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Introduction

Not enough is known about covering spaces of a projective, non-singular
variety/C of dimension bigger than 1. In this connection, the following
question remains unanswered.

"Is the universal covering space of a projective, nonsingular variety/C
holomorphically convex?."

See [9, Chapter IX] for a discussion of this question. Recall that a
complex manifold X is holomorphically convex if given any sequence of
points XI, ... xn, ... without a limit point, there exists a holomorphic
function f on X such that the sequence f ( xn ) is unbounded. A compact,
complex manifold is clearly holomorphically convex. In this paper, we
will prove the following.

THEOREM: Let S be an irreducible, non-singular, projective surface/C with
an elliptic fibration 7r: S - à. If ’TT has at least one singular fibre which is
not of the type mIo (see §1 for the notation), then any unramified covering
of S is holomorphically convex. If all the singular fibres of 7r are of mIo type,
then the universal covering space of S is holomorphically convex.

We will give an example (cf. Morimoto [7], p. 262) of an abelian
surface (which is actually a product of elliptic curves) having a regular,
unramified cover which is not holomorphically convex. As a corollary of
the theorem, we get the following:

Let S be a projective, irreducible, non-singular elliptic surface/C such
that the elliptic fibration S - à has at least one singular fibre which is
not of the type mlo . Suppose C c S is an irreducible curve with C 2 &#x3E; 0.

Then the image of the fundamental group of the non-singular model of C
has finite index in the fundamental group of S.

In particular if C is rational, then 7r must have at least one singular
fibre not of mIo type and hence ffl(S) is finite. This result has been

conjectured by M. Nori for arbitrary projective, non-singular, irreducible
surface. See [8] for some results about this question.

One result in this paper is that the image I, of the fundamental group
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of a good fibre of an elliptic fibration S ---&#x3E; à (having at least one singular
fibre not of the type mIo ) in 77,(S) is a cyclic group of odd order ( I is
trivial if à = P’). This fact is crucial for the holomorphic convexity of
coverings of S. S Iitaka has described the fundamental group of an
Elliptic Surface in [3]. The extra information about ’TT} (S) given in this
paper supplements litaka’s results.
We would like to thank M. Nori and R.R. Simha for many useful

comments about the problems dealt in this paper.

§1. Notation and preliminaries

For a compact, complex surface S, we will use the following notation.

We will use the definitions of elliptic surface, multiple fibre, multiplicity
of a singular fibre as in K. Kodaira’s fundamental papers [4]. Kodaira
has described the possible singular fibres of an elliptic fibration S --&#x3E; à
where S and à need not be compact. Only possible multiple fibres are of
the type mIb for b = 0, 1, .... Here mIo stands for an elliptic curve
occuring with multiplicity m.

First, let S be an irreducible, projective, non-singular surface/C and
77’

S - à be an elliptic fibration with à a compact Riemann surface of
genus g. Since iT, is a birational invariant and the conclusions about

holomorphic convexity of coverings of S are preserved after blowing up
points on S, we will assume throughout that no fibre of qr contains an
exceptional curve of the 1 st kind.
We will recall some basic results about the neighbourhoods of singular

fibres of 77-. For these, see [5,6]. Let a E à be a point such that ’1T*(a) is a
singular fibre. Choose a small disc D around a in à and let 8 = aD be the
loop going around a once in the counter clock-wise direction. Choose a
point b E aD. Let ’TT-I(D) = U, ’TT-I (b) = E,p E E, U’ = U-F,i: U’ - U
be the inclusion map. Then ’1TI (E)( =:: lL 0153 Z) is a subgroup of 71"1 (U’).

LEMMA A [6]:
(1) If F is not of the type mIh (h &#x3E; 0), then ’1TI(F) = (1), and hence

’TTI(U) = (1), since F is a strong deformation retract of U.
(2) Let F be of the type mIh. Then 3 loops /3, y in E at p and a loop a in

U’ at p such that ’TT# (a) = 8 and fl, y generate 77, (E). ’TTI(U’) is given by
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Further if h &#x3E; 1, then i #( /3) = 1, ’lTI (F) = Z hence ’lTI (U) = Z is gener-
ated by i# (a) and i#(-y). If m = 1, then i#( a) = 1.

If F is of the type mIo, then ’TTI(E) injects into ul (U) which is isomorphic
to Z ED Z.

LEMMA B [5J: Let F be of the type mIh (h &#x3E; 0). Then there is an elliptic
fibration S - à such that F = if*(a) is a singular fibre of type 1 Ih (so, for
h = 0, Ê is a good fibre of S ) and S - Ê is complex-analytically isomorphic
to S -.F. Furthermore, the kernels of the homomorphisms ’TTI(E)  7r,(U)
and qrj ( E) - ’TTICU) are the same, where U = if-I(D).

In Kodaira’s terminology, S is obtained from S by performing a
logarithmic transformation in U.

."

LEMMA C [1]: Let S - à be an elliptic fibration with à and S compact, as
above. Assume r has at least one singular fibre which is not of the type mIo.
Then any torsion, analytic line bundle on S comes from a divisor supported
on the fibres of ’TT. Further, if ’TT has no multiple fibres, then any torsion line
bundle on S is the pull-back of a torsion line bundle on A.

PROOF: This is essentially proved in Dolgacev’s paper [1].

."

LEMMA D: Let S à be as in Lemma C and assume that ’TT has no multiple
fibres. Then Hl ( S, Z) is torsion-free.

PROOF: By Lemma C, any analytic, torsion line bundle L on S is of the
form qr*(£J, where .Pis a torsion line bundle on A. If Hl ( S, ll) has
torsion, then H2(S, Z) also has torsion. From the long exact cohomology
sequence ... - H’(S, W ) -- À&#x3E; H’(S, (9*) - H2(S, Z ) - H2(S, C) - ...
any torsion-element z in H 2 ( S, ll) is the lst chern class of a line bundle
L’, cl ( L’) = z. Suppose nz = 0. Then 3 w e H1 ( S, (9), with À(03BB) = nL’.
Let L" = À(1 /na), then nL’ = nL" in Pic S. But then n ( L ) = 0 where
L = L’ - L". Also cl (L) = cl ( L’) since cl ( L") = 0. But L = ’TT*(.P) where
£fis a torsion-line bundle on A. cI(L) = ’lT*CI(2). But H 2 ( 0, Z) = Z
hence ci( £éJ = 0, so c1 (L) = cl (L) = 0 i.e. z = 0.

§2. Description of «i( S )

Let al’." ,ar be all the points in à for which 7T*(ai) is a singular fibre
with multiplicity m ; &#x3E; 1. Let à’ = à - ( ai, ... , a,,) and S = ’TT-I(’), S’ c
S. For i = 1,... r choose small open discs Di in à around ai (D. n D = 03B8
for i # j). Choose pi in -r (Di) as a base point for Ui = ’TT-I(D;) and
U = ’TT-I(Di). By choosing arcs from po to pi in S’ and conj ugating by
them we obtain isomorphisms ’TTI(S’, p,) c-if ’lTI(S’, Po) under which we are



98

going to identify 7T](S’, p, ) with 7T, (S’, po ). Then 7T](EI, p, ) gets identified
with ’7T](E, PO) where E, is the fibre of 7r through p,. If a,, 03B2, y,, are

chosen in U’ as in Lemma A, we shall continue to denote their images in
’7T](S’,Po) also by the same symbols. We also dispense away with writing
down base points.

S’ 1 A’ is a C °°-fibration, so we have an exact sequence 1 ’7T](E) -

Ir, (S) -ul (A’) - 1. Clearly

is a free group and hence the above sequence splits. Choose lifts x., y,
and al for xj, y; and 8i respectively in 7TI ( S’). We can then consider 7TI ( à’)
as a subgroup of 7TI(S’) generated by x., jy, al, ... , ar.

For a base f 03B2, y} of 7TI (E) and any x E 7TI (,A’), write

For 1  1  s, let F, be a fibre of type mlIh with h, &#x3E;- 1. For s + 1  i  t,
let F be of type m, Io and for t + 1  i  r let F, be a simply-connected
singular fibre. By applying Van-Kampen’s theorem finitely many times,
we obtain ’!T1 (S) as the quotient of ’1T1 (S’) by the following set of

relations:

We are now ready to prove:

THEOREM 1: Let S be an irreducible, projective nonsingular surface /C with
03C0

an elliptic fibration S - à over a compact Riemann surface of genus g &#x3E; 0.
Let I denote the image of rl (E) in r1, (S) where E is a nonsingular fibre.
Then we have an exact sequence

where
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If 7T has at least one singular fibre not of the type mlo, then I is a cyclic
group of odd order; further if g = 0, then I = (e).

PROOF: That we have the exact sequence (*) follows immediately from
the considerations above. If 7T has at least one simply connected singular
fibre F, t + 1  i  r, from relations (iii) it follows that I = (e). Hence
from now on we shall assume that qr has no simply connected fibres, i.e.
r = t.

Let B be the subgroup of 7T1 (E) generated by /31’’’. /3s. By our
assumption, s &#x3E; 1. Now I is a quotient of ’TTI(E)/B::::: ZI(d) for some
d &#x3E; 0. Let {/3, y} be a basis of 7T1(E) such that /3 E B and y generates
7T1(E)/B. From ( * * ) it follows that 7T1(S) is generated y, Xj’Yj’ 1  j  g
and a,, 1  1  r with the following set of relations:

Let É 1 à be the elliptic fibration as in Lemma B (replacing all the
multiple fibres of 7T by simple singular fibres). If 13 denotes the subgroup
of 7T}(E) generated by Pi (l  i  s), then from Lemma B, it follows that
B = B. Since à has no multiple fibres, in the presentation 77,(S), a, = 1
for 1  i  s ) Thus 771(g) is the group

If H is the subgroup of integers generated by the integers d, bx, dx - 1 for
x E 7Tl(Ll), then it follows that

Now à has at least one singular fibre of type llh, so the sheaf 9 on S
constructed by taking the lst homology groups (co-efficients in Z) of
regular fibres of à is nonconstant. By a result of Kodaira, this implies
that bl(g) is even; see [4, Theorem 11.8]. But by Lemma D, H1(S, Z) is
torsion free. Thus Z/ H = (0). If one of the integers bx is odd, then clearly
the image of 7T 1 (E) in i7l(S) is a cyclic group of odd order. If bx is even
for aIl XE7Tl(Ll’), then dx is odd for all x since aXdX - bxcx = ± 1. But
then dx - 1 is even for all x. In this case Z/H cannot be trivial unless d is
odd. Thus I is a cyclic group of odd order.
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If à = PI, then bx = 0 = dx - 1 for all x E F, al commute with y. Thus
H is generated by d. But then d = 1 otherwise Hl (S, Z) will have either
odd rank or non-trivial torsion, which is not possible. This completes the
proof of the theorem.

§3. Applications

THEOREM 2: Let S be an irreducible non-singular, projective surface/C
w

with an elliptic fibration S - A.

(i) If ’1T has at least one singular fibre not of the type mIo, then any
unramified covering of S is holomorphically convex.

(ii) In general, the universal covering space S of S is holomorphically
convex.

REMARK: We will give an example of an abelian surface S = El X E2 with

Ei elliptic curves such that S has an infinite sheeted unramified covering
S with no non-constant holomorphic functions; in particular S is not
holomorphically convex. We shall need the following:

LEMMA E: Suppose à = pl and 7T has at most two singular fibres and these
are of type mIo. Then S is birationally a ruled surface and hence its

universal covering S is holomorphically convex.

PROOF: Let 7T*(al) be a singular fibre of type m 1 Io, i = 1, 2. For the
canonical bundle Ks of S, Kodaira has proved the formula

Here Pal is the divisor such that ’TT*(ai) = miPi and [Pa] ] is the corre-

sponding complex-analytic line bundle. 
’

By Noether’s formula X ( S, (9) = (Ks2 + C2(S»112. But Ks2 = 0 for our
elliptic surface and c2 ( S ) is equal to the sum of the topological Euler-
characteristics of all the singular fibres of qr. Thus C2(S) is also 0 and
X (S, (9) = 0.

Since any two points in Pl are rationally equivalent, we see that

We see easily that Ks z [Pal]-l @ [Pa2]-B thus forcing ] nKs] = § for

n &#x3E; 1. This means that S is a birationally ruled surface.
Similar argument shows that when 7T has at most one singular fibre

(and that too of type mIo ), S is a birationally ruled surface. To see that S,
the universal cover of S is holomorphically convex we can assume that S
is a relatively minimal model with a P 1-bundle S ---&#x3E; A. Then à # P since
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x ( S, (9) = 0. Pulling back the fibration W to the universal cover Li of A we
see that S X 6Li is complex analytically isomorphic to Ô X pl, which is
holomorphically çonvex.

PROOF OF THEOREM 2: Let a: W - à be the ramified covering with F as
the group of analytic automorphisms such that W/r = A. (In particular
W is simply connected). For any subgroup ri of r, the pull back
fibration W/Tl X AS over W /f1, yields an elliptic fibration Xrl1 - WI]71
after normalization, such that Xrl S is the unramified covering corre-
sponding to the subgroup 7T}(Xr1) = p-l(f}) of 7T}(S).

To prove (i) let H be any subgroup of 7T}(S). Put ri = p(77). Then
IH = (P (Ir,). By theorem 1, 1 is finite and hence H is of finite index in
IH. If SH is the covering of S with 7TI(SH) = H, then clearly S. - Xr1 is a
finite covering. Since XI,, - W/Fl has compact fibres and W/rl, being a
Riemann surface, is holomorphically convex, it follows that SH is holo-
morphically convex.

To prove (ii), by (i) it suffices to consider the case when all singular
fibres are of the type mIo. By lemma E, we can further assume that either
g &#x3E; 0 or g = 0 and there are at least three singular fibres. But then one
easily checks that ord(ai) = mi in I. This implies that the ramification
index of a at Q E Q -1 (a i) is precisely m i. Hence the fibration X(I) -&#x3E; W

is non-singular. If W is noncompact then it is contractible. Hence by a
theorem of Grauert (see [2]) X(I) z W X E, and hence S z W &#x3E; C. If W is

compact then W z Pl and again by lemma E, X(I) is a ruled surface and
hence in any case S is holomorphically convex. This completes the proof
of theorem 2.

AN EXAMPLE: For any irrational number À let

be the vectors in C X C. For any set A of elements in C (or C X C) let
L [ A ] denote the additive subgroup of C(or C X C) generated by A. Then
clearly
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If El = C/L[1, log 2/’TTi] ] and E2 = C IL [ 1, À log 2/ir i ] are the elliptic
curves then it follows that S = El X E2 =:: C X C / L[ VI’ V2’ V;, v ]. Since
L[vl, v2 , v3, v4 ] is a subgroup of inxed 2 in L [ v 1, v2 , V3,’V4] it follows that
S is a double cover of X=CXC/L[Vl,V2,V3,V4]. Let W=C X

CIL[ vl, V2, v3]. Then W - X is an infinite cyclic cover. Pulling back this
via the double covering S ---&#x3E; X yields an infinite cyclic cover S - S. _

We claim that 9 admits no nonconstant holomorphic function. Since S
is a double cover of W it suffices to show that W does not admit any
nonconstant holomorphic function. Since W is isomorphic to C * x C * /Z
where Z = (g) acts on C* X C* via,

it follows that a holomorphic function f on W is given by a holomorphic
functionf on C* X C* invariant under the Z-action. Let

be the Laurent series for /. It follows that alj = aij2i+"Aj for every ( i, j ).
Thus if aij =1= 0 then i + À j = 0; since À is irrational this means (il j)
(0, 0). Thus f and hence f is a constant.

As a corollary of Theorem 2 we prove the

PROPOSITION: Let S be an irreducible, non-singular projective surface with
77’

an elliptic fibration S - A. Let C c S be an irreducible, complete curve
with C2 &#x3E; 0. Assume that X (S, (9) &#x3E; 0. Then [’TTI (8): lm 7r, (C)]  00,

where C - C is the non-singular model of C.

CROLLARY: If C is rational, then ’TTI ( S ) is finite.

REMARKS:

(1) If C is rational, we will show later that q(S) = 0 and hence
X (S, (9) &#x3E; 0.

(2) M.V. Nori has given an example of an elliptic fibration à with
X(S, (9) = 0 and an irreducible curve C c S with C2 &#x3E; 0 such that
[’TTI (S): lm ’TTI (C)] = 00.

(3) The arguments in the proof of the proposition show that if we

delete the condition C2 &#x3E; 0, then we can still conclude that

[ Im irl(C); Im irl(C]  oo in ’TTI (S). Further, if C is a connected
chain of rational curves then we can conclude that Im ’TTI (C) is

finite in ?’Tl (S).

PROOF OF THE PROPOSITION: By the argument at the end of Proof of
Lemma E X (S, (9) &#x3E; 0 implies that qr has at least one singular fibre not of
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-  p
the type mIo. Let H = Im ’TTl(C) C 77,(S). Consider the covering S - S
such that q;#’TTl(S) = H. By Theorem 2, S is holomorphically convex.
Since C 2 &#x3E; 0, it can be shown that i7l(C) ----&#x3E; ’TTl(S) is surjective. See [8] for
a proof. Hence q;-l(C) is a connected curve on S. Also, by construction,

r

C - S lifts to C - S. Let q; -l( C) = U Ci where Ci,....are the irreduci-
i=l

ble components of q;-I(C). Corresponding to each C;, 3 a unique lift of
the map C - S to C - É which has Cl as the image of C. Hence each C,
is compact. Choose points xl E C; . If the set (XI, X2, ... 1 is infinite, it has
no limit point. In this case 3 a holomorphic function f such that f ( xn ) is
unbounded as n - oo. But since each Ci is compact and U Ci is con-
nected, f has to be constant on u Ci. This means r is finite and the

covering - S is of finite degree i.e. [’TTI (S): Im ’171 ( C)]  oo.

For the proof of the corollary, we need the following.

LEMMA: If S is a non-singular, irreducible, projective surface and C c S an
irreducible, complete, rational curve with C2 &#x3E; 0, then q(S) = 0.

PROOF: There are several proofs of this result. We will give one due to
M.P. Murthy.

’"

Let S - Alb S be the morphism from S to its Albanese variety.
Clearly qf(C) is a point. If the image of S in A1 B S is a surface V, then
by the negative definiteness of the intersection form on the inverse image
of a point of V, C2 will have to be negative, which is not true. If (P(S) is
a curve, then the intersection form on any fibre of the map S ’¥(S)
can be seen to be negative semi-definite. This shows that Alb S is a point
i.e. q( S ) = 0.

REMARK :

(1) From the classification of algebraic surface, we see now that for
any surface of special type, the universal covering space is holomorphi-
cally convex (because for ruled, rational, K - 3, abelian surfaces this is
easy to verify and all Enriques surfaces are known to have elliptic
fibrations).

(2) In the above Proposition, when C is rational, it can be shown that
the only possible fundamental groups of S are finite cyclic group,
dihedral group of 2 n elements, tetrahedral group with 12 elements,
octahedral group with 24 elements or icosahedral group on 60 elements.
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