II. R =k[[{tij|i, j=1,..., p-1}]]/({tij-tij|i j=1,...,p-

1}) and the action p is given by (6.7).
Case III. R = k[[{tij|i, j=1,....,p}]] and the action p is given by

Case IV. R = k[[(tij|i, j = 1,...,p}]]/({tij - tij/i, j=1,...,p}) and
the action p is given by (6.8).

Case V. R = k[[{tij|i = 1, ... , p-1; j =1, ... , p}]] and the action p is
given by

Case VI. R = k[[t1,..., tp]] and the action p is given by

Case VII. R = krr t"... , tn-1]] and the action p is given by

Hereafter, in each case, we put T = MR/M2R and tij=the class

represented by tij in T for each i, j. Of course, in Case VII, we denote
by tl the class represented by ti in T. Moreover, p denotes the induced
action on MR/M2R of p, and we put 03C1(1) = a.



364

LEMMA 6.6: In Case I, p is linear.

PROOF: By (6.7),

and

That is,
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Hence we get

and

Moreover, for n with 3  n  ( p -1)/2,

Compairing the coeffitients of tu ’s, we can easily see that

are linearly independent. 
Next, we put 7§ j = tij - tji and Tij = tij - tji for each i, j. Then

and f or n with 3  n  (p -1)/2,
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Moreover, we put

Then obviously U is invariant under the action of p and

Now looking at the coefficients of T12, T13,...,T1,(p+1)/2 in the expan-
sions of 03A3p-1k=003C3k(T1n) (2  n  ( p - 1)/2) and U, we get the matrix

Here, the i-th row vector of A is made of the coefficients of Tlj’s in
03A3p-1k=003C3k(T1,i+1) and in U if i = (p - 1)/2. Obviously, det A ~ 0, or more
precisely det A = (p -1)/2. Hnce, we have seen that the (p - 1)/2
elements

are linearly independent. Moreover, the linear independence of these
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elements and (6.15) is clear. Therefore, by Corollary 3.2.

and U form a complete system of regular parameters of R, and we know
the linearizability of the action p in Case I. Q.E.D.

COROLLARY 6.7: In Case II, p is linear.

PROOF: The proof of the linear independence of (6.15) in the proof of the
above lemma is also true in this case. Therefore, by Corollary 3.2,

form a complete system of regular parameters of R, and we are done.
Q.E.D.

LEMMA 6.8: In Cases III, IV and VI, p is linear.

In fact,

and

that is, these are linear.

LEMMA 6.9: In Case V, p is linear.

PROOF: By (6.9),
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Hence

and

where n is the integer defined by n = n (mod p ) and 1  n  p for an
integer n. Therefore

for n = 1, 2,...,p - 1. The coefficients of tii’s in these expansions form a
non-degenerate matrix of size p - 1:

Hence, by Corollary 3.2,

form a complete system of regular parameters of R and we are done.
Q.E.D.

LEMMA 6.10: In Case VII, p is not linear.

PROOF: By (6.11),
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On the other hand, according to a result of Peskin ([24], Chapter II,
Theorem 3.12), a is linear if and only if

: R03C3&#x3E; ~ R

is ramified in dimension &#x3E; 0. Moreover, according to (loc. cit., Chapter
II, Lemma 2.2), is ramified in dimension &#x3E; 0 if and only if

In our case, by (6.19), (0 -lYt) = 0 for i = 1, 2,...,p - 2 imply t, = t2 =
... 

= tp - 1, and

Therefore,

This implies that p can not be linearized. Q.E.D.

Example: Let (X0, 03BB0) be the canonically polarized jacobian variety of
the curve C defined by (2.9). According to Theorem 2.6, we can choose C
so that Xo becomes ordinary. Let Qo be the automorphism of (Xo, Ào)
corresponding to the automorphism of C defined by y ~ y + P(x). Then
H’ ( C, OC) is canonically isomorphic to the tangent space T0(X0) of Xo at
the origin, and T0(X0) ~ T0((X0)p). Moreover, H1(C, OC) is dual to

H°(C, 03A91C), and Xét0 is Cartier dual to Xtor0 in our case. Therefore, by
using the basis of HO( C, 03A91C) given by Corollary 2.2, we can see that the
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action a( of 03C30 over xgt must be of the type

in a normalized form as (6.5).

THEOREM 6.11: Let p be an odd prime integer, and g an integer with
g  p - 1. Then there exists a principally polarized ordinary abelian variety
P = (X, 03BB) of dimension g over a field of characteristic p so that k p =1= k ( x ),
where x is the point on Ag corresponding to P.

PROOF: Let Q = (X0, 03BB0, 03B10) be a principally polarized ordinary abelian
variety with a level y-structure ao corresponding to an Fp-rational point
y E Ag,l ® Fp (l  3, p  l). We suppose that (X0, XO) has an automor-
phism ao of order p whose action on ay is linear. Then Lemma 3.3
asserts that there exists a ao-stable prime ideal 13 of 0. such that k(y) is
a non-trivial inseparable extension over y03C30&#x3E;/03B2 n y03C30&#x3E;. Therefore, if
(X, À, a) is a triplet corresponding to 03B2, Proposition 1.8 implies that
P = (X, 03BB) satisfies our requiring condition. Such principally polarized
ordinary abelian variety (X0, 03BB0) with an automorphism ao as above
exists for g = (p -1)(r -1), because of the above example and of
Theorem 6.5. Thus we get our assertion for g with ( p - 1)1g.

Moreover for any g, we set g = (p - 1)a + r with 0  r  p - 2. By
the above discussion, there exists a principally polarized ordinary abelian
variety P = (XI, XI) of dimension ( p - 1)a satisfying the condition of
the theorem. We choose an elliptic curve E with p-rank 1 over Fp, and
denote 03BB2 the polarization of E defined by the origin of E. Then by
Lemma 1.12, if we put 03A9 = (X1 X Er, 03BB1 X (03BB2)r), k p is separable over
kQ. On the other hand, there exists a canonical morphism

Therefore k(y):J k ( x ), where y and x are the points on A(p - 1)a and on
Ag corresponding to P and Q, respectively. By the choice of P, the
extension kp/k(y) is a non-trivial inseparable extension, and so is

kQ/k(x). Thus we are done. Q.E.D.
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Added in proof

The author is grateful to Mr. I. Kuribayashi for pointing out that D.
Subro has already given a complete formula of the p-rank of Artin-
Schreier curves and has shown that the assertion of Theorem 2.6 was

always true for any mutually distinct al’...’ ar (cf. D. Subro: The p-rank
of Artin-Schreier curves. Manuscripta Math. 16, 169-193(1975).)

References

[1] W. BAILY: On the theory of 03B8-functions, the moduli of abelian varieties, and the
moduli of curves. Annals of Math. 75 (1962) 342-381.

[2] C.W. CURTIS and I. REINER: Representation Theory of Finite Groups and Associative
Algebras. New York: Interscience Publishers (1962).

[3] N. BOURBAKI: Algèbre commutative. Eléments de Math. 27, 28, 30, 31. Hermann:
Paris (1961-1965).

[4] P. DELIGNE and D. MUMFORD: The irreducibility of the space of curves of given genus.
Publ. Math. IHES 36 (1969) 75-110.

[5] A. GROTHENDIECK: Fondéments de la géométrie algébrique. Séminaire Bourbaki

1957-1962. Secrétariat Math. paris (1962). Refered to as FGA.
[6] A. GROTHENDIECK and J. DIEUDONNÉ: Eléments de géométrie algébrique. Publ.

Math. IHES 4, 8, 11, 17, 20, 24, 28, 32, 1960-1972. Refered to as EGA.

[7] A. GROTHENDIECK et al.: Séminaire de géométrie algébrique 1. Lecture Notes in Math.
Vol. 224. Berlin-Heidelberg-New York: Springer (1971). Refered to as SGA 1.

[8] H. HASSE: Theorie der relativ-zyklischen algebraischen Funktionen-Körper, in-

sbesondere bei endlichen Konstanten-Körper. Journ. reine angew. Math. (Crelle) 172
(1935) 37-54.

[9] S. KOIZUMI: The fields of moduli for polarized abelian varieties and for curves.
Nagoya Math. J. 48 (1972) 37-55.

[10] O.A. LAUDAL and K. LØNSTED: Deformations of curves I, moduli for hyperelliptic
curves. In: Algebraic Geometry. Proceedings Tromso, Norway 1977. Lecture Notes in
Math. Vol. 687, pp. 150-167. Berlin-Heidelberg-New York: Springer (1978).

[11] K. LØNSTED: The hyperelliptic locus with special reference to characteristic two. Math.
Ann. 222 (1976) 55-61.

[12] K. LØNSTED and S.L. KLEIMAN: Basics on families of hyperelliptic curves. Comp.
Math. 38 (1979) 83-111.

[13] H. MATSUMURA: Commutative Algebra. New York: W.A. Benjamin (1970).
[14] T. MATSUSAKA: Polarized varieties, fields of moduli, and generalized Kummer varieties

of polarized abelian varieties. Amer. J. Math. 80 (1958) 45-82.
[15] T. MATSUSAKA: On a theorem of Torelli. Amer. J. Math. 80 (1958) 784-800.

[16] W. MESSING: The crystals associated to Barsotti-Tate groups; with applications to
abelian schemes. Lecture Notes in Math. Vol. 264. Berlin-Heidelberg-New York:
Springer (1972).

[17] D. MUMFORD: Geometric Invariant Theory. Ergebnisse. Berlin-Heidelberg-New York:
Springer (1965).

[18] D. MUMFORD Abelian varieties. Tata Inst. Studies in Math. Oxford University Press
(1970).

[19] M. NAGATA: Local rings. Interscience Tracts in Pure &#x26; Applied Math. 13. New York:
J. Wiley (1962).

[20] F. OORT: Finite group schemes, local moduli for abelian varieties and lifting problems.
In: Algebraic Geometry, Oslo (1970) pp. 223-254. Wolters-Noordhoff (1972). Also:
Comp. Math. 23 (1972) 265-296.



372

[21] F. OORT: Singularities of coarse moduli schemes. Sém. Dubreil 29 (1975/1976).
Lecture Notes in Math. Vol. 586, pp. 61-76. Berlin-Heidelberg-New York: Springer
(1977).

[22] F. OORT and J. STEENBRINK: The local Torelli problem for algebraic curves. J. de

Geometrie Algebrique Angers (1979) A. Beauville editor, Sijthoff &#x26; Noordhoff (1980)
pp. 157-203.

[23] F. OORT and K. UENO: Principally polarized abelian varieties of dimension two or
three are jacobian varieties. J. Fac. Sci. Univ. Tokyo, Section IA, Math. 20 (1973)
377-381.

[24] B.R. PESKIN: Quotient-singularities in characteristic p. Thesis, M.I.T. (1980).
[25] H. POPP: The singularities of the moduli scheme of curves. J. Number Theory 1 (1969)

90-107.

[26] T. SEKIGUCHI: On the fields of rationality for curves and for abelian varieties. Bull.

Facult. Sci. &#x26; Eng. Chuo Univ. 23 (1980) 35-41.
[27] T. SEKIGUCHI: The coincidence of fields of moduli for nonhyperelliptic curves and for

their jacobian varieties. Nagoya Math. J. 82 (1981) 57-82.
[28] T. SEKIGUCHI: On the fields of rationality for curves and for their jacobian varieties.

Nagoya Math. J. 88 (1982) 197-212.
[29] G. SHIMURA: On the field of rationality for an abelian variety. Nagoya Math. J. 45

(1972) 167-178.

(Oblatum 13-XII-1982 &#x26; 22-XII-1983)

Department of Mathematics
Faculty of Science and Engineering
Chuo University
Kasuga, Bunkyo-ku
Tokyo
Japan


