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A finitely generated module P over a ring R is called stably free if

P % R(m) = R(n) for some integers m and n. Of course, P is necessarily
projective. If P is stably free but not free then we call it a non-trivial

stably free module. If R is a commutative ring then it has long been
known that ideals of R cannot be non-trivial stably free modules (see, for
example, [4, Theorem 4.11, p 29]). However, if R is not commutative then
it is also well known that non-trivial stably free right ideals can exist. For
example, if R is a Weyl algebra, or the group ring of a poly (infinite
cyclic) group or a polynomial extension in at least two variables over a
division ring, then such right ideals do exist - see [13], [1] and [6]
respectively. One of the aims of this paper is to provide other examples of
this phenomenon. In particular, we prove:

THEOREM 2.6: Enveloping algebras of non-abelian, finite dimensional Lie
algebras always possess non-trivial, stably free right ideals.

Thus stably free right ideals are a frequent occurrence over non-com-
mutative rings. Unfortunately, the proofs in [1], [6] and [13] and the
author’s first proof of Theorem 2.6 are basically computational and so
don’t explain why these right ideals are so common. The second aim of
this paper is to try to understand this question, which we do by
abstracting as much of the argument as possible. In so doing, we are also
able to provide a reasonably unified way of producing stably free right
ideals over each of the four rings mentioned above.

Let us describe the idea behind our approach. The method that always
seems to work is to take two regular elements, a and b, in one’s ring A
such that "by virtue of the fact that a and b do not commute",
A = aA + bA. Then K = aA n bA is obviously a right ideal satisfying
K ® A = A ® A . Furthermore, the noncommutativity of a and b usually
enables one to show that K is not cyclic; i.e., K is a non-trivial, stably free
right ideal. We need to formalise this approach, and the appropriate
setting is that of an Ore extension S = R [ x; a,&#x26;] ] or skew Laurent
extension S = R[x, x -1; Q ] (see Section 1 for the definitions). For the
remainder of this introduction we will concentrate on Ore extensions,
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since the method for skew Laurent extensions is similar and produces no
new results. Now there are two obvious situations when S = R[x; a, 8] ]
cannot have non-trivial, stably free right ideals; viz when

(0.1) S is commutative, or
(0.2) R is a division ring, as S is now a principal ideal domain.

One way of excluding these two cases is to demand that there exists a
non-unit r E R and some s E R such that r and x + s do not commute.
The trick is to go a bit further and demand

there exists a non-unit r E R and some s E R such that S = rS + (x + s)S.

(*)

It is an easy exercise to show that ( * ) will never hold if r and x + s

commute, and so ( * ) can be regarded as a formal way of producing two
elements of S that "by reason of their non-commutativity" generate the
ring as a right ideal. Furthermore, this condition is sufficient for our
purposes.

THEOREM 1.2: Let R be a Noetherian domain and suppose that S =

R [ x; a, 8 1 satisfies ( * ). Then K = rS rl ( x + s ) S is a non-trivial, stably free
right ideal of S.

This theorem and its analogue for skew Laurent extensions can then
be used to obtain the desired module over each of the four rings
mentioned at the beginning of the introduction. This follows from the
fact that the given ring contains an Ore extension or skew Laurent
extension. (Actually, there is one exceptional case that has to be dealt
with separately; if U is the enveloping algebra of a non-split semisimple
Lie algebra, then U may not contain an Ore extension, and so a slightly
different method has to be used.)

Unfortunately, this method is also not sufficient to deal with all Ore
extensions. For example, if (R, m) is a local commutative domain and
8( m) ç m, then ( * ) can never hold for S = R [ x; 1, &#x26; ]. Indeed, if R =

k[y](y) and &#x26; (y) = y, then every projective module over S = R [ x; 1, 8 ] is
free. (This ring may also be viewed as a localisation of the enveloping
algebra of the 2-dimensional, solvable Lie algebra.) The final section of
this paper, theref(,--, considers Ore exiaisioeis of local rings and proves
the following.

COROLLARY 4.6: Let ( R, m) be a commutative, Noetherian, regular local
domain and 8 a non-zero derivation of R. Then every stable free right ideal
of S is free if and only if (i) 8(m) ç m and (ii) K dim R = 1.

The method used here is similar to the earlier one, except one now
considers elements r, s and t of R that satisfy rS + (xt + s)S = S.
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Unfortunately, there seems to be no easy general result along the lines of
Theorem 1.2 that will cover this case.

1. Ore and skew Laurent extensions

In this section we will prove Theorem 1.2 of the introduction and give
some of its easier corollaries. The applications to group rings and
enveloping algebras will be given in Section 2.
We begin with the appropriate notation. Let R be a domain, a and

automorphism of R and 8 a a-derivation; that is, 8 ( ab ) = a 8 ( b ) + 8 ( a ) ba
for a and b in R. Then the Ore extension S = R[x; a, 8] is the ring that
additively is isomorphic to the polynomial extension of R in one variable,
but multiplication is defined by

rx = xra + 8(r).

We will always use o for an automorphism and 8 for a a-derivation and
so we may, without confusion, write R [ x; Q for R[x; a, 0] and R [ x; 8] ]
for R[x; 1, 8 ]. Note that by inverting x in the ring R [ x; Q one obtains
the skew Laurent extension S = R[x, x -1; u]. In order to save repetitions
we will, for example, use the phase " let S = R [ x; a, 8]" to mean " let R
be a domain with an automorphism a and a a-derivation 8 and let

S = R [ x; a, 6]’B Any element a E S = R [ x; a, 8 can be uniquely written
as a = ’L3xia, for some a, E R with an =1= 0. In this case, n is the degree of
a, written deg a = n. The element a is called monic if an = 1. Similarly, if
a = m x’a, E S = R [ x, x -’; Q ] with a m 0 and a n = 0, then deg( a ) = n
- m. Again, a is monic if an = 1. The reason for the two distinct
definitions is the following easy lemma, the proof of which is left to the
reader.

LEMMA 1.1: If a and b are non-zero elements of either S = R[x; a, à] or
S = R [ x, x -1; a], then deg( ab ) = deg( a ) + deg( b ). In particular, units of
S must have degree zero.

As remarked in the introduction, when we consider an Ore extension
we will need the condition:

if S = R [ x; a, 8], then there exists a non-unit r E R and some s E R

Suppose that one now considers the skew Laurent extension S =

R [ x, x -’ ; a . Then ( * ) is automatically satisfied if s = 0 or s = r and so it
must be inadequate for our purposes. (Consider the case (0.1) of the
introduction.) In this case we will use the slightly stronger hypothesis:
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If S = R [ x, x -’; a ], then there exists a non-unit r E R and some

sERsuch that S = rS + (x + s)S but srG fE rR. (*)

We can now prove the main result of this section.

THEOREM 1.2: Let R be a Noetherian domain and suppose that either (i)
S = R [ x; u, 8 ] is an Ore extension of R that satisfies ( * ) or (ii) S =

R [x, x -1; or] ] is a skew Laurent extension of R that satisfies (*). Set
K = ( g E S : rg E ( x + s) S ). Then K is a non - trivial, stably free right ideal
of S, satisfying K El) S = S El) S.

REMARK: Since r is a regular element of S, K = rS n ( x + s)S and so we
could equally well work with the latter module.

PROOF: With the exception of the last few lines, the proof is identical in
the two cases. Note that S is a domain. There exists a short exact

sequence with the obvious homomorphisms

which ensures that K ® S = S ® S. This shows that K has all the desired

properties, with the exception of proving that K is not free. This is

equivalent to showing that K is not cyclic.
We next find some elements in K. Since R is a Noetherian ring, the set

of monic elements of S forms an Ore set [8]. So there exists a monic
element, say f E S, such that rf E ( x + s ) S. Thus f E K. Secondly,

(where 8 ( r ) = 0 when S = R [ x, x - 1; a ]). Now R is an Ore domain, so
there exist rl and r2 in R, with r, = 0, such that (&#x26;(r) - sr’)rl = rr2. Thus

Thus g = xrl - r2 E K.
The existence of these two elements in K is enough to ensure that K is

not cyclic. For, suppose that K = kS. Since xrl - r2 E K, Lemma 1.1
shows that deg k  1. Multiplying k by a unit if necessary, we may
therefore suppose that k = xX + jn for some À, ju. E R. Since rk E ( x + s ) S,
Lemma 1.1 shows that deg rk &#x3E; 1 and hence deg k &#x3E; 1. Thus À =1= 0.

Indeed, À must be a unit. For, f E K; say f = kd with f = x" + Y-’- lx’
and d = Y-u - 1 lx’d,. Then, comparing coefficients of XU gives 1 = Àou-du-l 1
which forces À to be a unit. Multiplying by À -1, we may suppose that
k = x + u, As k E K this implies that

for some t E S. Thus t = r a and sr a = rit + 8 ( r ).
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We claim that this contradicts the hypotheses (*) and (*). When
S = R [ x, x -’ ; 0] ] is the skew Laurent extension, this is exactly what is
excluded (remember that 8 = 0 in this case). Now consider S = R [ x; u, 8 ].
Then by ( * ),

for some a and b in S. We may write b = ( x + jn)c + d where CES but
dER. Combining equations (1.3) and 1.4) gives

By comparing degrees, this forces a + tc = 0 and 1 = rd. Finally, this

contradicts the fact that r is not a unit and completes the proof.
The elements f and g of K that were found in the above proof are

clearly not unique and do not necessarily generate K. However, in each
of the special cases that concern us there are obvious ‘ smallest’ elements
of these two forms and these will generate K. In Section 3, explicit
generators will be given for the module K for each of these cases. We end
this section with several easy applications of Theorem 1.2.

COROLLARY 1.5. [6] Let D be a division ring that is not commutative and
S = D[xl,. - -,Xn] a polynomial extension of D in n &#x3E; 2 commuting inde-
terminates. Then S has a non trivial, stably free right ideal.

PROOF: Pick elements a, b E D such that [a, b] = ab - ba = c = 0. Then
[ xn + a, xn _ + b ] = c is a unit of S. The corollary therefore follows from
the theorem by taking

The next corollary is a useful special case of Theorem 1.2 which will in
fact be used for all future applications of that Theorem to Ore exten-
sions.

COROLLARY 1.6: Let R be a Noetherian domain and S = R[x; 0, 8].
Suppose that there exists a non-unit r E R such that ’L8 i ( r ) R = R. Then
K = rS n xS is a non-trivial, stably free right ideal of S.

REMARK: One can even obtain Corollary 1.5 from Corollary 1.6. For, in
the notation of Corollary 1.5, set y = xn + a and 8 = [?, a ]. Then S =
R [ y; 1, 8 and 8(r) = c is a unit when r = xn _ 1 + b.

PROOF: Note that &#x26;’+ 1(r) == &#x26;’(r)x - x(&#x26;’(r»’ for any integer i. Since
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£8’(r)R = R, this implies that rS + xS = S. Thus the Corollary follows
from Theorem 1.2 and the remark thereafter.

COROLLARY 1.7 [13]: Let S = An ( D ) be the nth Weyl algebra over a
Noetherian domain D. Then S has a non-trivial, stably free right ideal.

PROOF : If E = An _ 1 ( D ) then S is defined to be S = E [ y ][ x; - 8 /8 y].
Now apply Corollary 1.6 with R = E [y] and r = y.

If D is a field of characteristic zero then An(D) is known to be a
simple ring. Corollary 1.7 can be extended to a large number of similar
simple rings as follows.

COROLLARY 1.8: Let 8 be a derivation ( respectively a an automorphism ) of
a commutative, Noetherian domain R and suppose that S = R[x; S ] (re-
spectively S = R [ x, x - 1; Q J) is a simple ring. Then :

(i) If R is not a field then S has a non-trivial, stably free right ideal.
Indeed, K = rS n ( x + I) S is a non-trivial, stably free right ideal of
S whenever r is a non-zero non-unit from R.

(Ü) S is a principal ideal domain if and only if R is a field.

PROOF: If R is a field then S is a principal ideal domain by the obvious
analogue of Euclid’s algorithm. Thus we may suppose that R is not a
field, in which case it suffices to prove (i). The fact that S is a simple
extension of a Noetherian domain implies that 8 (respectively Q ) leaves
no ideal of R invariant. Pick a non-zero, non-unit r E R and consider

S = R[x, x -1; 0]. Then J = Y,, r’ ,R is an ideal of R left invariant by a.
Thus J = R. The equations

ensure that rS + ( x + 1 ) S JS = S. Also, r’ Z rR as rR cannot be a-in-
variant. Thus (*) is satisfied and the Corollary follows from the Theorem.
A similar argument works for the ring S = R [ x; 8 ].

2. Enveloping algebras and group rings

In this section we show how to apply Theorem 1.2 to obtain non-trivial,
stably free right ideals over enveloping algebras of finite dimensional Lie
algebras and group rings of poly (infinite cyclic) groups. In both cases,
the proof is in three parts. Prove the result for certain special rings; show
that the general enveloping algebra or group ring contains one of these
special rings; and finally, pull the result up to this general case.

LEMMA 2.1. Let b be a finite dimensional, abelian-by-( one dimensional ) Lie
algebra over a division ring D. If b is not abelian, then U(b) has a
non-trivial, stably free right ideal.
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PROOF: By hypothesis, there exists an ideal r of f) such that r is abelian
and b /r is one-dimensional. Write R = U( r) c S = U( f) and pick x G b
B r. Then ,S’ = R [ x; ] ] where 5 is the non-zero derivation [?, x ] . Pick
yo E r such that [ yo, x] = 0. Define, inductively, y, = [YI- l’ x ] for 1 &#x3E; 0.

As b is finite dimensional there exists an integer n such that { yo, ... , yn 
are linearly independent but yn + 1 E Dy, .

If yn-,, = 0, set r = yn_00FFn-1 + 1. Then 8(r) _ [r, x] = yn . As U(r) is

commutative, 1 = 8(r)yn2-l - r ( yn yn _ 1 - 1 ) rR + 8(r)R. Corollary 1.6
can now be used to show that K = rS n xS is a non-trivial, stably free
right ideal.

If yn + 1  0 then = ’L3ÀIYI for some ÀI E D, not all of which are
zero. By replacing y. by an appropriate yl , we may suppose that À. * 0.
In this case take r = yo + 1 and write y=E5’(/-). Then the elements
yl = [ r, x ] for 2  i  n and 
tained in J. is a unit, this implies that yo E J. Thus J = R and,
again, the result follows from Corollary 1.6.

LEMMA 2.2: Let g be a non-abelian, finite dimensional Lie algebra over a
division ring D. Suppose that either g is solvable or that D is an algebrai-
cally closed field. Then g contains an abelian-by-(one dimensional ) sub-Lie
algebra that is not abelian.

REMARK: If g is a non-solvable Lie algebra over a non-algebraically
closed field then the Lemma may fail for g, and so it is not clear how to
find an Ore extension inside U( g ). This happens, for example, when
g = S03 ( R ). This case will be dealt with later.

PROOF: If g is solvable then we may take f) to be any sub-Lie algebra of g
such that b is minimal with respect to being non-abelian. For, [f), f)] is
abelian. Furthermore, either [ b, b ] is not central, in which case r = [1), 1)] ]
is the desired ideal of codimension one, or [ Ï), î) ] is central, in which case
b/[b, b] ] is 2-dimensional and we can take r = [b, b] ] + Dy for any

Y E 1) B[f), 1)].
Suppose, alternatively, that D is an algebraically closed field and g is

not nilpotent. In this case g contains a copy of the 2-dimensional,
solvable Lie algebra [3, Ex. 4, p. 54] (this follows easily from the fact that
g now has a Cartan subalgebra and a root space decomposition).
We next need to show how to pull non-free projective modules from

U(b) up to U(g). This follows from the following result.

PROPOSITION 2.3: Let A c B be domains such that B is faithfully flat as a
left A-module and satisfies:

If a and b are non-zero elements of B such that ab E A, then a = alc

and b = c-1b,forsome unit cc= B andelementsal, bl E A . (2.4)
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Let P be a projective right ideal of A that is not cyclic. Then PB=:: P OA B is
a projective right ideal of B that is not cyclic. If P is stably free then so is
PB.

PROOF: The final assertion is a triviality. Since AB is flat, PB = P @ AB
and so is projective. Suppose that PB = aB for some a E B. Pick p =A 0 E
P. Since P c PB, there exists À E B such that p = aÀ. By (2.4), a = alc
where ai c- A and c is a unit. Thus, replacing a by al, we may assume
thataEA.

Since B is faithfully flat over A, given right ideals I ~ J of A, then
IB  JB. In particular PB n A = P and a E P. But now P = aB n A = aA;
giving the required contradiction.

LEMMA 2.5: Let b be a sub-Lie algebra of a finite dimensional Lie algebra g
over a field k. Then U( b ) c U( g) satisfy the hypotheses of Proposition 2.3.

PROOF: It is an easy exercise using the Poincaré-Birkhoff-Witt Theorem
to show that U(b) and U (g) are domains such that U( g ) is a free, and
hence faithfully flat, U( 1) )-module. The same graded ring argument, but
with [2, Behauptung 3.6] replacing the PBW, can be used to show that
(2.4) will hold.

The last four results can now be combined to prove all but one special
case of the following theorem.

THEOREM 2.6: Let g be a finite dimensional Lie algebra over a field k. Then
the following are equivalent:

( i ) g is abelian,
(ii) every stably free right ideal of U( g ) is free,

(iii) every projective right ideal of U( g ) is free.

REMARK: In the special case of the 2-dimensional, solvable Lie algebra,
this result has also been proved independently by T.J. Hodges [unpub-
lished].

PROOF: By [7, Theorem 3.2] every finitely generated projective U( g )-
module is stably free, and so (ii) and (iii) are equivalent. If g is abelian
then stably free right ideals are free by [4, Theorem 4.11, p 29]. So we
may suppose that g is not abelian. If g contains a non-abelian, solvable
Lie algebra, then it follows from the first four results of this section that
U( g ) does have a non-trivial, stably free right ideal.

This leaves the case when the only solvable subalgebras of g are
abelian. The problem with this case is, of course, that U( g ) presumably
does not contain an Ore extension and so Theorem 1.2 cannot be

applied. However, the proof is rather similar to that of Theorem 1.2 and
so some of the details may be left to the reader. By Proposition 2.3 and
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Lemma 2.5, we may replace g by any sub-Lie algebra, minimal with
respect to bring non-abelian. We may therefore assume that g is not

solvable, g = [ g, g and that g is generated as a Lie algebra by any two
elements that do not commute. In particular, pick x, y E g such that
[x, y] =1= O. Then

and z e kx + ky. Since g = [ g, g ], this equation ensures that y is con-

tained in the Lie ideal of U( g ) generated by x and y + 1. Thus, writing
S = U(g), we can see that S = xS + (y + I)S and K = f f: xfE (y + l)S}
is a stably free right ideal of S.

As in the proof of Theorem 1.2, we next choose some distinguished
elements from K. Since k [ y ] * is an Ore set in S [2, Satz 3.3], xf E ( y + 1 ) S
for some f =0: 0 E k [ y ]. Similarly, zg = xh for some g # 0 E k [ x ]. Thus

and ( y + 1 ) g - h E K. Now suppose that K = aS. SincefEKnk[y],
Proposition 2.3 implies that a E k[ y]. Now g and h have the same total
degree and so the leading term of ( y + 1)g - h is just Xyx’ for some
À E k and integer m. Since (y + 1)g - h (=- aS, this is only possible if a
has degree  1. Clearly a is not a unit, so we may suppose that a = y + J1.
for some J1. E k. But a E K and so x(y + J1.) = ( y + 1 ) t, for some t E S.
This contradicts the fact that z e kx + ky and completes the proof.
We now repeat the above process for group rings of poly (infinite

cyclic) groups, thereby giving another proof of Artamonov’s Theorem [1].
There are similarities between the two proofs and, in particular, equation
(2.9) is due to him. However, our more general approach does provide a
less technical proof.

LEMMA 2.8: Let G be a non-abelian group with a normal subgroup H such
that H is free abelian of finite rank and G/H is infinite cyclic. Then, given
any Noetherian domain k, the group ring S = kG has a non-trivial, stably
free right ideal.

PROOF: Write H=(YI,...,Yn) and G=H(x). Then S = kG =

R [ x, x - 1; 0], where R = kH and a is defined by r a = x -1 rx f or r E R . By
reordering the y;’s we may suppose that yf =1= YI. Now, for any r E R,

Thus, in order to apply Theorem 1.2 and complete the proof we need
only find a non-unit r E R such that
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If yf =1= YI 
1 then, since (1 - yl ) R is a prime ideal of R, it is easy to see

that (2.10) holds with r = 1 - y,. If y’ = y1 1 then (2.10) holds for

r= 1 + Y1 +yi. .

LEMMA 2.11: Let A be a domain and suppose that either B = A [ x; 0,8] or
B = A [ x, x -1; 0]. Then A c B satisfy the hypothesis of Proposition 2.3.

PROOF: This follow by an easy induction on degree.

THEOREM 2.12 [11]: Let G be a non-abelian, poly (infinite cyclic) group and
k a Noetherian domain. Then S = kG has a non-trivial, stably free right
ideal.

PROOF: By hypothesis, there exists a subnormal chain

such that each G¡/ G¡ + 1 is infinite cyclic. Let j be the minimal i such that
G, is not abelian. By Lemma 2.8, kGj has a non-trivial, stably free right
ideal. The Theorem now follows, by induction, from Lemma 2.11 and
Proposition 2.3.

By making a suitable, rather technical generalisation of Theorem 1.2
one can show that Theorem 2.12 holds for the group ring AG where A is
any ring and that Theorem 2.6 holds for B ® kU( g ) where B is any ring
containing the field k. However, we feel that the present results are

sufficiently general.
In [5] Lewin proves that QG has a non-trivial, stably free right ideal

whenever G is a torsion-free, polycyclic-by-finite group that is not

nilpotent (of course, by combining Artamonov’s result with Lewin’s one
can drop the nilpotence condition). It is not clear how to generalise
Theorem 1.2 in order to incorporate Lewin’s result.

Proposition 2.3 shows that non-free, projective right ideals remain
non-free under various extensions. This is slightly surprising since the
corresponding result for projective modules of rank greater than one is
false. This is illustrated by the following example from [11].

EXAMPLE 2.13: Let R = R 1 XI, - - -, x 2 n + 1 ]/(1 - yX2 1 ) be the real 2 n-sphere
and define a homomorphism 0: R (2n 11) - R by B ( al , ... , a 2 n + 1 ) _ ’Lxiai.
Then P = ker 0 is a nontrivial, stably free module of rank 2n [12, p. 269].
Let S = R[y][x; a/a y be the first Weyl algebra over R. Then P 0,S is a
free S-module.

REMARK: Clearly, given any commutative polynomial extension T =

R[ yl, ... ,yn ] of R, then P OR T remains non-free.

PROOF: Write d = (xl, ... , IX2n+1) C- R(2n+1). Then R(2n+1) = dR ® Q with
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Q = P. Similarly, S(2n + 1) = dS E9 QS with QS =:: P 0, S. Given a and b in
S write

In order to prove that QS is free, it suffices to find a, b E ,S such that

Iab = S [4, Corollary 4.9, p. 24 and Proposition 5.3, p. 35]. However,

It follows that Iy, = S and P 0 S is free.

3. Generators of projective modules

Theorem 1.2, by its generality, does not provide explicit generators for
the projective module that it produces. However, for each of the rings to
which that result has been applied, one can easily write down the

required two generators, as we do in this section. In each case K = { f : rf
Ei (x + s)S 1 is the projective module described by the appropriate
corollary.

(i) If S = An(D) is as in Corollary 1.7, then K =X2S + ( xy + 1)S.
(ii) If S = D [ x 1, ... , xn ] is as in Corollary 1.5, then K = {(x,, + b)(x,, 1

+ a) - c}S + (xn + b)c-1(xn + b)S.
(iii) Let b = kx + ky + kz, where [y, x] = z, be the 3-dimensional

nilpotent Lie algebra over a field k and set S = U(f); as in Lemma 2.1.
Then K = x2S + (x(yz + 1) _ Z2)S.

(iv) Let b = kx + ky, where [ y, x ] = y, be the 2-dimensional solvable
Lie algebra over k and set S = U(f), as in Lemma 2.1. Then

At least when k is algebraically closed, Lemma 2.2 shows that the Lie
algebras of (iii) and (iv) are the only ones that one need consider. The
general case is left to the reader.

(v) Let S = kG as in Lemma 2.8. Then

In each case the assertion is proved as follows. It is easy to check that the
given two elements belong to K. Notice that one of them, say f, is monic
of degree 2 while the other, say g, has degree one. Now suppose that
h E K. As f E K we may assume that deg h  1. If h OE gS then it is easily
checked that hR + gR contains a non-zero element from the subring R.
But, as we saw in the proof of Theorem 1.2, this is not possible.
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4. Ore extensions of local rings

One might be tempted to suppose that Theorem 1.2 can be applied to
any Ore extension (apart from the two trivial exceptions (0.1) and (0.2)).
Unfortunately, this is not the case. The easiest example is when ( R, m) is
a local, commutative, Noetherian domain, 8 satisfies 8(m) c m and
S = R [ x; 8 ]. For, rn S is now an ideal of S and S/mS is isomorphic to an
Ore extension of the field R/m. Thus given a non-unit r E R and any
sER,

In other words, (*) cannot hold in this case and so Theorem 1.2 cannot
be applied. In this section we therefore study projective right ideals over
Ore extensions of local rings. The first result shows that the rings in (0.1)
and (0.2) are not the only Ore extensions for which stably free right
ideals are free.

PROPOSITION 4.1: Let (R, m) be a local, commutative, principal ideal
domain and &#x26; a derivation of R such that 8(m) ç m. Then every projective
right ideal of S = R [ x; &#x26; ] is cyclic.

REMARK: The proof of this result can be generalised to show that every
projective S-module is free.

PROOF: If R is a field, then the result is obvious. Thus we may suppose
that K dim R = 1. Suppose that P is a projective, non-free, right ideal of
S. The aim of the proof is to show that one can assume that m c P, after
which the contradiction will be easy to establish.

Write m = yR for some y E R and F for the field of fractions of R.
Then the localisation T = S{yn}  F[x; &#x26; ] is a principal ideal domain.
Thus PT = T. By [10, Lemma 5.3] this means we can, by replacing P by
an isomorphic right ideal, assume that y’ (=- P for some n. We may
further suppose that y n -1 P. Since P is not cyclic, p =A y nS and it

follows that P n y n -1S y nS. For, 6(m) c m and so y SS = Sy S for each
integer s. So, pick p E ( P n y r -1S’ ) y rS’ for some r  n. Then py n EE ( P
nyn-IS)BYnS.

Given a module M over a ring A, write hdA M for its homological
dimension. Then

by [9, Corollary 1.8]. Thus hds(P + y" -1S )  1. However, there exists a
short exact sequence
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Thus P nyn+lS is projective. Since P nyn-IS yns but yn-l $ P, P rl
y n-1 S cannot be cyclic. We may, therefore, replace P by yl - n ( P ny n-1 S)
and assume that P is a non-cyclic, projective right ideal containing y.

Let a e P B yS. Since R/yR is a field, a may be assumed to be monic.
In particular, S/P is a non-zero, finitely generated R-module which,
since y E P, is also torsion as an R-module. Thus, by [9, Corollary 1.7],

This contradicts the fact that P is projective and completes the proof.
We now turn to local rings of Krull dimension greater than one, for

which the following lemma is needed. The height of an ideal I will be
denoted by htl.

LEMMA 4.2: Let ( R, nt ) be a local, commutative, Noetherian domain with
K dim R &#x3E; 2. Suppose that 8 is a non-zero derivation of R such that

8(m) ç m. Then there exists r E nt such that ht ( rR + 8(r)R) &#x3E;- 2.

PROOF: The proof breaks into two cases according to whether 0 c R or
not. Suppose first that 0 C1 R. Then either char R = p &#x3E; 0 or ll c R with
Z n m =1= 0. In either case, there exists a E m with 8 ( a ) = 0. There also
exists b E m such that 8 ( b ) 0 but ht( aR + bR ) &#x3E; 2. For, pick any c E m
such that h t ( aR + cR ) &#x3E; 2. If 8( c) # 0 set b = c. If 8 ( c ) = 0 then take
b = c + ad where d is any element of R for which 8(d) =iÉ 0.

For any integer n, 8(b + an) = 8(b). So let Q1, ... , Qm be prime ideals
minimal over 8 ( b ). In order to complete the proof we need to find n such
that r = b + an $ U Qy. If no such n exists, then there exist integers u  v
and i such that both b + a u and b + aU belong to Ql . Thus a u - a v E Ql .
Since 1 - a v - u is a unit this forceg a u e Qi and b E Q,. By the choice of a
and b this means that htqi &#x3E; 1; contradicting the principal ideal theorem.
Now suppose that 0 c R. Pick a E m with 8 ( a ) 0 and some b e m

such that ht( aR + bR ) &#x3E; 2. We now use the idea behind the first part of
the proof, using the elements a2n + b2n. Suppose that P is a height one
prime ideal containing both a 2n + b2n and 8 ( a 2n + b2n ). Then

Since Q c R and a OE P this forces 8(a)b - a&#x26;(b) e P. Thus, as before,
either there exists n such that r = a 2n + b2n satisfies the conclusion of the
lemma, or there exists a height one prime ideal P which contains a2u + b2u
and a2v + b2U for some v &#x3E; u &#x3E; 1. But 2U-" is even. Thus, in the latter
case,



76

Thus P contains 2 a 2" and 2b21’; that is, aR + bR c P. This contradicts the
choice of a and b and completes the proof.

THEOREM 4.3 : Let (R, m) be a local, commutative, Noetherian domain
with K dim’R &#x3E;- 2. Suppose that 8 is a non-zero derivation of R satisfying
8 ( m ) ç m. Then S = R[x; 8] has non-trivial, stably free right ideals.

PROOF : Given a E R, we will write a’ for 8 ( a ). Pick an element r E m by
Lemma 4.2, set a = r’x + 1 + r" and consider I = rS + aS. Then ( r’) 2 =
[r, a] E I. Thus

In particular, 1 + r" E I. However, r" E 82( m) ç m and so 1 + r" is a
unit. Thus I = S.

As usual, this quickly implies that K = f f : rf E aS} is a stably free
right ideal of S. It remains to show that K is not cyclic and we start by
finding some elements of K. First,

Thus ar - ( r’) 2 E K. Next, set u = 1 + r". Then, either by inverting the
proof that I = S, or directly,

Thus rax2u-Ia E aS and ax2u-Ia E K. Expanding these two elements
from K we see that

and

lower order terms.

Suppose that K is cyclic; say K = sS. By (4.4) deg s  1 ; say s = x À + ju.
Since aS n R = 0, clearly À =1= 0. By (4.4) and (4.5) we see that rr’ E ÀR
and (r’)2 E ÀR. Thus X R D r’T where T = rR + r’R is, by hypothesis, an
ideal of height at least two. Now

for somt t E S. By comparing degrees, t E R . Thus Àt = rr’ and JLt = r ( 1
+ 2 r ") - ( r’) 2. However
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and so tT c rR. Therefore ( r (1 + 2r") - (r’)2 } T = ittt c prR c rR. Thus
( r’) 2 T c rR. Finally, this says that

Since htT 3 &#x3E;- 2, this contradicts the principal ideal theorem and com-
pletes the proof.

COROLLARY 4.6: Let ( R, m) be a commutative, Noetherian, regular, local
dnmain and 8 a non-zero derivation of R. Then every stably free right ideal
of S = R [ x; 8 ] is free if and only if ( i ) 8 ( m ) ç m and ( ii ) K dim R  1.

PROOF: If 8 ( m ) m then pick r E m such that 8(r) e m and apply
Corollary 1.6. If 8 ( m ) ç m but K dim R &#x3E; 2, apply Theorem 4.3. Finally,
if K dim R  1, then R is a principal ideal domain and the result follows
from Proposition 4.1.

It would be interesting to know whether Corollary 4.6 can be extended
to an arbitrary (regular) commutative domain R. A tempting conjecture
is:

(4.7) If 8 is a non-zero derivation of R, then every stably free right ideal
of S = R [ x; 8] ] is free if and only if 8 leaves every prime ideal of R
invariant.

If R satisfies the final condition of (4.7) then Corollary 4.6 implies that
K dim R = 1. However, R need not be semilocal. For example, let R =
k [xl, ... ], le= RI B U x, RI and R = (RI)CC. Take 8 to be the derivation
defined by 8 ( x, ) = xi for each i. It is easy to see that R is a principal ideal
domain, each of whose infinitely many prime ideals is left invariant by 8.
The proof of Proposition 4.1 can be used to show that every projective
right ideal of S = R[x; 8] is free.

Of course, (4.7) would be a triviality if one could answer the following
question in the affirmative. Suppose that S is a ring such that every stable
free right ideal over S,, is free? Unfortunately we suspect that this result is
not true, although this is only based on analogy with an example of Swan
(see [4, pp. 147-148]).
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