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A COMMON ABSTRACTION OF BOOLEAN RINGS AND
LATTICE ORDERED GROUPS

Klaus D. Schmidt

Abstract

Lattice ordered partial semigroups are introduced as a common abstraction of Boolean
rings and lattice ordered groups. Boolean rings and lattice ordered groups are characterized
as lattice ordered partial semigroups with additional properties.

1. Introduction

An interesting problem posed in Birkhoff’s book is the following: De-
velop a common abstraction which includes Boolean algebras (rings) and
lattice ordered groups as special cases [1; p. 318)]. In view of possible
applications, such a common abstraction should not differ too much
from Boolean rings and lattice ordered groups, and it also should be
defined by a set of familiar axioms.

In the present note, we propose a solution which is motivated by a
problem in the theory of measure and integration [4] and which is
inspired by the work of Dinges [2], who suggested that the analogy
between the disjoint union of sets and the addition of functions is more
appropriate than the analogy between the union of sets and the supre-
mum of functions.

The key to our solution of Birkhoff’s problem is that we consider both
of these analogies to be equally important. This leads us to the considera-
tion of lattices on which a partial addition is defined such that order and
lattice operations are compatible with addition. This concept is formal-
ized in the notion of a lattice ordered partial semigroup, a structure which
turns out to be only slightly more general than Boolean rings and lattice
ordered groups.

Lattice ordered partial semigroups are defined and studied in Section
2. In Sections 3 and 4, respectively, Boolean rings and lattice ordered
groups are characterized as lattice ordered partial semigroups with addi-
tional properties. We conclude with some remarks in Section 5, where
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52 Klaus D. Schmidt [2]

lattice ordered partial semigroups are compared with earlier solutions of
Birkhoff’s problem due to Swamy [5], Wyler [6], Rama Rao [3], and
Schmidt [4].

2. Lattice ordered partial semigroups

A partial semigroup is a set E with a distinguished element 0 € E, a set
S C E XE, and a map (called addition) + : S — E such that the following
axioms hold for all x, y, z € E:

(i) (x,0)eS and x+ 0= x;

(i1) (x,y)€ S implies (y, x)eS and y + x =x + y;

(i) (x,y)€ S and (x+y,z)€ S implies (y,z)E S, (x,y+2z)ES,
and x+(y+z)=(x+y)+z

A partial semigroup E has the cancellation property if
@iv) (x,z2)€S,(y,z2)ESand x+z=y+:z impliesx=j/.

An ordered partial semigroup is a partial semigroup E with a partial
ordering < such that order and addition are compatible:

V) (x,2)€S,(y,z)ES and x <y implies x + z <y + z.

The positive cone of an ordered partial semigroup E is defined to be the
setE, = {x€E|0<x]}.

A lattice ordered partial semigroup is an ordered partial semigroup E
which is a lattice:

(vi) xVy and x A y exist for all x, y € E.
A lattice ordered partial semigroup E has the difference property if

(vii)for all x, y € E there exists z € E | such that
(x,z)e S8, (xAy,z)ES, x+z=xVy,andx Ay+z=y.

For the remainder of this section we suppose that E is a lattice ordered
partial semigroup which has the cancellation property and the difference

property.

CONVENTION: We shall simplify the notation by writing
x+y hasproperty (P)

instead of the full statement
(x,y)€S and (x+y) hasproperty (P).

There will be no source of confusion when this statement is used as a
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hypothesis; if it appears as an assertion, then the validity of
(x,y)es
is a consequence of the axioms (ii), (iii), and (vii).

2.1. THEOREM: For all x, y € E there exists a unique u € such that
x+u=xVyand xANy+u=y.

PrOOF: The existence follows from (vii) and the uniqueness follows from
@v). O

2.2. COROLLARY: For all x, y €E such that x <y there exists a unique
uckE, such that x +u=y.

PrOOF: Note that x V y = y. O
2.3. THEOREM (order cancellation property): If x + z <y + z, then x < y.

Proor: By Corollary 2.2, choose € E, such that x+z+u=y+z.
Then (iv) yields x + u =y, and (v) givesx=x+0<x +u=y. O

2.4. COROLLARY: If yAz+v=yandy Az+w=2z,then v Aw=0.
PrOOF: Note that 0 < v A w. From
yAz+vAwsy and yAz+vAws<z
we obtain
YAZHUVAWSK YAz,
hence v A w < 0, by Theorem 2.3. This proves v A w=0. O

2.5. THEOREM (decomposition property):
If x{, X5y 03X Y15 Vas- - -2V, € B are such that

X+ x,+ .o Fx, =yt ty,

then there exist 2, € E,,withi€{l,2,....m}andje {1,2,...,n}, such
that

X, =zytz,+ ...+z

in

and
yi=zytzy+ otz

mj

holds forall i€ {1,2,....m} andjE€{1,2,...,n}.
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PROOF: The assertion is trivial for m =1 or n = 1. The general case can
be proven by induction, and proving the induction step is equivalent to
proving the assertion for m = n = 2. Choose z,,, z;, € E such that

X tzn=x,Vy, X Antzg=y
and
Nntzp=x1Vy, Ay +z,=x.
Define z,, = x; Ay, and z = x; + x, = y; + »,. Then we have
mtzptig=x =V <(n+x) Vi +n)=z
By Corollary 2.2, choose z,, € E, such that
Zntzptzytzy =z

Now we have

Xy =zt 2y, Xy =2zytzy
and
NW=zntzy, Y2=12Zy t 2y,
as was to be shown. 0

2.6. LeMMaA: If (u,v) € S, (u, w) € S and v Aw =0, then
utv+w=(u+v)V(u+w) and u=(u+v)A(u+w).
PrROOF: Choose x, y € E, such that
utrv+x=(u+v)Vv(ut+tw), (u+v)A(u+w)+x=u+w
and
u+wH+y=(u+v)v(ut+w), (u+v)A(u+w)+y=u+v.
Then we have
v+x=w+y.
By Theorem 2.5, we may choose z,;, Z15, 2215 225 € E, such that
v=2z+%2z,, X=Zp+2Iy

and

w=2zyt2zy, Y=zZpptin.
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By assumption, we have
0<z;;svAwW=0,

and Corollary 2.4 yields
0<z, < xAy=0.

Therefore we have x =w and y = v, and the assertion follows from the
defining identities for x and y. O

2.7. THEOREM: If (x, y) € S and (x, z) € S, then
x+(yvz)=(x+y)V(x+z)andx+(yAz)=(x+y)A(x+z).
PROOF: Choose v, w € E | such that
zt+tv=yVz, yANz+uv=y
and
y+w=yVvz, yAz+w=z.

Define u==x+y A z. Then we have (u,v)e S and (u,w)€ S, and
Corollary 2.4 yields v Aw=0. Now the assertion follows from Lemma
2.6 and the identitiesu +v+w=x+yVz,u+v=x+y,u+w=x+7z,
andu=x+yAz. O

2.8. THEOREM: If (x,y)E S or (xVy, x Ny)E S, then
X+y=xVy+xAy.

PrOOF: Choose u € E, such that
x+u=xVy and xAy+tu=y.

If (x,y)€ S or (x Vy,x Ay)€E S, then all sums in the identity
x+y=x+(u+xAy)=(x+u)+xAy=xVy+xAy

are defined. O

2.9. COROLLARY: If x Ay =0, then (x,y)ESand x+y=xV y.

PROOF: Note that (x Vy, x Ay)=(xVy,0)ES. O

2.10. THEOREM (distributive laws): The identities

xV(yAaz)=(xVy)A(xVz)
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and
xA(yVvz)=(xAy)V(xAz)
hold for all x, y, z € E.

PRroOF: It is sufficient to prove the first of these identities. To this end,
choose u, v, w € E, such that

yAz+u=xV(yAz), xAyAz+u=x,
Xtv=xVy, XANy+tv=y,

and

xXt+tw=xVz, XNz+w=_2z.
Then we have

XAYANZFUANVAWSXAYAZ,
hence

uNvAw=0,

by Theorem 2.3, and
utvAw=uV(vAw),

by Corollary 2.9. This yields, with Theorem 2.7,
(xVy)A(xVvz)=(x+v)A(x+w)

=x+tvAwW

=XAyANz+tu+vAw
=xAyAz+uV(vAw)
=(xAyAz+u)V(xXAyAz+vAW)
<xV(yAz).
The converse inequality is obvious. 0O
We conclude this section with some remarks on invertible elements.

An element x € E is invertible if there exists x’ € E such that x + x’ = 0.
Let E, denote the class of all invertible elements in E.
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2.11. LeMMA: If x <0, then x € E,.
PrOOF: Apply Corollary 2.2. O

2.12. THEOREM: For each x € E there exists y €, and z € E,, such that
x=y+z.

ProoF: By Theorem 2.8, x=xV 0+ xA0. Then y=xVO0€E, and
z=xA0<0,hencez€E,, by Lemma 2.11. m]

2.13. COROLLARY: If x €E and y € E,, then (x,y)€E S.

PrROOF: Note that (y, y’)€ S and (x, y +y') = (x, 0) € S, hence
(x,y)ES. o

3. Boolean rings

A Boolean ring is a distributive lattice which has relative complements
and a least element.

3.1. THEOREM: Suppose E is a Boolean ring with the partial ordering < and
the least element 0. Define S = {(x,y)EE XE|x Ay=0}and +: S - E:
(x,y)—=xVy. Then (E,0,S, +, <) is a lattice ordered partial semi-
group which has the cancellation property and the difference property.

PrOOF: The verification of axioms (i), (ii), (v), and (vi) is immediate.
Consider x, y, z € E.
First, if (x, y)€ S and (x + y, z) € S, then
OsyAnz<(x+y)Az=0,
hence (y, z) € S, and
0<xA(y+z)
=xA(yVvz)=(xAy)V(xAz)=xAz<(x+y)Az=0,
hence (x,y+z)€ S. Obviously, x + (y +z)=(x+y)+z This proves
(mg;lext, if (x,2)€8,(y,z)€S and x+z=y+z, then
x=xA(xVz)=xA(yVvz)=(xAy)V(xAz)=xAy
and, similarly, y = y A x, hence x = y. This proves (iv).

Finally, since E has relative complements, we may choose z € E such
that x Vz=x Vy and x A z=0. Then we have (x, z) € S and
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(x Ay, z)E S, hence
X+z=xVz=xVy
and
xAy+z=(xAy)Vz=(xVz)A(yVz)
=(xVy)A(zVvy)=(xAz)Vy=yp.
This proves (vii). O

3.2. THEOREM: Suppose (E, 0, S, +, <) is a lattice ordered partial semi-
group which has the cancellation property and the difference property. Then
the following are equivalent:

(a) E is a Boolean ring with the partial ordering < and the least element 0.
(b) x+y=xVy holds for all (x,y)E S.

(¢) SC{(x,y)EEXE|xAy=0}.

(d) S={(x,y)€EEXE|xAy=0}.

PROOF: Suppose first that (a) holds. Consider (x, y)€ S. From E =E ,
and Theorem 2.8 we have x Vy < x4+ y. Since E has relative comple-
ments, we may choose z € E such that

(xVy)vVz=x+y and (xVy)Az=0,
and from Theorem 2.8 we obtain
xVy+z=x+y.
By Theorem 2.5, we may choose z,;, 2,5, 25, Z,; € E such that
XVy=2z,1+2,, z2=2Z3+t2zy
and
X=2zy+2zy, Yy=2z15F2y.

From x < x V y and Theorem 2.3 we obtain z,; < z,; similarly, z,, < z;.
Therefore we have

0<z=z3+2z,<(xVy)Az=0,

hence z =0 and x V y = x + y. This proves (b).

Obviously, (b) implies (¢), by Theorem 2.8, and (c) implies (d), by
Corollary 2.9.

Finally, suppose that (d) holds. By Theorem 2.10, E is a distributive
lattice. If x, y € E are such that x <y, then we may choose u € E , such
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that x + u =y, by Corollary 2.2. By assumption, x A u =0, and Theorem
2.8 yields xVu=x+u=y. Therefore E has relative complements.
Moreover, for all x € E, we have (x, 0) € S, by (i), hence x A 0= 0, by
assumption, and 0 < x V 0 = x, by Theorem 2.8. Therefore 0 is the least
element of E. This proves (a). O

3.3. COROLLARY: Suppose (E,O0, S, +, <) is a lattice ordered partial
semigroup which has the cancellation property and the difference property.
Define S, = {(x,y)EEXE|xAy=0}. Then (E,_,0,S,, +, <) isa
lattice ordered partial semigroup which has the cancellation property and the
difference property, and E | is a Boolean ring with the partial ordering <
and the least element 0.

PrROOF: The first assertion follows from S, C E, X E, and the fact that
(x,y)€ S, implies x + y € E .. The second assertion follows from

S.={(x,y)eE,  XE, |x Ay=0} and Theorem 3.2. O

Therefore, each lattice ordered partial semigroup which has the cancel-
lation property and the difference property contains a Boolean ring.

4. Lattice ordered groups

A lattice ordered group is a commutative group with a partial ordering
such that axioms (v) and (vi) hold.

4.1. THEOREM: Suppose E is a lattice ordered group with addition +, zero
element 0, and the partial ordering <. Define S=FE XE. Then
(E,0, S, +, <) is a lattice ordered partial semigroup which has the
cancellation property and the difference property.

PrOOF: The verification of axioms (i) through (vi) is immediate.

For all x, y, z € E we have (—x)V(—y)= —(x Ay) and

z+xVy=(z+x)V(z+y), hence
x+y=(x+y)+(=x)V(-y)+xAy=yVx+xAy.

Definez==xV y—x. Thenz € E _ and x A y + z=y. This proves (vii). O

4.2. THEOREM: Suppose (E, 0, S, +, <) is a lattice ordered partial semi-
group which has the cancellation property and the difference property. Then
the following are equivalent:

(a) E is a lattice ordered group with addition +, zero element 0, and the
partial ordering < .

(b) E,.CE,.

(¢) E=E,.
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PROOF: Obviously, (a) implies (b).

Suppose now that (b) holds. Consider x € E: By Theorem 2.12, there
exist y€ E, CE, and z € E, such that x =y + z, hence x is invertible.
This proves (c¢).

Finally, suppose that (¢) holds. Then S =E X E, by Corollary 2.13.
This proves (a). O

4.3. COROLLARY: Suppose (E, 0, S, +, <) is a lattice ordered partial
semigroup which has the cancellation property and the difference property.
Define Sy =E, X E,. Then (E,, 0, Sy, +, <) is a lattice ordered partial
semigroup which has the cancellation property and the difference property,
and E, is a lattice ordered group with addition +, zero element 0, and the
partial ordering <.

PrOOF: Obviously, (x, y) € S, implies x + y € E,. Moreover, the verifi-
cation of axioms (i) through (v) is immediate. Consider x, y € E,. Then
we have x Vy+ (xAy+x'+y)=0and xAy+(xVy+x'+y)=0,
by Theorem 2.8 and Corollary 2.13, hence x Vy € E, and x Ay €E,.
This proves (vi). Furthermore, we may choose u € E , such that

x+u=xVyand xAy+u=y. Then (xVy) +x)+u=0, hence u €
E,. This proves (vii). Therefore the first assertion holds, and the second
one follows from E, = (E,), and Theorem 4.2. O

Therefore, each lattice ordered partial semigroup which has the cancel-
lation property and the difference property contains a lattice ordered

group.
5. Remarks

The purpose of this final section is to compare lattice ordered partial
semigroups which have the cancellation property and the difference
property with earlier solutions of Birkhoff’s problem, and to indicate an
application of this new concept.

Swamy [5] considered dually residuated lattice ordered semigroups.
Each Boolean ring E can be looked at as a dually residuated lattice
ordered semigroup if the sum x+y of x, y €E is defined to be the
supremum of x and y and if the difference x —y is defined to be the
relative complementof x A yinx. If x,y,z € E are such that x =0+#y =z,
then x+z=y+z and x #y. Therefore, there exist dually residuated
lattice ordered semigroups in which the cancellation law does not hold.

Rama Rao [3] considered algebras of species (2, 2, 2, —1) with axioms
1, 2, 3, and 4. If E is such an algebra and if x + x = 0 holds for all x € E,
then E is a Boolean ring and the sum x + y of x, y € E is the symmetric



[11] Boolean rings and lattice ordered groups 61

difference of x and y. If x, y, z € E are such that x=0+# y =z, then x <y
and x + z £ y + z. Therefore, there exist algebras of species (2, 2, 2, —1)
with axioms 1, 2, 3, and 4 in which order and addition are not compati-
ble.

As another common abstraction of Boolean rings and lattice ordered
groups, which is actually close to the notion of a lattice ordered partial
semigroup which has the cancellation property and the difference prop-
erty, Wyler [6] introduced clans. A clan is a lattice E withaset TCE X E
and a map (called subtraction)—: T — E such that axioms C1, C2, C3,
C4; and C7 hold. These axioms guarantee the existence of a zero
element, and the partial subtraction induces a partial addition which in
turn leads to an extension of the originally defined partial subtraction.
The induced partial addition is also needed in the formulation of the
axioms of symmetry and commutativity.

If E is a lattice ordered partial semigroup which has the cancellation
property and the difference property, then a partial subtraction may be
defined on the set T= {(x, y) € E X E|x <y} by assigning to each pair
(x, y) € T the unique relative complement of x in y, as given by Corollary
2.2. This way, E becomes a symmetric commutative clan such that the
range of its partial subtraction is contained in E | .

If E is a lattice ordered group, then E can be looked at as a symmetric
commutative clan in at least two ways: The first of these consists in
defining a partial subtraction on the set T as described above, while the
second one consists in defining subtraction on E X E by assigning to each
pair (x, y) €E X E the sum of y and the inverse of x. In the latter case,
the range of the subtraction is not contained in E _ unless E is trivial.

Therefore, the class of all lattice ordered partial semigroups which
have the cancellation property and the difference property is strictly
smaller than the class of all symmetric commutative clans. In particular,
it is free from the ambiguity which exists in the assignment of a clan to a
lattice ordered group, and it has the additional advantage that its axioms
are given in terms of partial addition alone.

A first step towards the definition of lattice ordered partial semigroups
was made in [4] where ordered partial semigroups were introduced and
used for a unified approach to the Jordan decomposition of signed
measures on a Boolean ring and the corresponding decomposition theo-
rem for functionals on a vector lattice. It turned out that the class of all
ordered partial semigroups which have the decomposition property and
the difference property as given in [4] has to be restricted in order to
obtain characterizations of Boolean rings and lattice ordered groups by
weak additional properties, and in order to make sure that each additive
map on the positive cone of an ordered partial semigroup E has a unique
extension to the whole of E. These observations led us to the definition of
lattice ordered partial semigroups which have the cancellation property
and the difference property. These are in fact sufficiently close to
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Boolean rings and lattice ordered groups, and they admit the solution of
the problems described above.
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