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§1. Introduction and notations

(1.1) Let F be a number field, E a quadratic extension of F, M’ a
division algebra of center F and rank 4. We will make the following
assumptions:

(1) the algebra M’( E ) = M’ ~ E is a division algebra;
(2) let D be the set of places v of F such that Ml, is a division

algebra; then every place v in D splits in E.
We regard the multiplicative group of M’ as an algebraic group G’

defined over F. Thus:

Moreover G’( FA ) is a closed subset of G’( EA ). We will denote by Z’ the
center of G’. If ~ is a continuous function on the quotient

we will set

and we will say that an automorphic irreducible representation 03C0’ of

Z’(EA)BG’(EA) is distinguished if there is a smooth function ~ in the
space of 1T’ such that B’(~) ~ 0.

(1.2) Instead of M’, we may also consider the algebra M = M(2, F) of
two by two matrices and regard its multiplicative group G = GL(2) as an
algebraic group defined over F. It ~ is a continuous bounded function on
the quotient
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we will set

Let ’17 be an irreducible automorphic cuspidal representation of

Z(EA)BG(EA); we will say that qr is distinguished if there is a smooth
function ~ in the space of 03C0 such that B(~) ~ 0.

(1.3) Our main result is the following theorem:

THEOREM: Suppose 03C0’ is an irreducible automorphic representation of
Z’(EA)BG’(EA); suppose 03C0’ is infinite dimensional and let 77 be the

corresponding irreducible automorphic cuspidal representation of
Z(EA)BG(EA). Then 03C0’ is distirguished if and only if 1T is.

The motivations for this result can be found in the work of Harder,
Langlands and Rapoport on algebraic cycles of certain Shimura varieties.
This is not the place for a discussion of their work. Suffices to say that it
concerns poles of certain Hasse-Weil zeta functions attached to a Shimura
surface. These zeta functions can be computed in terms of automorphic
L-functions which have been studied directly by Asai (Cf. [S.A.]) The
question arises then of deciding when the L-function attached to an

automorphic cuspidal representation qr has a pole at s = 1. Now the

L-function has an integral representation. Indeed consider an integral

where T belongs to the space of 03C0 and E(x, s ) is an Eisenstein series.
This integral has a pole at s = 1 with residue B(~). On the other hand it
is equal to the L-function times an elementary factor; in particular the
L-function has a pole at s = 1 if and only if, for at least one cp, the

integral has a pole at s = 1, that is if and only if B is non zero on the
space of 1T, in other words, 03C0 is distinguished. In trying to extend the
result of Harder, Langlands, Rapoport to the case of a compact Shimura
surface one has to replace the group G by the group G’ and use the
above theorem.

Although this will not play a role in the present paper, we recall the
characterization of the distinguished representations: a representation is
distinguished if and only if it is the " Base Change" of an automorphic
cuspidal representation of G ( FA ) whose central character is the quadratic
idele class character of F attached to E. The proof is relatively com-
plicated since it involves the "Base Change" and the theory of the Asai
L-function. It would be interesting to see if this result could be estab-
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lished by using an appropriate relative trace formula, similar to the one
we are using here.

(1.4). In order to prove our theorem we need a "relative trace formula":
it is stated in section 2. In section 3 we derive our theorem from this trace

formula. The remaining sections are devoted to the proof of our trace
formula.

(1.5) Finally we thank R. Langlands for suggesting this problem to us,
for his encouragement and his advice. We thank A. Selberg for his advice
on classical results on L-functions. We also thank L. Clozel for making
his results available to us; although the results are not used in the present
paper, they were quite suggestive.

(1.6) We summarize our principal notations.
(1) The group G is the group GL(2), P is the group of upper

triangular matrices, A the subgroup of diagonal matrices, N the group of
unipotent matrices in P. We also denote by R the algebra of upper
triangular matrices.

(2) We write Mat[ p, q, r, s ] for the matrix with rows ( p, q ) and
( r, s ). We also set:

(3) So far as the number field F is concerned we follow standard
notations. In particular FA is the ring of adeles and Fz the group of
ideles. We denote by Ç a non trivial character of the quotient FA/F. We
denote by dx the self dual Haar measure on FA so that vol(FA/F) = 1
and d(ax) = lalFdx where |a|F is the module of the idele a; we drop the
subscript F when this does not create confusion. We write dx = 1-Idx,,
03C8 = II Bfi v where dxv is the Haar measure on Fv, self dual with respect to
BfIv. We denote by dXxv, the Tamagawa measure on F" :

Then we denote by d"x the Tamagawa measure on F::

We denote by F1 the group of ideles of norm one and by F+~ the group
of ideles whose finite components are one and whose infinite components
are all equal to some positive number, the same for all infinite places.
Then FÂ is the product of F and F;; and the Tamagawa measure is the
product of a measure on F 1 and the measure d t/t where t = 1 x 1. Recall
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that vol(F1/Fx) = 1. In general algebraic groups over F are provided
with the Tamagawa measure.

(4) Let v be a place of F. We denote by K,, the standard maximal

compact subgroup of G. Thus Kt, = GL(2, Ru) where Rv is the ring of
integers if v is finite. If Fv = R, then Ku = 0(2, R). If F,, = C, then
Ku = U(2, C). We denote by KF the product of the K,,. The group
G(FA) and Z( FA ) being provided with the Tamagawa measures and the
quotient Z(FA)BB(FA) with the corresponding measure, we have, for a
function f on the quotient:

where d k is a certain Haar measure on KF. Note that vol(KF) ~ 1.
Having chosen an invariant differential form of maximum degree w on G
we have for each place v, the measure |03C9v| and the Tamagawa measure
L(1, 1v)|03C9v| on Gv. If we give tq the quotient Z,,NG,, the measure

quotient of the Tamagawa measures then we have for a function f on the
quotient:

where dkv is a certain Haar measure on K v. Again vol(Kv) ~ 1.
(5) We have also the quadratic extension E of F, with Galois group

{1, 03C3}. Whenever convenient we write E = F []. We denote by Bfi E non
trivial character of EA/E. Usually we assume that is trivial on FA . If u is
a place of E we denote by Ku the standard maximal compact subgroup
of Gu, by KE or simply K the product of the Ku.

§2. A relative trace formula

(2.1) We will denote by S a finite set of places of F containing D and all
infinite places; the set S will be enlarged as need dictates. For each set T
of places of F we will denote by T ~ the set of places of E which are
above a place of T. For each place v of F not in D we choose an
isomorphism M’v ~ M(2, Fv); let a be a basis of M’ over F and au the
Ru-module generated by a in M,; we may assume that, for all places v of
F not in S, our isomorphism takes av to M(2, R,,). Extending the
scalars, we have, for each place v of E not in D~, an isomorphism
M’(Ev) ~ M(Ev). From these, we get for each place v of E (resp. F ) not
in D (resp. D~) an isomorphism G’v = G,; we use it to identify the two
groups. For each place v of E (resp. F ) we denote by Kv the standard
maximal compact subgroup of Gv. We choose, in the usual way, two
invariant F differential forms of maximal degree w and w’ on G and G’;
over an algebraic closure of F they are the same. Thus, for each place v
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of F the groups G, and G’v come equipped with forms w and wl; if v is
not in D we may assume the isomorphism of G’v onto Gv takes |03C9’v|.
Similar remarks apply to E.
We denote by f a smooth function of compact support on

Z(EA)BG(EA); we assume that f is a product of local components fv.
For all v the local component fv is smooth, of compact support,
bi-Kv-finite; for almost all finite v, it is the characteristic function of

Z,Kv. Similarly, we consider a smooth function of compact support f’
on Z’(EA)BG’(EA). It is also assume to be a product of local factors f’v.
We make the following assumptions on f and f ’ :

(1) for each v not in D - , fv = f,;
(2) let v be a place in D and vl, v 2 the two places of E above v ; we

have isomorphisms

we demand that the convolution products

on G’v and Gv respectively have the same regular orbital integrals.
In other words, we demand that the hyperbolic orbital integrals of h v

vanish; on the other hand, if 7§ and T, are isomorphic Fv-subalgebras of
rank 2 of M’v and M, respectively and if t’~T’v-Fv corresponds to
t~Tv-Fv, then we demand that

In this formula the Haar measures on G, and G’v are the Tamagawa
measures attached to LVv and wv respectively; on the other hand the
measures on T" and T’f are the Tamagawa measures attached to

differential forms TJv and qi which correspond to one another under the
isomorphism Tv ~ T’v. Finally the quotients are given the quotient mea-
sures.

(2.2) The operator p ( f ) defined by f on the space

is defined by a kernel K. We call P the orthogonal projection on the
space of cuspidal elements. Then P03C1(f)P is represented by a kernel

Kcusp; it is a smooth bounded function. Similarly the operator 03C1(f’)
defined by f’ on the space
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is represented by a kernel K’; we call P’ the orthogonal projection on the
orthogonal complement of the space spanned by the functions of the
form xodet, where X is a quadratic character of ExBExA. Then P’03C1(f’)P’
is represented by a kernel Kcusp. It is also smooth and bounded.

(2.3) PROPOSITION: Suppose that the above assumptions, in particular
(2.1.1) and (2.1.2), are satisfied. Then:

In this formula
Tamagawa measures.

The proof will occupy section 4 and the following sections.

§3. Demonstration of the theorem

(3.1) We will assume Proposition (2.2) and derive Theorem (1.3). Let
therefore 03C0’ and 03C0 be as in (1.3). We will prove that if qr is distinguished
then 1T’ is distinguished. The proof of the converse assertion is similar
and left to the reader. So from now on we assume 1T is distinguished. We
first recall a remark of Langlands. Suppose v is a place of F which splits
into v1 and v 2 in the extension E; then we have isomorphisms

Gv1 ~ Gv2 ~ Gv.

The restriction of B to the space of 03C0 is a non zero G( FA )-invariant
form; imbedding the space of 7TvI 0 lrv2 into the space of 1T appropriately,
we find a non-zero linear form which is invariant under the group

Gv1 X Gv2. Therefore 1TvI and 03C0v2 are contragredient to one another. Since
they are trivial on the center, we see that the following condition is

satisfied:

(1) if v splits into vl and v2, then 1Tvl ~ 03C0v2.
Of course the representation 03C0’ satisfies the analoguous condition. We

set 03C0v = 03C0v1 = 03C0v2 and 03C0’v = 03C0’v1 = 03C0’v2.

(3.2) Recall that S is a finite set of places of F containing D and the
infinite places. Let us set
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We may choose S so large that II contains the unit representation of
KS - . We than take fv for v OE S ~ to be bi-invariant under Kv. In general
if a is an irreducible representation of Z(EA)BG(EA) containing the
unit representation of KS~, we will denote by e03C3 the corresponding
character of the Hecke algebra of the group G S - . In particular if a is an
automorphic cuspidal representation we will denote by V(03C3) the space of
forms in the space of a which are invariant under KS . The orthogonal
projection onto the space V(a) will be noted Po. The space V(a) is

invariant under GS~ and the corresponding representation will be noted
1TS - . Thus for (p in V(a) we have:

Accordingly we may write Kc.,p as the sum of the following uniformly
convergent series:

where Ko is the kernel attached to the operator Po’17(fs - )Po and the sum
is over all cuspidal representation a containing the unit representation of
KS - . In turn, if ~j is an orthonormal basis of V(03C3), then Ka is equal to
the finite sum

Therefore

We will choose now fs - in such a way that a03C0 is non zero and there
exists a function f’ satisfying the conditions (2.1.1) and (2.1.2). To that
end let us observe that 03C0S ~ is equivalent to the tensor product represen-
tation

We choose therefore an isomorphism

we have set
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and v, is the space of ’17V. At the cost of enlarging S we may assume there
is a unitary vector u in the space VT ~ such that the restriction of B to
u 0 VT ~ is non zero. We choose fT ~ in such a way that ’TTT-(fT-) is the
orthogonal projection on u. Then if v is any basis of VD ~ we have:

For each v in D let v1 and v2 be the two places of E above v. Let Cl, be
an invariant linear form on the tensor product V:Jl 0 V:2. Then hn - is the
tensor product of the spaces Vv1 ~ V:2 and the restriction of B to

u 0 hD - is, up to a constant factor, the tensor product of the Cv. For
each v in D let us choose bases of Vv1 and Vv2 dual to one another, a,

and b. say. Then the above expression is, up to a constant factor, the
product over all v in D of the sums:

Since this sum reduces to

where

(3.3) At this point we need a lemma:

LEMMA: We can choose fv1 and fv2 in such a way that tr 03C0v(hv) = 1 and
tr a( h v) = 0 for every infinite dimensional irreducible representation a of
Gv which is not equivalent to 03C0v.

PROOF OF LEMMA: In any case 03C0v is in the discrete series. Thus if v is
finite there is a function hv with the required traces and it is trivial that it
is a convolution product. So we are done in this case. If v is infinite then
v is real. So we may identify E to R and Gv to GL(2, R). Let Ko be the
group SO(2, R) of Ku and, for each n E Z, X n the character
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Say that ’17v is the representation of the discrete series of highest weight
n &#x3E; 0. Since ’17v is trivial on the center n is necessarly even. Choose
smooth functions of compact support a and b on ZvBGv. We will take
then with support in the set of matrices with positive determinant so that
we may think of them as being functions on SL(2, R ). The function b
will be taken bi-invariant under Ko. As for a it will be assumed to

transform under x n on both sides:

We will take h v to be (a-b)*(a+b). Then if a is any irreducible

representation of GL(2, R) we have:

If furthemore a is in the discrete series then the second term is zero; the
first term is zero as well unless the highest weight m of a is less than or
equal to n, that is unless a belongs to a certain finite set. The linear

independence of characters implies then that we may choose a such that
tr 03C0v(a) = 1 and tr 03C3(a) = 0 if a is another representation of the discrete
series. Thus all we have to show is that we can choose b in such a way
that

if a is a representation of the principal series trivial on the center.

Unraveling this we see that this relation is equivalent to F, = Fh, where
we have set, for x &#x3E; 0,

and Fb is defined similarly. Since Fa is smooth of compact support on

R++ and invariant under the substitution x ~ x-1, there is a function b
with the required properly ("Paley Wiener Theorem for SL(2, R)", cf.
for instance [S.L.], Th. 3, V, $2, p. 71). This concludes the proof of the
lemma.

(3.4). Coming back to the situation of (3.2) and choosing h v as in the
lemma we have

Hence a’7T = C ~ 0 as desired.



252

Now we choose a function f’ on G’(EA) so that (2.1.1) and (2.1.2) are
satisfied: so for a place v of E not in D - we take f,,’ = ft,. For v in D,
the Schur orthogonality relations show there is a convolution product h §,
on G’v so that tr 03C0’v(h’v)= -1 and tr 03C32(h) = 0 if a’ is not equivalent to
03C0’v. Since tr ’17v(hv) = 1 and tr 03C3(hv) = 0 if Q is not equivalent to 77,, we see

that hu and h’v have the same orbital integrals. We therefore take f’v1 and
f’v2 so that

and we can apply Prop. (2.2). The kernel K’cusp has a decomposition
analoguous to (3.2.2). In particular we find

where

By Prop. (2.2) expressions (3.2.3) and (3) are equal. We may regard them
as infinite linear combinations of characters of the Hecke algebra of
GS~. Since the principle of linear independence of characters apply to
these infinite sums ([R.L.] $11) and e03C0 = e03C0, we see that a03C0, is non zero.

Since K’03C0(x, y ) is a sum of terms of the form ~(x)~’(y) where ~ and ~’
belong to the space of u’ we see that the restriction of B’ to the space of
77’ is non zero. This concludes the proof of Theorem (1.3).

§4. Double cosets

(4.1) In order to prove our trace formula we need to study the double
cosets of G’(F)Z’(E) in G’( E ) and the double cosets of G(F)Z(E) in
G(E). An element of G’(F)Z’(E) or G(F)Z(E) will be termed singu-
lar. An element not in this set will be termed regular.
We start with G. We let Q be a set of representatives for the G(F)

conjugacy classes in the set of subfields of M(2, F ) of rank 2 over F. We
let R be the subalgebra of M(2, F) formed of the upper triangular
matrices and P the subgroup of G(F) formed of the upper triangular
matrices.

(1) LEMMA: If T is in Q then any singular element of (T 0 E)  is in

T . EX. Similarly any singular element of P(E) is in P(F)Z(E).

PROOF OF (1): Suppose x is singular in (T ~ E) . Then there is c in
E  = Z(E) such that x = cy with y in G(F). Then y is in the intersec-
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tion of the algebras T 0 E and M(2, F), that is in T. Since it is

invertible, it is in T’ and we are done. The proof of the second assertion
is similar, using the algebra R instead of the algebra T.

Recall that the Galois group of E over F is (1, cr 1.

(2) LEMMA: Suppose x is in G(E). Then x is regular ( in our sense) if and
only if x 0 x - 1 is regular in the usual sense.

PROOF OF (2): Suppose x is singular in our sense. Then x = gc with g in
G(F) and c in Ex. Then x03C3x-1 = co-l is singular. Conversely, suppose
x03C3x-1 = c where c is in EX. Then c03C3c = 1 so c = z03C3-1 with z in Ex. This
gives (xz-1)03C3 = xz-1. Hence xz-1 is in G(F) and x is singular in our
sense.

(3) LEMMA: If x is in G(E) then either x is singular, or x is in a double
coset G(F)pG(F) with p in P(E) - P(F), or x is in a double coset

G(F)tG(F), where t is in (T 0 E)X- TX. EX and T is in Q. Moreover the
three possibilities are exclusive of one another.

PROOF OF (3): Let us prove the first assertion. Let E be the extension
F[~]. Then any x in M(2, E) can be written uniquely in the form:

with a and b in M(2, F).

Suppose x is invertible and not singular; recall that in the present
context this means that x is not in Z(E)G(F). Then a is not zero,
otherwise x would be in G(F)EX, hence would be singular. Suppose a is
non zero but non invertible. We claim there is an element c of E  such
that x’ = xc has the form

Indeed a has the following form:

Let us write also:

We claim that for some appropriate z in F the matrix za + b has a non
zero determinant. Suppose not. Then
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for all z in F. This implies s = 0 and then rq = 0. Say r = 0. Then the
matrix x has the form

and is thus not invertible, a contradiction. Let therefore z be an element
of F such that za + b is invertible. Set c = z + 1/. Then c is in EX

and xc has the form a’ + b’/Ù where a’ is invertible. Thus we may
assume that a is invertible. Replacing x by xa -1 we may even assume
that a is 1. If b is not invertible or if it is invertible but not elliptic (in the
usual sense) in G ( F ), there is a g in G ( F ) such that b = gpg-1 where p
is in R(F). Then:

Since q is in R ( E ) we are done in this case. If b is an elliptic element of
G ( F ) then there is a T in Q and a t in T’ such that b = -gtg - 1. Then:

Since y is in T 0 E we are again done.

It remains to prove the second assertion of the lemma (3). Because of
lemma (1), all we have to prove is that for T in Q an element x of
(T ~ E)X- T . EX cannot be of the form gl pg2, with p in P(E) and gl
and g2 in G(F). Suppose it is. After a simple computation we find:

Suppose the F algebra T is not isomorphic to E. Then T ~ E is a field,
in fact a quadratic extension of E and x03C3x-1 is an element of that field
which is not an elliptic element of G ( E ) (in the usual sense). Thus x03C3x-1

is singular in the usual sense and by lemma (4.1.2) x is singular in our
sense, a contradiction. Suppose now that T is isomorphic to E; in

passing note that there is exactly one element of Q with that property.
Then T 0 E is not a field; it is a sum of two copies of E. In particular the
minimal polynomial of x over F has degree one or two and the same is
true of q. This is possible only if the two eigenvalues of g are in F. Since
they are elements of E whose F norm is 1, they are + 1 or -1. In any
case:

This gives a2 = 1 and a03C3a = 1. SInce x is regular a ~ ± 1 (lemma (4.1.2)).
Let us identify T ~ E with the sum of two copies of E; then
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From a2 = 1 and a ~ ± 1 we get a = (1, -1) or ( -1, 1). Then aOa = -1
a contradiction.
We will say that an element of G(E) is elliptic if it is not in the set

G(F)P(E)G(F).

(4.2) We will now classify all elliptic elements.

(1) LEMMA: Suppose T and T’ are in Q. Suppose that x and x’ are regular
elements of T 0 E and T’ ~ E respectively but have the same double class
modulo Z(E)G(F). Then T = T’.

PROOF OF (1) : Since E is contained in (T 0 E ) X and (T ~ E)  we may as
well assume that x and x’ have the same double class modulo G(F) :

with c and c’ in G ( F ).

Then x 1 - = CX,0-lC-1. Morever x03C3-1 is a regular element of (T ~ E) ’
in the usual sense (lemma (4.1.2)). Hence c (T 0 E)c-1 = T’ 0 E. Taking
the intersections with M(2, F) we obtain CTC-l = T’, hence T = T’.

(2) LEMMA: Suppose that c and c’ are in G(F), T is in Q, x and x’ are
regular elements of (T 0 E) ’ and z is in EX. Suppose that

Then c’ and c normalize T and cc’ is in T.

PROOF OF (2): Again we have x03C3x-1 = cx’03C3x’-1z03C3-1c-1 and x03C3-1 is a

regular element in the usual sense. It follows that c normalizes T ~ E,
hence also T. Finally cc’ = cx’ - lc - lz -’x is in T 0 E, hence in T.

(4.3) We now deal with the remaining elements of G(E).

(1) LEMMA: Every element x of P(E) is in the same double class modulo

G(F)Z(E) as one of the following element:

PROOF OF (1): Let us write x in the form

If alc is in F then after multiplying by an element of Z(E)A(F) we
may assume that a = c = 1. If b is in F then x is in N( F ) and we are in
case (i). If b is not in F then after multiplying by a matrix in N( F ) we
may assume that b = u~ with u in F. Then
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is the matrix (ii). If a/c is not in F then, after multiplying by an element
of Z(E), we may assume c = 1. Since a is not in F we may write b in the
form

with u and v in F.

Then the matrix

has the form (iii). This concludes the proof of the lemma.

(2) LEMMA: In lemma (1) cases (i), (ii), (iii) are exclusive of one another.

PROOF oF LEMMA (2): In view of lemma (4.1.1), it suffices to show that
case (ii) and (iii) are not compatible. Suppose they were. Then there
would be g and g in G(F) and a matrix d in A(E), where A is the

group of diagonal matrices, such that:

Then we would find:

Since n(2~) is unipotent and d03C3-j is a diagonal matrix this is a

contradiction.

(3) LEMMA: Suppose c and c’ are in G(F), x and x’ are regular elements of
A(E) and z is in E. Suppose that

Then c and c’ normalize A and cc’ is in A (F).

The proof is the same as the proof of lemma (4.2.2).

(4) LEMMA: Let n = n(h). Suppose g and g’ are in G(F), z in E.

Suppose that

Then z is in F, gg’ = z and g and g’ are in N(F)Z(E), where N denotes
the group of triangular matrices with unit diagonal.
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PROOF oF (4): Once more we find gn03C3-1g-1 = z03C3-1n03C3-1. Since n03C3-1 is a

regular unipotent element, this implies that z’-’ = 1 and g centralizes
no-1; in turn this implies that g is in Z(E)N(E) hence in fact in

Z( F ) N( F ) and z is in F. Similarly g’ is in Z( F ) N( F ). Since Z( E ) N( E )
is a commutative group gg’ = z and we are done.

(4.4) Altough not necessary for the description of the double classes the
two following lemmas will be useful latter on.

(1) LEMMA: Suppose 1 is in G(E) and 03BE03C303BE-1 is in P(E). Then 1 is in
G(F)P(E).

PROOF oF (1): Set p = 03BE03C303BE-1. By assumption p is in P(E). On the other
hand p°p = 1. We claim there is a q in P(E) such that p = q°ql. This
will prove the lemma because then eq-1 is invariant under a hence in

G ( F ). To prove our claim we write

The condition that p’p = 1 gives:

The condition q03C3q-1 = p gives:

Because of (2.i) and (2.ii) it is possible to solve (3.i) and (3.ii). Next
regard (3.iii) as a system of 2 linear equations for r and s where z = r +
s~. The condition z03C3z = 1 means that the determinant of the system is
zero and the condition (3.iii) is then the compatibility condition for the
two equations. Our claim follows.

Say that an element of G ( E ) is semi-simple regular if it is elliptic or in
the double class modulo G(F)Z(E) of an element diag( a, 1) with a OE F.
Say it is unipotent regular if it is in the double class of an element of the
form n(y) with y not in F.

(4) LEMMA: An element x of G(E) is singular ( resp. semi-simple regular,
resp. unipotent regular) if and only if x03C3-1 is singular (resp. semisimple,
resp. unipotent regular) in the usual sense.

REMARK: In this lemma an element of the form zn(y) with z in Z is
regarded as unipotent.
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PROOF oF (4): We may already assume x regular (lemma ((4.1.2)). Then
we know that x = gyg’ where g and g’ are in G(F) and y is either in

(T ~ E)  - TXEx or of the form diag( a, b ) with a/b~F, or of the form
zn(u) with u e F and z in Z(E). Then x03C3x-1 = gy03C3y-1g-1. In the first
case y03C3y-1 is an element of T ~ E hence a semi-simple one. In the
second case y03C3y-1 is hyperbolic and in the last case it is unipotent. In
any case it is regular (loc. cit.).

(4.5) The previous results apply mutatis mutandis to G’. Every element is
either singular or elliptic. The set Q is replaced by a set Q’ of conjugacy
classes for the subalgebras of M’ of rank 2. Of course, any element of Q’
is isomorphic to exactly one element of Q.

§5. Terms attached to the elliptic and singular elements

(5.1) To prove our trace forrnula we now write down Kcusp more

explicitly:

where:

A formula for the two other kernels will be recalled below. In turn we
write (2) as the sum of three more kernels:

where:

Similarly, we write K’cusp as

where

We write (8) as the sum of two other kernels:
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where

In this section we will prove that, under the assumptions of Proposition
(2.2), the kernels Ke and K’e, Ks and Ks, KSp and Ksp respectively, have
the same integrals.

(5.2) We first deal with Ke and prove that Ke is indeed integrable over
the product of the quotient Z(FA)G(F)BG(FA) by itself. To that end
we first prove a lemma. We let KE be the standard maximal compact
subgroup of g( EA ) and for g in G(EA) define the height H(g) of g to
be:

We first recall without proof a standard lemma (Cf. [J.A.]):

(2) LEMMA : Let Q be a compact subset of G(EA). Then there is a number
d &#x3E; 0 such that the relations:

imply e is in P(E).

We derive from this lemma the following result:

(3) LEMMA: Suppose Q is a compact subset of G(E). Then there is a

number d &#x3E; 0 such that the relations

imply that 1 is in G(F)P(E).

PROOF oF (3): We have also h-03C303BE-03C3~03A9-03C3. After multiplication we get
h-03C303BE-03C303BEh E 03A9-03C303A9. Applying the previous lemma we see that if d is
sufficient large and H( h ) &#x3E; d then 03BE-03C303BE~ P(E). The conclusion follows
from lemma (4.4.1).

Recall that
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If x and y are in G ( FA ) then the previous lemma shows that the relation
f(x-103BEy)=0 implies first that x and y are in sets compact modulo

G(F)Z(EA); in turn this implies that e stays in a set finite modulo EX.
Hence Ke is indeed integrable. Furthemore, by taking f positive in what
follows we can justify our formal manipulations.

(5.3) The results of the sub-section (4.2) allow us to write:

we have noted N( T ) the normalizer of T in G ( F ). Since T has index 2
in N(T ) this can also be written as:

If we integrate formally over the product of the quotient
G(F)Z(EA)BG(FA) by itself we find:

the sum is over all T in Q and then 1 regular in T B(T ~ E)x/Ex; the
integral in x is over G(FA)/Z(FA) and the integral in y over the
quotient TÂ B G ( FA ); finally vT is the volume of the quotient FÂ T"B T A.
In turn, each integral in (3), apart from a constant factor, can be written
as a product over all places v of F of local ones.

If v is a place of F which does not splits in E and u is the

corresponding place of E then E is a quadratic extension of F and G is
a subgroup of G. The corresponding local factor is nothing but:

The convergence of this integral can be established as follows: if the

integrand is not zero then xi y belongs to a set ZuQ where 03A9 is compact.
Then y-103BE1-03C3y is in a compact set. Since 03BE1-03C3 is semi-simple regular
(lemma (4.4.4)) y must be in a set compact mod(Tv ~ Ev) . Now
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(Tv ~ Ev)  is compact mod T v. So y is in a set Tv 03A9’ where 0’ is a

compact set of Gv. For y in 0’ the functions x ~ f(x03BEy) have support in
a fixed compact set of G(Fv) and are uniformly bounded. Thus the
double integral (4) converges.

For almost all such v, the integral (4) can be described as follows: fu
is the characteristic function of Zu Ku, Eu is the unramified quadratic
extension of F,, and e is in Ku Zu . If f(x03BEy)=0 then x03BEy is in KuZu
hence y-103BE1-03C3y is in Ku . Since 03BE1-03C3 is in Ku and is semi-simple regular,
this implies that y is in (Tv ~ Eu) . Ku n Gv. Because Eu is unramified
this is T vKv. Taking then y in Ku we find that x must be in ZvKv. So
the factor in this case is equal to

If on the contrary v is a place of E which splits into vl and v2 in E then
we have isomorphisms Gv1 ~ Gv and Gv2 ~ Gv; let 03BC1 and 03BC2 be the

images of jn E G(E) under these isomorphisms. Then Gu may be identi-
fied with the diagonal of the product GuI X Gv2 and our local factor is

After a change of variables, (6) can be written also as:

or

Now ~v = (03BE2)1-03C3. Therefore this is a regular semi-simple element of
G(Fv) (lemma (4.4.4)) and this is an orbital integral for the function hv;
in particular it converges.

Again let us see what happens to the integral at almost all v. Then fv1
is the characteristic function of ZK, and t, and e2 are in ZvKv. If the
integrand is non zero we find that x03BE1y and x03BE2y are in ZvKv. Hence
y-1~-1vy is in the same set. Since l1v is in K and is semisimple regular,
this implies that y is in TvKv. Taking y in Kv we find that x is in ZvKv
and the integral is again equal to (5). Since the product of the factors (5)
is finite our assertion is justified: each one of the local integral converges
and their product converges too.

(5.4) Very much the same considerations apply to G’ and the kernel K’.
It is now time to prove the equality of the integral of Ke and Ké under
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the assumptions of Prop. (2.2). To that end, consider a term in (5.3.3).
Suppose that T is an algebra which does not imbed into H. Then there is
at least one v in D such that T does not imbed into H, that is such that
T is not a field. Then with the previous notations ~v is an hyperbolic
regular element and the factor corresponding to v is an hyperbolic
orbital integral of hv hence zero by our choice of h,,. Suppose that now
that T does imbed into H. It is therefore isomorphic to exactly one
element T’ of Q’. Then vT = vT, and all we have to check is the equality
of the integrals:

if e corresponds to e’. Once more we decompose each global integral into
a product of local ones and a constant factor, the same on both sides.
Suppose v is not in D. Then Gv = G’v and fv = f’v. So the factor attached
to v is trivially the same in both sides of the equality. Suppose v is in D.
Then the factor attached to v in the left hand side is the integral of h v on
the orbit of ~v. Similarly the factor attached to v in the right hand side is
the integral of h’ on the orbit of qi, where q§ corresponds to ~v in the
isomorphism of Tv with Tv. Again, by assumption, these factors must be
the same and we have proved the required equality.

(5.5) We quickly dispose of the singular terms. Recall that

Then:

If we integrate with respect to x first the resulting integral does not
depend on y so we find also:

where vol stands for the volume of Z(FA)G(F)BG(FA).
Similarly we find:
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where vol’ stands now for the volume of Z’(FA)G’(F)BG’(FA). We want
to show that (1) and (2) are equal. To begin with vol = vol’. Next we
write the integrals on the right hand sides of (1) and (2) as products of
local integrals (and a constant factor). Again the factor attached to a
place v of F which is not in D is trivially the same in both integrals. To
see that the factors attached to a place v in D are the same we note that
in the right hand side of (1) for instance this factor is nothing but the
following integral:

This is in fact hv(e). Since hv and h’v have the same orbital integrals
they have also the same value at e and we are done.

(5.6) We also dispose of the kernels Ksp and Ksp. For Ksp we have the
following expression:

where VOL denotes the volume of the quotient G(E)Z(Ea)BG(EA),
the sum is over all quadratic characters X of the idele class group of E
and the integral is over Z(EA)BG(EA). The integral of the term attached
to X is zero unless the restriction of X to FÂ is trivial. Thus we find:

the sum being over all such X . Similarly, we have:

where VOL’ denotes the volume of G’(E)Z’(E)BG’(E) and we have
written det for the reduced norm. To prove the equality of the integrals
(1) and (2), it suffices therefore to check that

We decompose each integral into a product over all places of E of
analoguous local integrals (and a constant). It is again clear that the
factor attached to a place not in D - is the same on both sides. If v is a

place of D and v1 and v 2 the two corresponding places of E then in the
left hand side we have the factor:
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Since the restriction of X to FxA is trivial we have Xl’l = Xr2 = x ,, say and

this can be written also as

So what we have to prove is that this is also

Call 0 the special representation of G. Then (6) is minus tr a 0 ~v(hv).
But because hv has zero trace in any principal series this is also equal to
(5) and we are done.

§6. Truncation of K

(6.1) In order to finish the proof of Proposition (2.2) we need only show
that the integral of the difference Kr - Kels over the product of

z(FA)G(F)BG(FA) by itself is zero. This will be proved under the
following assumption:

(1) There is a set X of places of F with at least two elements and the
following property: every v in X splits into v1 and v 2 in E and the

hyperbolic integrals of hv = fvv1 * fv2 vanish.

Since Kcusp, Ke, Ks and Ksp are integrable over the product, it is clear
that the difference Kr - Kels is indeed integrable. However, just as in the
classical case, each term alone is not integrable and therefore we must use
what one could call a "restriction truncation operator". It is defined as
follows: let h be a continuous function on Z(EA)G(E)BG(EA), let c be
a positive number and let Xc be the characteristic function of ]c, + ~[;
then we will denote by T’h the function on Z(FA)G(F)BG(FA) defined
by:

we have denoted by h N the constant term of f along N. Recall that it is
the function on G(EA) defined by:

Recall also that H(g) is the height: H(g) = |a/b|E if g = n(y) diag( a/
b)k. The following lemma is standard (Cf. [J.A]):
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(4) LEMMA: If y is in G(E) and there is a g in G(EA) such that H(g) &#x3E; 1

and H( yg ) &#x3E; 1 then y belongs to P(E).

This lemma implies that the sum in (1) has at most one term and also
that if H(g)&#x3E;c&#x3E;1 then Tch(g)=h(g)-hN(g). Of course if h is a

cuspidal function on Z(EA)G(E)BG(EA), then Tch = h for any c. Now
Kcusp(x, y) is a cuspidal function of x and a cuspidal function of y. We
will denote by Tl the truncation operator with respect to the first

variable and by Tc2 the truncation operator with respect to the second
variable. We will take two numbers c, and c, with cl &#x3E; C2 &#x3E; 0. Then

Tc11Tc22Kcusp = Kcusp. Thus:

for x and y in Z(FA)G(F)BG(FA). The function f being fixed we will
take ci and c2 as large as need dictates. The number c2 being fixed, we
will see that if ci is large enough then every term in (5) is integrable over
the product of Z(FA)G(F)BG(FA) by itself; furthemore the integrals
have limits as ci tends to infinity so that we will be able to write:

At this point, each term will be a function of c2. We will perform an
asymptotic evaluation of each term for c2 large: in a precise way we will
write each term as the sum of a linear function of log c2 plus a function
tending to 0 as c2 tends to infinity. The integral of Kcusp will then be
evaluated by evaluating each linear function at zero. This will give the
expression we need: see section (10).

(6.2) In section (6) we study the truncation of K. By definition we have:
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in this expression the sums for y, and y2 are over P(F)BG(F) ; the sum
for 03BE is over Z(E)BG(E); the integrals for n, n 1 and n2 are over

N(E)BN(EA). We first prove a lemma:

(2) LEMMA: Given f there is a number d with the following property:
suppose c &#x3E; d; then if c is sufficiently large and x, y are in G(FA) the
terms (l.iii) and (1.iv) cancell while in (1.ii) 03BE is in G(F)P(E).

PROOF OF (2): By lemma (5.2.2) there is d &#x3E; 0 such that for c, &#x3E; d, C2 &#x3E; d

in (1.iv) 03BE is actually in P(E). Then the integration for n 2 is superfluous.
By lemma (5.2.3) we may assume c, so large that in (1.iii) 03BE is actually in
the set P(E)G(F). Then (l.iii) and (l.iv) do cancel. Furthermore we
may assume d so large that, for C2 &#x3E; d, 03BE in (ii) is actually in G ( F ) P( E ).
This concludes the proof of the lemma.

We may further write the expression in (l.ii) as the sum of two terms
written below as (3.i) and (3.ii):

In each term we may recombine an integration on
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sum on N( E ) to get:

Similarly we write K as the sum

and use the results of section 4 to break up Kr into a sum of two terms
written below as (5.i) and (5.ii):

Note that in (5.ii) we have used the fact that A(F) has index two in its
normalizer. We have thus written Tc11Tc22K as the sum of Ks, Ke, the
difference (6.2.5.i)-(6.2.4.i) and the difference (6.2.5.ii)-(6.2.4.ii).

(6.3) We now deal with the difference (6.2.5.i)-(6.2.4.i).

(1) LEMMA: The difference (6.2.5.i)-(6.2.4.i) is integrable over the product
of Z(FA)G(F)BG(FA) by itself.

PROOF oF (1): This difference can be written as

where we have set (here c2 = c):
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Thus it suffices to show that F is integrable over the product

To see that we will use the Iwasawa decomposition. Treating the varia-
bles in the maximal compact as parameters and then ignoring these
parameters we see that what we have to show is the following: let H be
the function on ExA X EA defined by

then the following expression is finite:

In this expression v is summed over E - F, n 1 and n2 are integrated over
the quotient N(F)BN(FA), x is integrated over EA, a is integrated over
the idele group of F and b over the idele class group of F. Clearly one of
the integrations over N(F)BN(FA) is superfluous. Moreover we may
change a into ab. Then a varies in a compact set so we can treat it as a
parameter that we ignore. Finally what we have to prove is the following:
let 4Y be a smooth function of compact support on EA. Then the

following expression is finite:

the summation is for v in E - F and the integration for n is over FB FA
and the integration for b is over the idele class group of F. In (3) we first
integrate for |b|F  Cl/2. We identify E to the sum of 2 copies of F. Then
we get:

This is less than the following expression:

If we combine the sum on 03B2 with the integration on n and then change n
to bn we get:
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which is clearly finite. Now we integrate over |b|F &#x3E; Cl/2 in (3). We get:

But this is majorized by the sum of the following 2 terms:

The term (5.ii) is itself majorized by

in the right hand side n is integrated over FA. After changing n to bn we
finally get

which is clearly finite. As for (5.i) by Poisson summation formula it is

equal to

This in turn is less than

which is clearly finite. This concludes the proof of lemma (1).

We now compute the integral of the difference (6.2.5.i)-(6.2.4.i). We
proceed formally. We let H be the function on EÂ X EA defined by:
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Then the integral of the difference (6.2.5.i)-(6.2.4.i) is equal to:

The set in which the variables are is the same as before; in particular v is
in E - F. We change a into ab and then, for convenience, b into b-1.
We get:

where we have set:

In (8) we break up the integral over b into two pièces : |b| &#x3E; 1 and 1 b  1.

For the piece 1 b  1 we remark that |b|-1F &#x3E; C-1/22 &#x3E; 1 implies |b|F  1.
We also use a simple consequence of the Poisson summation formula:

v E E - F, x E EA, n E FB FA on the left; v~ F-~, n~ FA on the right.
This supposes that BfiE is so chosen that its restriction to FA is trivial.
Thus (8) can be expressed as a sum:

Now we write We set
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and let 03A8 denote the Fourier transform of IF as a Schwartz-Bruhat
function on F,. We see at last that the integral of the difference

(6.2.5.i)-(6.2.4.i) is given by the following expression:

Recall that the Tate integral, or rather its analytic continuation, has a
pole at s = 1:

Furthemore recall that co(%P) vanishes if ’1’ is a product of local

components %P, and there are at least 2 places v of F such that

The expression (13) is nothing but

a constant.

We are now within reach of our goal in this subsection:

(14) LEMMA: The integral of the difference (6.2.5.i)-(6.2.4.i) is a linear

function of log C2. If condition (6.1.1)) is satisfied the constant term
vanishes.

PROOF OF (14): The function NF introduced in (12) is a product of local
functions over all places of F and we need only verify that for v in X the
integral of the local component vanishes. Call again vl and v 2 the two

places of E above v. Then, with obvious notations:

Recalling the definition of H (cf. (6) above) we see this is the integral
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over kl, k2 in Ku, a in F;;-, x and b in F, of:

This is also the following integral, where g is integrated over G,, :

Recall that huis the convolution product of fvv1 and h,2. This integral is
nothing but:

This is a unipotent orbital integral of h,,. Since the hyperbolic integrals of
h v vanish the above integral vanish too. This concludes the proof of
lemma (13).

(6.4) We now study the difference (6.2.5.ii)-(6.2.4.ii). We start with a
remark. Consider the following function of y e G(FA):

It is invariant on the left under the normalizer of A. In particular call w
the following element of this normalizer:

Then we have:

In particular the difference (6.2.5.ii)-(6.2.4.ii) can be written as the sum
of two terms written below as (l.i) and (l.ii):
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in the first term 03B31, y, ~A(F)BG(F), in the second term 03B31, y2 E P(F)B
G(F), n~ N( EA ); in both terms 03B1~ Ex - FX.

We discuss the integral of each term separately.

(2) LEMMA: The term (l.i) is integrable. Its integral is a linear function of
log c2. Under the assumptions of (6.1.1) the constant term is zero.

PROOF oF (2): We forego the verification of integrability. It does not
differ substantially from the formal computation of the integral that we
now present. When we integrate (l.i) on the product of the quotient
Z(FA)G(F)BG(FA) by itself we can combine the summations on

A(F)BG(F) with the integration to obtain an integral on the product of
Z(FA)A(F)BG(FA) by itself:

We then use the Iwasawa decomposition to compute the integrals in x
and y. We get:

here a is summed over EX - F’, a and b are integrated over the idele
class group of F, x and y over the adeles of F; furthermore

In the above integral we can change a to ab and y to yb. The integral
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In the inner integral we have H(wn)  1. We may assume c2 &#x3E; 1 and

then the range of b is defined by the inequalities c2  H( wN )  |b|E 
c2. Thus after evaluation the inner integral gives us a factor

C’ log2 + C" log H( wn ) where C’ and C" are constants. Thus the in-
tegral of (1.1) can be written as

log H(wn)|a|-1Fd adxdydk1dk2.
We can break up the sum on a into a sum on 03B2 in F’ followed by a sum
on a in (EX- FX)/Fx; furthemore we can change x into x03B2 and then
combine the integration on a with the summation on 03B2 to get an integral
on the idele group of F. After a simple formal manipulation we get:

Using again the Iwasawa decomposition we recombine the integrals on a,
x and k into an integral on Z(FA)BG(FA). So we see that the integral of
(l.i) can be written also as:

We claim that under the assumption of (6.1.1) the second term vanishes.
Indeed, it can alos be written as a double (actually finite) sum over « and
all places u of F of the following integral:

This integral is a product of local integrals and a constant. Since X has
two elements, there is at least one v in X different of u. The correspond-
ing local integral is a factor of (4). We claim that this local integral is
actually zero; our claim will then prove lemma (2). Let v1 and v 2 be the
two places of E above x; let also a, and a2 be the images of a under the
isomorphisms Ev1 ~ Fv and EU2 = Fu. Then our local integral is:
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After a change of variables, this can be written as:

Recall the convolution product h, of fvv1 and fv2. This integral is nothing
but

since a is not in F, al-la2 =1= 1 and this is an hyperbolic orbital integral of
hv. Thus it is zero by assumption.

We now pass to the term (l.ii).

(5) LEMMA: The term (1.ii) is integrable over the product of the quotient
Z(FA)G(F)BG(FA) by itself. Its integral is zero.

PROOF oF (5): Consider the first term in the difference (l.ii). It can also
be written as follows:

Since a is not in F every element of E can be written as a sum

03B1-1v1+v2, where v 1 and v2 are in F. Thus the first term in the
difference (l.ii) can also be written in the form:

As a consequence the difference (l.ii) can now be written as a double
sum

where we have set:
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To show that (l.ii) is integrable it is therefore enough to show that F is
integrable over the product of Z(FA)P(F)BG(FA) by itself. We use the
Iwasawa decomposition. To show integrability we treat the variables in
the maximal compact as parameters that we ignore. Setting

we see that we have to prove the following expression is finite:

We may change a to ab to get

Now a- la stays in a fixed compact set. Hence the module of a stays in a
compact set of R . This implies that a stays in a relatively compact set;
therefore a stays in a compact set, hence in fact in a finite set. Thus our
assertion on convergence will be proved if we show that the following
expression is finite:

In this expression a is some element of E - F, jn is summed over E, z is
integrated over E and xl, x2 over FBFA. By Poisson summation formula
this is also:

where jn is now in EX. This is majorized by

This is clearly finite.
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It remains to prove that the integral of (l.ii) over the product of
Z(FA)G(F)BG(FA) by itself is zero. We compute it as the integral of (6)
over the product of Z(FA)P(F)BG(FA) by itself. Setting now instead of
(7)

we get for our integral an analogue of (8) and then (9):

However this is also:

Since a is not in F the map (xl, x2) H a-lxl + X2 is a bijection of F2
onto E. So the sum on jn in E and the integrations for xl and x2 can be
combined to give an integration on E, and this expression is zero.

(6.5) We may summarize the results of this section as follows:

PROPOSITION: If CI is sufficiently large then Tc11Tc22K is independent of cl;
it is integrable over the product of Z(FA)G(F)BG(FA) by itself. Fur-

themore its integral is a linear function in log c2 whose constant term
vanishes if (6.1.1) is satisfied, plus the integral of Ke plus the integral of
KA .

Indeed this integral is the sum of the integral of Ke, Ks, the difference
(6.2.5.i)-(6.2.4.i), the term (6.4.1.i) and the term (6.4.1.ii). Our assertion
follows then from lemmas (6.3.1), (6.3.14), (6.4.2), (6.4.5) and (6.2.6).

7. Local preliminaries

(7.1) In order to study the truncation of the kernel Keis we need some
information on local " intertwining operators" and certain local integrals,
not all of which is available. This information is reviewed or presented in
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this section. Accordingly, in this section the field F is local and G is the
group GL(2) regarded as an F-group.

(7.2) Let X be a character of (module one) of F’. We denote by H(s, ~)
the space of functions h on G(F) such that:

which are square integrable on K the standard maximal compact sub-
group of G(F). We also denote by p(s, ~) the representation of G(F)
on 0-0 (s, ~) by right shifts. We may regard the collection of the spaces
H(s, x ) as a fiber bundle of base C. We set H(~) = H(-1/2, ~). If h is
in that space we define a section of our fiber bundle by:

The fiber bundle is trivial and sections obtained in this way will be called
constant. We may identify H(s, x ) with M(~) and regard p(s, ~) as
operating on H(~). On the product H(~) H(~) we define a bilinear
form:

then:

Similarly on the product H(~) H(~) we define a sesquilinear form:

then:

In particular when s is purely imaginary the representation 03C1(s, ~) is
unitary. As usual we define the intertwining operator M(s, x ) as an

operator from H(~) to H(~) by
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the integral converges for Re s &#x3E; 0 but extends meromorphically to the
whole complex plane. We may also regard M(s, ~) as an operator from
H(s, ~) to H(-s, ~). We define also a "normalized intertwining oper-
ator" R ( s, x ) by

For our purposes it is convenient to use a description of these operators
in terms of the Whittaker modele (Cf. [F.S.]): accordingly let W(s, x) be
the map from H(x) to the Whittaker modele of the representation
03C1(s, ~); it is defined by

The integral converges for Re s &#x3E; 0 but extends holomorphically to the
whole complex plane. In particular we have:

If Re s = 0 the integral on the right hand side can be interpreted as the
Fourier transform of the square integrable function x~f[wn(x)]. In
particular the scalar product (3) can be computed as

where W and W’ are the images of h and h’ under W(s, x ) and
W( - s, ~) respectively and c is a constant. Similarly, the scalar product
(4) can be computed as

where W and W’ are the images of h and h’ under W(s, ~). This being
so we have the following result:

(11) LEMMA: With the previous notatons for h in H (s, ~) we have:
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PROOF oF (11): It is easy to see that a constant section can be represented
by an integral:

where 4Y is a Schwartz-Bruhat function with compact support contained
in the orbit (0, 1)G(F). Then

After a change of variables this can be written as

where

On the other hand if we apply the intertwining operator to h ( g, s ) we
obtain:

We can change x to xt-l; if we introduce the Fourier transform of 4J
defined by:

and use the local functional equation of the Tate integral we get:

where C is the factor in the right hand side of the lemma’s formula. Next
we find:

where
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If we change t to t-’ and apply Fourier inversion formula our result
follows.

(7.3) If now we substitute R to M in lemma (7.2.11) we find:

The properties of the normalized intertwining operator are now easily
established:

We will need also the dependence of R(s, X ) h on s, for h in H(~).

(6) LEMMA: Suppose h is a K-finite element of H(~). Then for k in K,
R ( s, ~)h(k) is an elementary function of s, without singularity on the line
Re s = 0.

SKETCH OF PROOF OF (6): By an elementary function of s we mean a sum
of rational functions of s times an exponential if F is Archimedean and a
rational fraction in q-’ if F is non Archimedean with a residual field of q
elements. Now a constant K-finite section can also be represented by an
integral:

where Q is an elementary function of s. Here, if F is Archimedean the
function is a standard Schwartz function: that is, if F = R, it has the

form 03A6(x, y) = P(x, y) exp(-03C0(x2 + y2)), and if F = C, it has the form
03A6(x,y)=P(x,x,y,)exp(-203C0(xx-+yy)), where P is a polynomial.
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Applying the normalized intertwining operator we find

If F is Archimedean 4) is still a standard Schwartz function and our
assertion follows from the properties of the Tate integral.

We also recall the following improvement on Lemma (6) for functions
invariants under K:

(9) LEMMA: Suppose that h(k) = 1 for all k in K. Suppose also that F is
non Archimedean, the order 03C8 of is zero and X is unramified. Then

R(s, X)h(k) = 1 for all k.

The proof is similar to the proof of lemma (6).

(7.4) We now change our notations: E is a quadratic extension of F and
~ a character of EX, accordingly p(s, ~) is now a representation of
G(E). We will be interested in linear forms on the space of smooth
vectors in H(X) (or H(s, ~)) which are invariant under G ( F ) operating
via the representation p(s, ~). Suppose first the restriction of ~ to FX is
trivial and s = 0. Then the restriction of a smooth function in H(s, ~) to
G( F ) transforms on the left according to the module of the group P( F );
therefore the integral of a such function on the group K defines a linear
form with this invariant property. What we want to establish in this

section is the following result:

(1) LEMMA: With the above notations, for any smooth vector h in H(~) we
have:

PROOF OF (1): Once more it is convenient to use the Whittaker modele.
As usual Bfi F is a non trivial additive character of F ; we choose a non
trivial additive character of E whose restriction to F is trivial. For
instance we write E=F[/r] ] and then we take 03C8E(x)=03C8F[(x03C3-
x)/2~2]. We first establish the existence of a constant c such that, for
any h,
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where W is the image of h under W(O, ). There is a constant c such that:

On the other hand we have:

integrating over F we find:

Our assertion follows now from Fourier inversion formula. In view of
formula (6.3.1) we have now only to establish the following lemma:

(4) LEMMA: Suppose X is a character of EX trivial on F’. We have:

PROOF OF (4): If F = R, E = C, the character X has the form

and the formula is checked at once. Suppose F is non Archimedean. If
X 2 is ramified both L-factors are equal to one and our assertion is trivial.
Suppose x2 is unramified. If xF is a uniformizer for F we have

~(xF) = 1. Now either xF is a uniformizer for E or the square of a

uniformizer. Thus if ~E is a uniformizer for E we have ~2(xE) = 1. In
any case ~2 is trivial and our assertion follows.

(7.5) We continue with the notations of (7.4). This time we assume that X
is a character of E  invariant under a where Gal(E/F) = (1, 03C3}. We
first need a description of the double coset space P(E)BG(E)/G(F).

(1) LEMMA: We have a disjoint union

Furthemore the algebra L = 03B3-1R(E)03B3 rl M(2, F) is an algebra of degree
2 on F which is F-isomorphic to E. Finally if e(l) and e’(1) are the two
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eigenvalues of yly -1 then 1 ~ e(l) and 1 ~ e’(1) are the two isomorphisms
of L onto E.

PROOF oF (1): Recall that R is the algebra of triangular matrices. We will
prove the corresponding assertion for the cosets G(F)BG(E)/P(E). We
let G operates on the right on the vector space of column vectors of
dimension 2. We denote by {e, e’) the canonical basis. The group P( E )
is the fixator of the line Ee. We let jn be any element of E - F and then
set

Let h be an element of G(E) and D the line hEe, c its "slope". If c is
finite this means that D contains the vector e + ce’. Suppose c is in F

(resp. infinite). Then there is g in G(F) such that e + ce’ = ge (resp.
e’ = ge ) and then D = gEe. Suppose c is not in F. Then c = p + q03BC for
some p and q in F and

Hence D = gXEe. This already proves the first assertion of the lemma.
To prove the second assertion we remark that if g is in L then

gÀe = m(g)03BBe, with m ( g ) in E. Furthemore ge = ( p + q03BC)e + ( r + s03BC)e’
if g = Mat[ p, q, r, s ] so m(g) cannot be zero unless g is. Hence g -
m ( g) is an injective morphism from L to E. Since L is not reduced to F
it is indeed isomorphic to E. Finally it is clear that e and e’ are

F-morphisms of L into E. Since L has some non scalar elements e and
e’ are distinct and we are done.

(7.6) Coming back to our goal we let X be a character of EX invariant
under a. If h is a smooth function of H(~) then the function g~h(03BBg, s )
on G(F) is invariant on the left under ZA Thus we are led to set:

The integral converges only if Re s &#x3E; 0 and we need to show that it has

analytic continuation. One way is to use once more the Whittaker

modele; we sketch a proof. We are going to show there is a constant c(s)
such that

if W corresponds to h. Recall that W is related to h by the following
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formula:

Now X has the form 03BCoN(E/F) where 03BC is a character of F’. Hence the
restriction of X to F’ is ¡.t2. Integrating over F’ we find:

Using the Tate functional equation we find this is

Of course we should check that the functions are sufficiently smooth to
allow this. But this is not hard. Now the integral on the right can be
recognized as being

Since G(F)=LXP(F) with P(F)~L =F , this integral is propor-
tional to the integral of h(Xg, s ) over L BG(F) and we are done with:

This gives the analytic properties of I(s, ~). There is another way to
obtain these properties. We take:

Next we use once more the device of representing h ( g, s ) in the form
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where 0 is a Schwartz-Bruhat function in two variables and Q an
elementary function. If t = a + b/Ù then

and, for g in G ( F ), the above integral for h(03BBg, s ) can be written as an
integral on L:

Therefore the integral on L BG(F) can combined with this integral to
give an integral on G(F):

We can use the Iwasawa decomposition on G(F) to compute this

integral. We find:

After integrating over x and k the resulting function of a and b is
Schwartz Bruhat and the integral is a double Tate integral. In particular
we see that for Res &#x3E; 0 all our integrals converge. Furthemore, as a
function of s, this integral has the form:

where Q’ is another elementary function of s and q the quadratic
character attached to the extension E of F. We are led to define a
" normalized version" of the linear form I(s, x ). It will be noted J(s, x ).
It is defined by:
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The advantage of J is that it is defined for all s with Re s = 0. In

contrast if the restriction of X to F’ is trivial then 03BC2 = 1 and I(s, ~)
has a pole at s = 0. Furthemore the analytic dependence of J(s, ~) on s
is simple:

(13) LEMMA: Suppose h is a constant section. Then, if h is K-finite,
J(s, x)h is an elementary function of s. In particular if h = 1 on K, F is
non Archimedean, E is the quadratic unramified extension of F, X is

unramified and 03C8F has order 0 then J( s, ~)h = vol(KF) for all s.

This follows at once from the above computations.

Finally we remark that if the restriction of X to F’ is trivial then there
exists a constant c such that:

This follows at once from formulas (7.4.2) and (7.6.2).

§8. Truncation of an Eisenstein series

(8.1) We will need to study the truncation of the kernel Keis and the
integral of its truncation over the product of Z(FA)G(F)BG(FA) by
itself. To that end we first recall a few facts on Eisenstein series; we
study their truncation and the integral of their truncation over

Z(FA )G(F)BG(FA).
As usual we shall consider functions on G(EA) invariant under the

centre Z(EA). For a character X of the idele class group of E and a
complex number s we let H(s, ~) be the space of functions h on G(EA)
such that

and whose restriction to K is square integrable. We also denote by
p(s, ~) the representation of G(EA) on H(s, y). The union of the sets
H(s, y) over s is thus a holomorphic fiber bundle of base C. This fiber
bundle is trivial; just as in the local case we define H(03B3) and for h in
H(~) the section h ( g, s ) whose restriction to K is independent of s. If h
is any section of this bundle we form an Eisenstein series:

This series converges for Re s &#x3E; 1/2 and has analytic continuation to the
whole complew plane. If h is in H(~) the constant term of E along
N(EA) has the form
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where M( s, ~) is the operator from H(~) to H(~) defined by

The integral converges also for Re(s) &#x3E; 1/2 but M(s, ~) extends to the
whole complex plane. Moreover we have

In particular M(s, X) is a unitary operator on the line Re s = 0. We also
introduce a "normalized intertwining operator":

We need some information on M(O, ~). Suppose ~2 = 1. Then M(O, ~)
is an operator commuting with the representation p (o, ~) on H(~). Since
this representation is irreducible the operator is a scalar. By (5) this scalar
is + 1 or -1. In fact:

(6) LEMMA:

This is standard (Cf. [R.L.] for instance). Indeed, since L(s, 1) has a
pole at s = 1, the ratio L (1 + 2s, ~2)/L(1 - 2s, ~2) takes the value -1
at s = 0. Thus it suffices to prove that R(0, ~) = 1. This follows from the
fact that R(0, ~v) = 1 for all v (Cf. (7.3.3)). If ~2 ~ 1 then M(O, ~) is no
longer an operator intertwinning a representation with itself. We have
however the following result:

(7) LEMMA: If x2 =1= 1 but the restriction of X to FÂ is trivial we have for
any element h of n-D(x):

both integral are over KF ( = K rl G(FA )).

PROOF OF (7) Since ~2 is not trivial L (1 + 2s, X 2 ) is holomorphic at
s = 0. We claim that L(1, ~2) = L(1, ~2). As a matter of fact we claim
that
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Indeed it suffices to prove this for Re s » 0. Then both sides are product
over all places v of F of local factors. If v is a place of F which does not
split and u the corresponding place of E the local factors on both sides
are L(s, ~2u) and L(s, -2 ) respectively. They are equal because the
restriction of ~ to F v is trivial (Lemma (7.4.4)). On the other hand if v
splits into vl and v2 the corresponding factors are

and they are trivially equal because ~v1 = Xv2. Hence M(o, ~) = R(0, ~).
Now R ( s, x ) is a product over all places u of E of local "normalized
intertwining operators" described in section 7. If we assume that h is the
product of local components h u, the integrals on both sides of (8) are
product over all places v of F of local analogous integrals and a constant
factor the same on both sides. So it suffices to prove the local analogue of
(8) for all places v of F. If v is a place of F which splits into v1 and v2
in E then the local analogue is:

Since the restriction of ~ to FÂ is trivial the character ~v1 is actually the
inverse of the character ~v2 and this follows from (7.3.4). If v does not
split and u is the unique place of E above v then the local equality to be
proved reads:

Now the restriction of Xv to Fux is trivial and this has been proved in
(7.4.1). This concludes the proof of lemma (7).

(8.2) We need some estimates on the Eisenstein series. Denote by Iigii a
" norm function" on the group G(EA): it is the product of the norms of
the local components gv divided by Idet gl. It is known that, if Q is a

compact set of C which does not contain any pole of E(g, s, h ) and X
an element of the envelopping algebra at infinity, then there are con-
stants C and N such that |03C1(X)E(g, s, h)|  C~g~N, for s in 2. We
have denoted by 03C1(X) the left invariant operator associated to X. It
follows from this that the difference of E and its constant term is
bounded (in fact rapidly decreasing) on any Siegel set. Consider now our
truncated Eisenstein series TcE(g, s, h ). There is a Siegel set S of G ( FA )
on which it is equal to the difference between the Eisenstein series and its
constant term (cf. Lemma (6.1.4)). Moreover the quotient Z(FA)G(F)B
G ( FA ) is the union of a compact set and the image of S. We conclude
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that for a given h and s in a given compact set of C we have a uniform
estimate ITCE(g, s, h)1  C. In fact we could obtain much better esti-

mates but this will not be needed. We will need however majorizations
uniform with respect to s when s is purely imaginary:

(1) LEMMA: Given h there is a polynomial P(t) such that

for all real t.

PROOF oF LEMMA (1): Just as before it suffices to establish majorizations
of the form

where P and N may depend on X. To see that let us introduce for any
Schwartz-Bruhat function (D in two variables the action of our fibre

bundle defined by:

On the right we have a Tate integral or rather its analytic continuation.
There is in fact a finite set T of places of E containing all places at
infinity and a function such that

where LT( s, ~2) stands for the product of the L(s, ~u) over all u not in
T. It is classical fact that 1/LT(1 + 2s, ~2) is at most of polynomial
growth on the line Re(s) = 0. Thus it suffices to find majorizations for
the Eisenstein series E(g, it, F03A6) and its left invariant derivatives on the
group G(EA). However we may also write this Eisenstein series as the
following expression:

Poisson summation formula gives the analytic continuation of this ex-
pression and, at the same time, the required majorizations.

(8.3) We now study the integral of a truncated Eisenstein series over the
quotient Z(FA)G(F)BG(FA). The description of the double coset space
P(E)BG(F)/G(F) given in Lemma (7.5.1) applies: we have a disjoint
union
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Furthemore the algebra L=03BB-1R(E)03BB~M(2, F) is an algebra of de-
gree 2 on F which is F-isomorphic to E.

Consider now the integral

From the majorizations obtained in (2) we see that the integral converges
and represents a meromorphic function of s, without pole on the line
Re s = 0. We are interested in this integral for s purely imaginary;
however in order to compute it we assume Re( s ) &#x3E; 1/2 and then analyti-
cally continue our answer. We have

The first sum is over P(E)BG(E), the second sum over P(F)BG(F).
Using the description of P(E)BG(E)/G(F) we may rewrite the first

sum as a sum on L BG(F) and a sum on P(F)BG(F). In a precise way
we get:

In the first sum, t varies in L BG(F); in the second sum y varies over
P(F)BG(F). Taking in account the formula for EN we may rewrite this
as

Combining summation and integration in the usual way we get:
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the integrals over x in L Z(FA)BG(FA) and y in Z(FA)P(F)BG(FA).
Using the Iwasawa decomposition we compute integral (4.ii) as

As usual we denote by F1 the group of ideles of norm 1 and by F+~ the

group of ideles whose finite components are 1 and whose infinite

components are equal to some fixed positive number. Then FÂ is the

direct product of F 1 and F+~. Similarly FÂ is the product of E1 and E+~
and when we imbed FÂ into EÂ F+~ goes to E+~. We choose the character
X to be trivial on E+~ so that X is trivial on F2 if and only if it is trivial
on FÂ . Our Haar measure on FÂ is the product of a Haar measure on
F 1 and the measure dt/t where t = |a|. Then the above integral for a is

zero unless the restriction of X to FÂ is trivial in which case its value is:

If we set 03B4(~) = vol(F1/F ) if the restriction of X to FÂ is trivial and
zero otherwise we see that (8.3.4.ii) is equal to

Similarly, using the fact that M(s, 03BB)h(g, -s) lies in H(-s, 03BB) we
calculate that (8.3.4.iii) is equal to:

Actually 03B4(03BB) = 1 but we will not have to use this fact. We write (8.3.4.i)
as

Next we recall that 03BB-1103BB is a triangular matrix whose eigenvalues are
e(1) and e’(1) where 1 ~ e(1) and 1 H e’(1) are the two isomorphisms of L
onto E. Then in the above integral the inner integral takes the following
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form:

This is zero unless ~03C3-1 = 1, that is unless X has the form JLoN(E/F) for
some character it of FÂ . If we let 03B5(03BB) = vol( FÂ E BE A) if Xo-1 = 1 and
zero otherwise then (8.3.4.i) is

In fact 03B5(~) = 2. We need to study the analytic properties of this function
of s. We proceed as in the local case (Cf. (7.6)). We take:

Next we use the standard device of representing h ( g, s ) in the form

where 9D is a Schwartz-Bruhat function in two variables and Q an
elementary function, that is a linear combinations of products of rational
and exponential functions of s ; then

and the above integral for g in G(F) can be written as an integral on
LxA:

Therefore the integral on LÂ B G ( FA ) can be combined with this integral
to give an integral on G(FA):

We can use the Iwasawa decomposition on G ( FA ) to compute this
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integral. We find:

After integrating over x and k the resulting function of a and b is

Schwartz-Bruhat and the integral is a double Tate integral. In particular
we see that as a function of s this has the form:

where Q’ is another elementary function of s and q the quadratic
character attached to the extension E of F. This also shows that the

original integral converges for Re s &#x3E; 1/2. Furthemore, just as in the
local case, this suggests introducing a normalized version of the integral.
In a precise way if h is in H(~) and Xs-1 = 1 we will set

where ~ = 03BCoN(E/F). It is clear that J(s, ~)h, for h K-finite is an

elementary function of s without singularity on the line Re s = 0.
(8.4) We summarize the results obtained so far:

PROPOSITION: The integral of E(g, h, s) over Z(F)G(F)BG(F) is the

sum of the following:

Furthemore

and J(s, x ) h is an elementary function of s if h is K-finite.
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Because the Eisenstein series has no pole on the line Re s = 0 and its
truncation is integrable the sum of (1), (2) and (3) is actually holomor-
phic at s = 0. It will be useful to make this statement more precise. To
begin with we make the following elementary remark about the character
X:

(4) LEMMA: Consider the following conditions:
(i) Xo-1 = 1;
(ii) the restriction of X to Fx is trivial;

(iii) the restriction of X to Fx is the quadratic character q attached to
the extension E;

(iv) X 2 = 1.
Then: (iv) (i) and [(ii) or (iii)]

PROOF oF (4): Suppose X 2 = 1. If X is actually the trivial character then
(i) and (ii) are satisfied. Suppose not and let D be the quadratic
extension of E corresponding to X. Then D is a Galois extension of F of
degree 4 hence Abelian. By class field theory we may view X as a

character of Gal(D/E). Assertion (i) amounts to say that if a’ is an
element of Gal( D/F ) whose image in Gal( E/F ) is a then

Since Gal(D/F) is Abelian this is clear. This being so let us write X in
the form 03BCoN(E/F). By (iv) we see that 03BC2 is trivial on the image of
N(E/F). Thus 03BC2 is either the character trivial or the character q. Since
the restriction of ~ to FÂ is 03BC2, we see that either (ii) or (iii) holds. Now
suppose (i) is satisfied. Write therefore X in the form 03BCoN(E/F). Again
the restriction of ~ to FÂ is 03BC2. If (ii) is satisfied we find 03BC2 = 1. A
fortiori ~2 = 03BC2oN(E/F) = 1. If (iii) is satisfied we find 03BC2 = ~. A fortiori
~2 = 03BCoN(E/F) = 1. So in any case ~2 = 1.

Let us go back now to the sum of the three terms in Proposition (8.4).
Suppose first that the restriction of X to FÂ is trivial but ~03C3-1 ~ 1. Then
the term (3) vanishes. Furthemore ~2~1 otherwise by the lemma ~03C3-1
= 1. Accordingly by (8.1.7):

and the residues of the terms (1) and (2) at s = 0 do cancell. Suppose now
that Xo-1 = 1 but the restriction of X to FÂ is not trivial. Then the terms

(1) and (2) vanish. Let us write X in the form X = 03BCoN(E/F) so that the
restriction of X to FÂ is ¡.t2. Now JU2 cannot be trivial otherwise the
restriction of X to F A would be trivial. Thus L (2s, 03BC2) is holomorphic at
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s = 0 and (3) is too. Note that if ~2 = 1 then, by the lemma, 03BC2~ = 1 and
1/L(2s + 1, 03BC2~) has a zero at s = 0; hence (3) vanishes at s = 0. Finally
suppose that the restriction of ~ to FÂ is trivial and ~03C3-1 = 1. Then
X 2 = 1 and writing X = 03BCoN(E/F) we have 03BC2 = 1. Then M(O, ~)= -1
and (1) and (2) have the same residue at s = 0. Doubling this residue we
find then

or

where c is the residue of L ( s, 1F) at 0. Of course this relation could be
proved by local means as well (See below).

(8.5) For Re s &#x3E; 1/2 the integral h(03BBg, s)dg converges absolutely.
Assume that h is a product over all places u of E of local components h u
belonging to H(~u); of course for almost all place u, hu(ku) = 1 for all
ku. Then, for Re s &#x3E; 1/2, the integral can be written as a product of local
integrals and a constant factor; the product is over all places of F. We
now describe the factor attached to a place v of F. Suppose first that v
does not split in the extension and let u be the unique place of E above
v. Then the local component is just the local integral

Suppose now that v splits into v1 and v 2 in the quadratic extension.
Thus we have isomorphisms Gv1 ~ G, and Gv2 ~ Gv. Let À1 1 and 03BB2 be
the images of À under these two isomorphisms. The local component is
the following integral over Lf B Gu:

It will be convenient to take

Note that hv1 and hv2 are invariant under N(Fv). Thus the local integral
may also be written as:



297

where

Observe that

for

Hence 03BC-11L03BC2 = A. After changing f to JL21g we get therefore an

integral over AvBGv:

because 03BC103BC-12 = diag(-1/2~, + 2~)w. Here c, is a constant. There is
a question of which measures we are using. We regard L x and A as

algebraic groups over F and choose invariant differential forms on them.
Then for any place v of F we inherit the Tamagawa measure on L and
A. They are so defined that that for almost all v the measure of the
maximal compact subgroup is one. Thus, for almost all v, the isomor-

phism 1 ~ 03BC-12103BC2 is compatible with our choice of measures, that is,
cv = 1.
Now because ~03C3-1 = 1 we have ~v1 = ~v2 = /lu and

In turn, apart from an - factor, this is:

We conclude that apart from a factor CAS, J(s, ~)h is the product over
all places v of F of a factor which is either J(s, x u ) h u or

~R(s, 03BCv)hv1, hv2~.

§9. Truncation of the Eisenstein kernel

(9.1) In this section we deal with the integral of the truncation of
Keis(x, y). We shall prove that the following limit exists:
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The resulting function of C2 has an asymptotic expansion of the form
A log C2 + B + 0(1) as C2 ~ + oo, where A, B are constants. We shall
prove that, under the assumptions of (6.1.1), B = 0.
We recall the formula for Keis (cf. [J.A.] for instance). For each

character X of E’IE’ trivial on E+~, we choose an orthonormal basis
h a of H~). Then:

The first sum is over all x; however for a given f almost all terms are
zero. Similarly, the second sum is for all pairs ( a, 03B2); however for a given
f almost all terms are zero. The integral converges uniformly over
compacts set of G(EA). In particular to compute the truncation of our
kernel, we may "bring the truncation operator under the integral sign":

Since Kcusp(x, y ) is integrable and Tc,T2 C2 K, Tc11Tc22Ksp are integrable, it
is clear that Tc11Tc22Keis is also integrable. Moreover |TcE(x, h, s)| is
bounded independently of x by a polynomial in Im( s ) on the line

Re(s) = 0 (Cf. (8.2)). In particular we may interchange the integral in x
and y with the summations and the integration in s:

(9.2) To evaluate the limit of this as cl tends to infinity we will use the
following elementary lemmas which are recalled without proof:
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(1) LEMMA: Syppose F is a Schwartz function on R. Then :

We remark that the integral is actually an improper integral. Furthemore
this function of x tends rapidly toward its limit. Thus:

(3) LEMMA: If F is a Schwartz function on R and F(O) = 0 then

Again this is an equality of improper integrals.

We will need to show that the functions we are dealing with are indeed
Schwartz functions. We proceed to that end via a series of lemmas.

(4) LEMMA: For a fixed and 1 t H + cc we have:

PROOF OF (4): For n = 1 this is a classical estimate on the function

03C8(z)= 0393’(z)/0393(z). Suppose n &#x3E; 1; then the n-th derivative of 03C8 can be
computed as the sum of 0393(m)/0393 and products of the form ±03A00393(i)/0393
where the orders i are stricly less than n and their sum is n. Our assertion
follows then by induction on n from the classical estimate 03C8(n)(a+it)=
O(1).

Next we recall without proof two estimates on L-functions.

(5) LEMMA: Let X be an idele class character of a number field. Denote by
L~(s, x ) the product of the L(s, Xv) for v infinite and by L~(s, ~) the
product of the L ( s, ~v) for v finite. Then, for |t| large, we have

On the other hand, there is some N &#x3E; 0 such that for |t| large:

We are now in position to state the results that we need:
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(6) LEMMA: Let X and 11 be idele class characters of a number field F.
Assume 11 is trivial or quadratic. Then any derivative of the ratio

is at most of polynomial growth on the line Re s = 0.

PROOF OF (6): Our ratio is the product of an exponential factor,

It follôws from lemma (5) that any derivative of the first ratio is at most
of polynomial growth on the line Re s = 0. So it suffices to prove the
second ratio has the same property. In turn it is a product of factors of
the form:

where a and c are real. All we have to show therefore is that any
derivative of a function f1/f2 is at most of polynomial growth on the
line Re s = 0. By Stirling formula this is true of the function itself. On the
other hand any derivative of rl/r2 is a sum of products: in each product
we have a factor ±1, the factor f1/f2 and factors of the form 0393i(J)/0393i.
Our assertion follows then from Lemma (4).

Then, by Proposition (8.4):

The integral is for k in KF = K ~ G ( FA ). We remind ourselves that when
03B4(~) and 03B5(~) are not zero I(it, ~) has a pole at t = 0 and
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(Cf. section (8.5)). Furthemore in any case 03A6(03B1, u, 0) = 0 (loc. cit.). With
this notation we have:

where

To continue in the expression for G we replace (D(a, u1, t ) by its

expression (2):

We may apply lemma (9.2.1) to (i) and (ii). Indeed FR«( t ) is a linear
combination of products of the form exp(ait)F^(t) where F is a smooth
function of compact support on M. On the other hand

where Q is an elementary function of t (Lemma (7.3.6)). Similarly:
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where Q’ is an elementary functions of s, it an idele class character of F

and q is the quadratic character attached to E (Cf. Prop (8.4)). It follows
from lemma (6) that the derivatives of these functions of t are at most of
polynomial growth. Taking (2) in account we see that the same is true for
the derivatives of 03A6(03B1, u2, t ). We conclude that indeed the functions of t
under the integral sign in (5.i) and (5.ii) are Schwartz functions. Applying
then (9.2.1) we find that the limit of (i) + (ii) as u tends to plus infinity is

Of course this is zero unless the restriction of ~ to FÂ is trivial.

Assuming this to be the case, if ~2 = 1 then M(O, ~) = -Id and this
vanishes. If, on the contrary, X2 =1= 1 then both terms are equal (Cf.
lemma (8.1.6) and (8.1.7)). Set 03B8(~) = 1 if ~2 ~ 1 and zero otherwise.
Then we see that the limit of (i) + (ii) as ul tends to infinity is:

Hence we see that the limit of G(ul, u2, ~, a, /3) as u, tends to infinity
is the sum of (7) and (5.iii). Recall that 03A6(03B2, u2, 0) = 0. So

03A6(03B2, ul , t)/t|t=0 is the derivative d03A6(03B2, U2’ t)/dt at t = 0. To compute
it we use (2). However if (7) is non zero the restriction of X to Fi is
trivial but ~2~1. By lemma (8.4.4) 03B5(~) = 0 and the last term in (2)
vanishes. Thus our derivative is actually:

On the other hand, since ~2 ~ 1, we have by lemma (8.1.7)

So (7) under the conditions 03B4(~) ~ 0 and 03B8(~) = 1 is the sum of
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At this point we have evaluated our limit as CI tends to infinity. We state
this as a lemma:

(10) LEMMA: The limit of the integral of Tc11Tc22Keis as CI tends to infinity
exists. It is the sum over all X, a, 8 of:

and a term A log c2.

(9.4) We now obtain an asymptotic expansion for c2 large. We remark
that in (9.3.10.ii) the factor 03A6(03B2, u2, t ) has a zero at t = 0 while the
factor tI(it, ~)h03B1 has no pole at t = 0. Furthemore the product of these
functions by F03B203B1(t) is a Schwartz function. Thus we may use the

integration by parts formula given in Lemma (9.2.2). We replace
03A6(03B2, U2’ t ) by its expression from (9.3.2). We obtain then for (9.3.10.ii):
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We can apply lemma (9.2.1) to (3) and (6). We get that each term has the
form A log C2 + 0(1). So we can ignore these terms. On the other hand
we can use the same lemma to find the limit of (2), (4) and (5). We get:

Again (7) and (8) are zero unless ~03C3-1 = 1 and the restriction of X to FÂ
is trivial. Then ~2 = 1 by lemma (8.4.4) and their sum is zero because
M(O, ~)= -Id (lemma (8.1.6)). Thus (7) + (8) is zero in any case. Let us
look at (9). Again it is zero unless ~03C3-1 = 1 and the restriction of X to
FÂ is trivial. Then we find by (8.4.6):

and (9) becomes

(9.4) We summarize our results in a proposition:

PROPOSITION: The integral of Tc11Tc22Keis over the product of
Z(FA)G(F)BG(FA) by itself has a limit as cl tends to infinity. The

resulting function of C2 is the sum of a term A log C2, a term o (1) and the
sum over X, a, /3 of the following terms:
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We remark that in (2) and (3) the notation is somewhat misleading: both
terms vanish uniess 03B4(~)=0. If 03B4(~)~0 then by lemma (8.4.4) either
O(~) = 0 or 03B5(~) = 0 (exclusive or). Thus either (2) or (3) or both vanish.

(9.5) We now prove that, under the assumptions of (6.6.1), given X, the
sum over 03B1, 03B2 of (1) (resp. (2), (3)) in Prop. (9.4) is zero. We start with (2)
and (3). In view of the above remarks what we have to prove is this:

given X whose restriction to FÂ is trivial the following function of t has
a zero of order 2 at t = 0:

Since M(i t, 03B3)=m(t)R(it, x ) where m is a scalar function which is

regular at t = 0, it suffices to prove this assertion for the following
function:

Of course we have a finite expansion:

Apllying the linear form defined by integration over KF to this identity
we see that our function can be written as:

The space H(~) may be regarded as the tensor product over all places u
of E of the local analogue spaces H(~u). Similarly the operator R(s, ~)
may be identified with the tensor product of the local normalized

intertwining operators R(s, ~u). Furthemore we may pick up an ortho-
normal basis of H(~u) for each u and take for basis of H(~) the tensor
products of the elements of the local bases. Accordingly the expression
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(3) will be, apart from a constant factor, a product over all places v of F
of local analogue expressions. What we have to see is that the factor

attached to a place v of X is zero at t = 0. The expression for this factor
is the following:

Since the restriction of x to FÂ is trivial we have ~v1 = ~v2. By (7.3.4)
for t = 0 the above expression can be written as:

Here hf3I denotes an orthonormal basis of H(~v1) and h an orthonormal
basis of H(~v2). We remark that h H h is an antilinear isometric map of
H(~v1) onto H(~v2). Thus we may assume that the bases are indexed by
the same set: h103B1 and h203B1 will be the bases. More to the point we may
assume that h103B1 = h203B1. Since ~h, h’~ = ~h, h’) we have then:

Thus our sum reduces to

Since the map h - h transforms the representation p (0, ~v1) into

p(0, Xv2) we get:

where as usual huis the convolution of fvv2 and f,,. Since the hyperbolic
integrals of h v vanish this vanishes too.

(9.6) We now examine the term (1) in Proposition (9.4). We want to
prove that given X such tht 03B5(~) ~ 0 the following function of t is zero,
provided the conditions of (6.1.1) are satisfied:
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We may assume t = 0 and then ignore the factor t and replace I(it, x ) by
its normalized version J(i t, ~). Furthemore we have the following finite
expansion:

If we apply the linear form J(it, ~) to this we find that the function we
have to deal with can be written as:

We can choose the basis h03B2 as before and then this function will be the
product over all places v of F of factors themselves functions of t (Cf.
(8.5)). It will be enough to show that the factor attached to a place v of X
is zero. Recall that X=JLoN(E/F) and ~v1 = ~v2 = 03BCv. We may there-
fore assume that the bases for H(Xv,) and H(~v2) are the same. By (8.5)
this factor is a multiple of the following function:

This is also:

Now we appeal to the following summation formula where a and b are
elements of H(03BCv):

We find for our factor:

Because R (i t, 03BCv) is an intertwining unitary operator this is also:

and this vanishes because the hyperbolic orbital integrals of h v are zero.
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(9.5) We summarize our results:

PROPOSITION: The limit of the integral Tc11Tc22Keis as c, tends to infinity
exists. The resulting function of C2 has the form

Furthermore B = 0 under the assumptions of (6.1.1).

§ 10. Summing up

(10.1) We deal first with the truncation of Ksp then we summarize our
results. Recall that

the sum over all quadratic characters X of the idele class group of E. The
truncation of Ksp is therefore:

where all summations are over P(F)BG(F). When we integrate over the
product of Z(FA)G(F)BG(FA) by itself we find a sum of 4 terms:
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We claim that c, being fixed (2) and (3) tend to 0 as c, tends to infinity.
Let us prove it for (2): (2) is a finite linear combination of integrals of the
forms:

This is zero unless the restriction of ~ to F. is trivial. Then it can be

computed by using the Iwasava decomposition. We find it is a constant
times

Hence the limit of the integral of Tc11Tc22K as c1 tends to infinity exists: it
is equal to (1) + (2). Similarly as c2 tends to infinity the term (2) tends to
0; that is, for c2 large we have the following asymptotic expansion:

(10.2) It is now time to sum up. We have:

The third term is integrable because all others are. On the other hand
since Kcusp is equal to its truncation we have:
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We now let CI tends to infinity. Under the assumptions of (6.6.1) the
functions of c2 obtained from the limit of (5) and (6) have the form
(1) + (2) + A log C2 and A’ log C2 + o(1) respectively. Similarly the limit
of (7) has the form Kspdxdy + 0(1). Comparing the two expressions
for the integral of Kcusp we conclude that (3) vanishes. So we have
established the result which was our goal:

PROPOSITION: Let X be a set of places of F which split in E. Suppose that
X has at least two elements. For v in X let vl and v2 be the two

corresponding places of E and hv the convolution product fvv1 * fU2. Suppose
that for each v in X the hyperbolic orbital integral of hv vanish. Then the
integral of the difference Kr - Keis over the product of Z(FA)G(F)BG(FA)
by itself vanishes.
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