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Introduction

This paper originated in the following philosophical framework. Inspired
by M. Noether’s theorem [4] and facts about generic double planes over
C, [10], as well as by Rudakov’s and Safarevic’s computations in char-
acteristic two [8] we were led to suspect that the ring k[x, y, z ]/( zP -
f (x, y» is a UFD provided f is a sufficiently general polynomial of
degree m. Here k = k, characteristic k = p &#x3E; 5, m &#x3E; 5, say. The above

conjecture still remains open but here we offer a result that in our

opinion renders it extremely probable, to say the least, in the case when p
divides m.
We consider in the paper a generic polynomial with indeterminate

coefficients. F = Y-Tij X’Yi, where 0  i + j  p, and the ring R =

L[X,Y,Z]/(ZP - F), L = k(Tj)’ where Tij are algebraically indepen-
dent transcendentals over k, deg F = p. We show that R is a UFD. This
is our main theorem (MTH) in its algebraic form. In a subsequent papér
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we hope to prove our original conjecture and also to generalize the result
of this paper to degrees of f 9L p.

The proof given here follows very closely an outline shown to the
author by Deligne. It is conceptually akin to SGA VII exp XIX. A new
feature is, for example, DRL - MTH (see Chapter V).

Let us outline the main idea of the proof, which is simple, if somewhat
lengthy in detail. Let S = Proj L [ X, Y, Z, Zo ]/( Zp - F(X, Y, Zo». S- has
N = p 2 - 3p + 3 rational double points of type A p - l, (Sing S ). The galois
group G = Galtk ( Tj) : k (TJ) ) acts on S and it permutes the N ele-
ments of Sing S. 

_

Step I is to show that G induces the full symmetric group on Sing S.
Step II is to refine the above and to analyze more closely the action of

G on Pic 9 ( S is the minimal desingularization of S). It turns out that
there are elements of G which induce the identity on Sing S but
nevertheless act non-trivially on certain exceptional curves contained in
S. See Double Reversal Lemma (DRL) and Gal B below.

Step III is to deduce from DRL the fact that Pic S is generated by the
obvious curves, namely the exceptional curves for É - S and a very
ample curve on S pulled back to S.

Step III provides us already with the proof of our main theorem in its
geometric form (MTHG). The equivalence of the geometric form with the
algebraic from ( R is a UFD) follows from a simple exact sequence which
we had introduced in a previous paper [1], see (0.5.1) below.

Finally, let us remark that Jeff Lang has proven a number of related
results in his Ph.D. thesis [6]. His method was to use differential

equations in characteristic p &#x3E; 0.

At a crucial point in our proof we use the fact that Pic( S ) has no
p-torsion. We had conjectured it, but the first proof is due to W.E. Lang
whose result we quote from [7].

It is not hard to extend our main theorem to the case where F is

replaced by the polynomial not of degree p but rather of degree pe, e = 1,
2,.... We leave this extension as an exercise to the reader. In a subse-

quent paper we hope, among other things, to examine the transition from
"generic" to "general" and to prove our original conjecture at least in the
case when pl m. *

Chapter I. Notation; statement of the main theorem and of the principal
theorems and lemmas used in its proof

0. Notation

(0.1) k = k is an algebraically closed field of characteristic p &#x3E;- 5. TiJ are

* See appendix to this paper, Comp. Math. 54 (1985) 37-40.
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indeterminates algebraically independent over k, 0  i + j  p.

We have the natural morphisms

If X ---&#x3E; A is a morphism we denote by Ex the scheme EA X X and by 7rx
the projection ’TTx: Ex  X.

If U c A is open or closed ’TTu: Eu --+ U has the above meaning with
respect to the inclusion map U -A. We apply the same convention to
maps D - E, D - A, X - E, X - A.

(0.2) We will identify closed points of A with polynomials of degree p
in k[ X, Y]. The following subset of A will be important to us, V,A
corresponding to polynomials g E k [ X, Y ] of degree p such that the
surface ZP = g has no singularities at infinity. It is not hard to prove that
V is open and dense in A. This follows from the following fact:

Let us write out g( X, Y) in terms of homogeneous parts:

Then, g E V if and only if the system of equations gp _ 1 = 0, agp/ax = 0,
agplay = 0 has only the solution x = 0, y = 0. Further, we define a subset
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U c V as follows g E U if and only if g e V and g has only non-degener-
ate singularities (i.e., gx = gy = 0 implies hessian of g # 0). We will show
below that U is open and dense in V, see (3.1.3).

(0.3) In this paper we will constantly discuss an algebraic surface over
L. Let us fix once and for all some notation relative to that surface.
R = L [ X, Y, Z ]/( Zp - F( X, Y )). ,S affine or S aff = Spec( L [ X, Y, Z] /( ZP -
F(X, Y») where F is as above. S aff = Spec R. S = Proj(L[X,Y,
Z, Zo ]/( Zp - F( X, Y, Zo ))) where F(X, Y, Zo ) is F homogenized (some-
times we will write F( X, Y, Xo )). n:s --&#x3E; S a minimal desingularization of
S over L. PL denotes the projective n-space over L.

The following facts can be shown about S’aff and S. There is a natural
projection, a finite map:

We will denote by 1 the element of Pic S given by:

S has a set of isolated singularities denoted Sing ( S ). One can show that:

Thus

Also, all the singularities are rational double points of type A p _ 1, see
(3.1.14). Further, the number of singularities is p2 - 3p + 3, see (3.1.12).

The elements of Sing S will be denoted by Greek letters a, /3, y, etc. If
we need to write out their coordinates in AL we will write a = ( al, a2, a3 ),
etc. In particular, we define

(0.4) The following facts about the minimal resolution map n: S -- S
are well known, see [1] Section 1.

Let a E Sing S, then n -1 ( « ) consists of a tree of ( p - 1) rational
curves over L with intersection matrix (in Pic S )
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The tree can be pictured as follows:

We wish to emphasize the following subtle point which is of key
importance in this paper. There are two possible natural choices of
ordering the curves of the tree (from left to right or from right to left).
We choose from the outset one orientation for each singularity aE Sing S
and we number the curves accordingly. Thus the tree will now be labelled
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Ta stands for the ordered (tree) sequence Cl C2 , ... , Cp 1. ToPP stands
for Cpa-l’ Cpa-2’...’ Cr. -

For each ae Sing S we now define a special element of Pic S

and

Da has the following properties. First of all, Da. c;a = O( p ) for all j,
1  j  p - 1. Also

(0.5) We will denote by

the subgroup generated by 1 and the Ç"l a E Sing (S), 1  j  p - 1.
There is an intersection form on Pic S, we denote it by A . B, A, BE Pic S.
It can be shown that 1.1 = l’ = p. Also, we have the exact sequence

And Cl R is a finite elementary p group, see [6] or [9]. It was shown by
W.E. Lang that Pic( S ) has no torsion [7].

(0.6) Let X be a scheme (noetherian), Et(X) the category of finite étale
coverings of X.

Let R be an algebraically closed field b: Spec 9 - X, a geometric point
of X. Let Y E Et( X ).

Fbx ( y) is the set of liftings

If W ---&#x3E; X is a morphism, we get the base change functor Et X - Et W
denoted R W or just R.

If X, Y are schemes we denote by X U Y the disjoint union of X and
Y.
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(0.7) In the following definition the ground field is assumed algebrai-
cally closed of characteristics # 2.

A, B are smooth curves, B irreducible, 7T finite.

03C0’

DEFINITION : A --- &#x3E; B is called very simple if there exists a point q E A with

7r(q) = q and such that e( q) = 2 (ramification is two); further if B 0 = B
- ( q ) , A ° = 7T-I( B 0), then A ° - B ° is finite and étale; also qr is étale
onA- {q}.

(0.8) DEFINITION: S, T two finite sets. m: S - T a two-to-one and onto
mapping. We call the following commmutative diagram a double flip:

where as is an automorphism of S such that there are two elements A,
B E T with preimages {A1,A2}, {B1,B2} in S and such that:

Also a s 1 S - {AI,A2,BI,B2} is the identity. (Intuitively we think of T as
the set of position of a certain number of coins; each coin has " heads"
and " tails", hence the two-to-one map m: S - T. A "double flip"
corresponds to turning over exactly two coins without altering the order
of the coins.)

1. Statement of principal results

Our Main Theorem (MTH) is this:

MAIN THEOREM ( MTH ) (1.1): R is a unique factorization domain.

We will restate the theorem and in fact prove it in its geometric form.

MAIN THEOREM (GEOMETRIC FORM) (MTHG) (1.2): Pic(,S ) = PicOb(S).

REMARK: Since there is no torsion we will, in fact, prove p Pic(S) =
p Pic°b( S ).
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The equivalence of MTH and MTHG is an immediate consequence of
the exact sequence (0.5.1). We will deduce MTHG from the following
theorems to which we give descriptive names G1, G2, G2’, DRL (double
reversal lemma).

Here are the statements:

THEOREM Gl (1.3): G = Gal(k(1;j): k ( T ij )) acts on Sing( S ) as the full
symmetric group.

THEOREM G2 (1.4): There exists a 0 E G such that a induces the identity on
Sing S but for some pair of singularities a, /3 E Sing S J(fl) =
- HaQ( Hb)= - H03B2 and for all P =;É y =t: a, -y EE Sing S a (JH HY.

THEOREM G2’ (1.5): For every pair of singularities a, /3 E Sing S there
exists ao E G such that a induces the identity on Sing S but Q( Ha ) _
- Ha Q ( Hb ) _ - H03B2 and Q ( HY ) = HY for03B2 # Y # a y E Sing S.

DRL (DOUBLE REVERSAL LEMMA) (1.6): For every pair of singularities a,
/3, a *,8 in Sing S there is an element a E G such that the induced isometry
i ( Q ) of Pic( S ) preserves pic,b(g ) and satisfies: i(o)(Da) = D;P, i ( Q )( D03B2 )
= D03B2oP, i(o)(l)= 1 and for all Y E Sing S with a =1= y 4= 8 we have i(o)(Dy)
D,,. The logical structure of the proof will be as follows:

The implication Gl, G2 =&#x3E; G2’ is a simple exercise and will not be

described. The implication MTHG MTH has been indicated above.
Thus, our paper consists in proving Gl, G2, see Chapter IV. Further, in
showing G2’ =&#x3E; DRL, this will be sketched at the end of Chapter IV
below, and finally we will prove the implication DRL - MTHG, in
Chapter V.

Chapter II. Preliminaries

1. Fundamental group facts (see SGA I, Reference [3J)

Let i : Y - X be a morphism of locally neotherian connected (regular)
schemes. Let b : Spec 03A9 -&#x3E; y be a geometric point of Y. Let us abuse
notation and denote by b also the corresponding geometric point of X.
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(2.1.0) We recall the definition of the induced homomorphism:

Now

By SGA I, p. 142 we have the isomorphism of functors:

we define 8 = i *(a) by the diagram:

PROPOSITION (2.1.1) If W E Et(X) is irreducible then 7TI(X, b) acts transi-
tively on Fbx(W) for any base point b in X.

PROOF: W is connected, so Proposition 1 follows from SGA 1, [3], p. 140.

PROPOSITION (2.1.2): Assume W E Et(X) irreducible and that R ( W ) = Wy
decomposes Wy = s(Y) U T where s: Y - Wy is a section and T irreduci-
ble. Then for any base point b E X the action of TI1 (X, b) on Fb ( W ) is

transitive and twice transitive.

PROOF : Transitivity was shown above. Also the statement is independent
of base point (by SGA I ). So choose the base point to be in Y.
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where F Y( s ( Y )) is the one element set {A}.
Now ’03C0}(Y, b ) acts on FbY(Wy), it fixes A and acts transitively on

FbY(T ) since T is irreducible, see [3], p. 140. Now the identification

F Y( W ) = F bY( WY ) shows that for some element A 1 of F Y( X ), 03C01 ( X, b )
acts on FbY(W) so that the stabilizer of A 1 acts transitively on the
complement of A1 in FbY(W). This, together with transitivity, establishes
twice transitivity. Q.E.D.

PROPOSITION (2.1.3): Let W E Et(X), R ( W ) = WY E Et( Y ), let b be a
base point in Y. Suppose that the action of 03C01 (Y, b ) on F Y( WY ) includes a
transposition, then so does the action of 03C01 (X, b ) on FbY(W). Also, if b is
any other base point in X not necessarily in Y, the action of ’03C01 (X, b ) on
Fbx(W) also includes a transposition.
PROOF: Follows immediately from the definition of the induced homo-
morphism ’03C01(Y, b ) - ’03C01 (X, b ) and the fact that the functors Fb Y, Fb are
isomorphic.

PROPOSITION (2.1.4) : Let V, W E Et( X ), m : V - W étale covering of
degree two,

m y: Vy - WY the induced covering.

Suppose that there is a a E 03C01 ( Y, b ) such that the diagram

is a double flip. Then also the diagram

is a double flip.



13

PROOF : Follows from the definition of ô and a diagram chase.

REMARK (2.1.4.1): Under the above assumptions for any base point b in
X the the action of 7T1 (X, b) on Fbz(V) - Fb ( W ) includes a double flip.

PROOF: Diagram chase using the fact that Fb and Fb are isomorphic
functors.

2. Preliminaries on curves

THEOREM CI (2.2.1) : Let A - B be a very simple covering, then the action
of 7TI (B 0 , b ) on Fb (A 0) contains a transposition.

THEOREM C2 (2.2.2): Let D---&#x3E;A -- &#x3E; B be two very simple coverings.
Assume that q E D, q E A, q E B are such that e,,(q) = 2, e’TT( q) = 2,

° gr°

e1T( q) = 2, ,p (q) = q, 7T( q) = q. Let D ° -- &#x3E; A 0 -- &#x3E; B 0 be the induced étale

coverings where B 
0 
= B - {q}, A 0 = 17 - 1 (B ° ), D 0 = ~ - 1 ( B ° ). Then for

any base point b in B 0 the action of ’!Tl ( B ° , b ) on the diagram Fb ( D ° ) -

Fb ( A ° ) includes a double flip.

PROOF OF THEOREM Cl : We denote f : A - B, q E A, f ( q ) = q, e f ( q ) = 2.

the induced étale cover.

Let (9q be the local ring of q in B. 
____ sep.Let êq be the henselization of (9q. We may take iflq C k( B 0 )sep. .

Consider the cartesian diagram

If K is the field of fractions of âq we get the induced diagram
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Now Spec mqXBover q Z S U Spec (O9,(-t) where S is a union of sections
over Spec (9., thus a trivial covering and t is a uniformizing parameter in
(9,. This follows from elementary theory of henselian rings. Correspond-
ingly, we can write the second diagram as:

where again S is a union of several copies of Spec K.
Now we have Spec k ( B ° ) - Spec K Spec k ( B ° ) - B ° ). Thus we

get a geometric point b of Spec K and the corresponding geometric point
bl 1 of BO. ’1T}(SpecK,b):::=Gal(k(AO): K ) acts on FSCec Ï (5’U
Spec K(Ii» and it is clear that it induced a transposition. Consequently,
’!Tl (B ° , bl) induces a transposition in Ft 1 0 ( A ° ) by our discussion of the
fundamental group (2.1.3).

PROOF oF THEOREM C2: Choose a henselization

and consider the base change.

We get the leftmost column from elementary properties of henselian
rings. S is a union of several copies of Spec dq, thus a trivial covering.
Similarly, SI and S2 are trivial coverings of S.
We get the induced diagram, where k is the field of fractions of Cq.

Choose an embedding K c K ( B ° ) . This defines a geometric point b of
Spec k (and bi of B ° ). By [3], prop. 8.1, p. 143, we have 7r,(Spec k,
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b ) = Gal( k (B 0): K ) and this group acts on

4 4
and we get a double flip by simple Galois theory (just send Vi to 2013 V.).
If bl is a the corresponding base point of B ° we conclude that the
’TrI ( B °, b 1 ) action on Fb1 (D 0) Fb1 (A 0) includes a double flip (from our
discussion of the fundamental group (2.1.4)).

3. Irreducibility of the hessian

We will need the following proposition in order to prove that D is

irreducible and normal and cp: D - E is finite. A related question is

discussed in Coolidge’s book about curves [Treatise on Algebraic Plane
Curves, Dover], p. 153.

PROPOSITION (2.3.1 ) : Fxx Fy y - ( Fx y ) 2 = H( F ) is irreducible in R 1 =
k[T, X,Y].

LEMMA (2.3.2): Fxx is irreducible and so is Fyy. .

PROOF : Fxx = 2 T20 + Sxx where Sxx does not involve T20. RI/(Fxx):’:= R 2;
R 2 = R 1 /( T2o ), a domain. Q.E.D.

LEMMA (2.3.3.) : Fy y does not divide H( F ).

PROOF : Fy y contains the term 2 To2 and ( Fx y ) 2 does not contain T02.

COROLLARY (2.3.4) : Let V: H( F ) = 0 so that k[V] = R 1 /H( F ) then Fy y is
not a zero divisor in k [ h ].

PROOF : Obvious.

COROLLARY (2.3.5): k[V] injecte into the localization k [ h ][ 1 /Fy y ]

LEMMA 2.3.6: k [ T ] [ 1 /Fy y ] is a domaine

PROOF : Define a homomorphism h of R1 into R1 by h ( X ) = X, h ( Y ) = Y,
h(Tj) = Tj for (i,j) =1= (2,0) and h(T2o) = H(F) = T2o Fyy + SxXFyy -
( Fx y )2. Note that Fyy, Sxx, FX y do not involve T20. Also h ( Fyy ) = Fyy. ,h
induces an injective map h : R 1 /( T2o ) - R 1 /( H( F )) which takes the class
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of Fy y to the class of Fyy. We therefore get the induced map:

which is still injective. But now the image of h includes not only Ti., X,
Y for (i,j) =1= (2,0) and sxx Fyy - (Fxy)2 hence also T2o Fyy but also T20
since we have inverted Fyy in the image. Thus hl is an isomorphism. This
proves Proposition (2.31). Q.E.D.

4. Non-singularity of S at infinity

For the sake of completeness we also include a simple lemma about the
singularities of S.

LEMMA (2.4.1): There are no singularities of S in S - S.

PROOF: At such a singular point we would have:

but it is clear that the only common solution in L is X = Y = 0 but then
also Z = 0 and that does not define a point of the projective space over
L. Q.E.D.

Chapter III. Geometry of the mappings

(3.1 ) Generalities

The main results of this chapter are theorem (3.2.12) (existence of a
special pencil) and twice transitivity result (3.3.1). In order to prove these
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results, we have to established certain basic facts about the maps 77-:

E - A and cp: D 2013 E. These facts should also be of some independent
interest in the theory of Zariski Surfaces. Theorem (3.2.12) will be

combined with basic facts about the fundamental group to prove the

crucial Theorem G2 (1.4). The twice transitivity result will be essential in
proving the two-transitivity in Theorem Gl (1.3).

PROPOSITION (3.1.1): E is smooth, irreducible; in fact E is isomorphic to an
affine space over k of dimension equal to the dimension of A.

PROOF : If we write out Fx and Fy we easily see that:

is isomorphic to

REMARK (3.1.1.1.): the above observation is due to S. Mori. We will use
his idea again in (3.2.10) below.

REMARK (3.1.1.2): qr has at least one finite fiber.

PROOF: This follows from example (3.1.6) below.

COROLLARY (3.1.1.3): v is dominating and generically finite. The field
extension k ( A ) c k ( E ) is a finite algebraic extension.

PROOF: This follows from the above remark and [5].

PROPOSITION (3.1.2): 7rv: Ev --+ V is a finite map.

PROOF: It is enough to show that ff v is quasi-finite and projective ([5],
exercise 11.2, p. 280).

(i) uv is quasi-finite. If g E v then the surface ZP = g can only have
finitely many singularities. Otherwise, there would be a singularity at
infinity which contradicts the definition of V.

(ii) 7rv is projective. We have the commutative diagram:



18

where S v is defined in p3 v by ZP - F(X, Y, Zo ) and Sing(Sv) is defined
by the above homogeneous polynomial and its partials with respect to X,
Y, Z, Zo. The middle vertical arrow corresponds to projecting from the
point at infinity on the Z axis in each fiber. The map Ev ---&#x3E; P’ is

projective because Sing(Sv) c Sv is closed and Ev is the reduced image
of Sing(Sv), thus closed in p2 . Therefore E v - V is projective. Q.E.D.

COROLLARY (3.1.3): U c V is open and dense. ’lTu: Eu - U is étale.

PROOF: Ev is open and dense in E. The polynomial H(F) is not

identically zero on E. Thus, it defines a proper closed subscheme

ove Ev. Since 77V is finite, 77v(,uv) is a proper and closed subset of V.
Now U = V - 7rv (av). This shows that U is open and dense in V. The

fact that -7u is étale follows from the Jacobian criterion.

COROLLARY (3.1.4): For any base point b in U the action of 77,(U, b) on
Fb ( Eu) is transitive.

PROOF: Eu is open and dense in E and thus it is irreducible and therefore
connected. The corollary follows now from SGA 1, [3], p. 140.

PROPOSITION (3.1.5): D is irreducible and normal. ç: D - E is finite of
degree two.

PROOF: This follows from the irreducibility of the polynomial H( F ) in
the ring k[E] == k[Too,T20,TII,Tol’’’.. X, Y], see (2.3.1) and [5], p. 147,
exercise 6.4.

Next we given an example of a point T E U. By counting the points in
’TT - 1 ( ’T) we will find the degree of gr to be p 2 - 3 p + 3. This result was
originally proven by J. Sturnfield, see [1].

EXAMPLE (3.1.6): For almost every choice of A E k the polynomial
h(x,y)=xy+Axp-l+yp-]+xyp-l+yxp-] 1 defines a point T E U.

Further we have that the cardinality of ’TT-I( ’T) is p2 - 3 p + 3. The proof
will follow from the following computational lemmas:

PROOF OF EXAMPLE (3.1.6)

LEMMA (3.1.7):
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For all but finitely many choices of A E k the system of equations

has no solution.

LEMMA (3.1.8): For all but finitely many A E K the intersection number of
gx = 0 and gy 

= 0 at infinity is p - 2.

PROOF OF LEMMA (3.1.7): Consider the system:

x = 0 implies y = 0 but (x, y) = (0, 0) is not a solution. Assume x =1= 0,
and rewrite the last equation,

eliminate Ax p - 2

It is enough to show that

and
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have no common component. (x = 0 is excluded again). We get finitely
many values from A from the first equation once this is established.

At common points at infinity of the two curves

If x = 0 then

since p =A 3. This gives

Thus no point with x = 0. If x =1= 0 then

Set T = y/x so that T p - 2 = 1. The second equation gives

so that

so that

which gives 2 = 1. Contradiction.

Therefore the two curves have no common point at infinity and they
cannot have a common component. Q.E.D. (for lemma 5.1.).

PROOF OF (3.1.8): This proof is based on an idea of Jim Sturnfield. At a
common point at infinity we must have:

Thus there are p - 2 common points.
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Homogenize

Set

Set

Rewrite

as

The tangent line at W = 0, x = T is

Similarly for the second curve

and we consider W = 0. We obtain:

and we have :

We compute the tangent line at W = 0, x = T. From
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we obtain:

or

Finally

defines the tangent line. We compare the two obtained tangent ines:

Suppose

So that 2 + 2 TA = 0. But choose A so that A =1= - - for every T such that
T

T p - 2 = 1. Then we get a contradiction. Thus for all but finitely many
A E k we get no common tangent, Q.E.D.

LEMMA (3.1.9): For all but finitely many choices of A E k we have g E V.

PROOF is by computation. By (0.2) we must consider the system,

Suppose that there is a solution with x # 0, then

and

Set T = y/x so that
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But A TP - 1 = - 1 and we obtain

Contradiction for almost every choice of A. Q.E.D.

COROLLARY (3.1.10) : There exists a point g E V such that ’TT-I(g) consists
of p 2 - 3 p + 3 unramified points ( at which u is étale) deg r = p 2 - 3 p + 3.

COROLLARY (3.1.10.1): ’TT is generically étale.

COROLLARY (3.1.10.2) : U is open and dense in A (and in V).

COROLLARY (3.1.11 ) : The degree of the field extension k(A) c k(E) is

p2 - 3p + 3.

COROLLARY (3.1.12) : The surface saff has p 2 - 3p + 3 singularities at

finite distance.

PROOF : Sing S = Fbu(Eu) where b: spec k U -- Spec k ( U ) - Spec U.
Now the cardinality of Fbu(Eu) is equal to the degree of ’TT u: Eu ---&#x3E; U and
that is p 2 - 3p + 3. Q.E.D.

COROLLARY (3.1.13): The map Du - Eu is finite and étale of degree two.
The degree of the field extension

PROOF: Follows from definition of D, and (3.1.11) above.

COROLLARY (3.1.14): All the singularities of S are non-degenerate.

PROOF: The maps Du - Eu ---&#x3E; U are étale coverings. Let b : Speck U
U be as above (3.1.12). Now we have m : Fb (Du) - Fb (Eu) and this map
is two-to-one and onto. But Fb(D,) = set of pairs

Furthermore, Fb(Eu) = Sing S, and m corresponds to projecting a,t&#x3E; to
a. By a counting argument we must have all t = 0 so all Ha =1= 0. Q.E.D.
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(3.2) Existence of a special pencil

In order to prove the main result of this section Theorem (3.2.12) below
our next objective is to find a point q E V - U such that the cardinality
of ’TT-I(q) = (deg r) - 1. We will do this by by by producing an explicit
example of such a q.

EXAMPLE (3.2.1): Construction of the Special Polynomial (point of V) q.
The point q will be constructed as follows:

where B = + 1 if p # 13 and B = -1 if p = 13. A E k can be chosen so
that the cardinality of ’TT-I(q) = (deg ’TT) -1, q E V. Also the surface
Zp = g has (deg ’TT) - 1 non degenerate singularities and one degenerate
singularity (in other words H( F ) is equal to zero at exactly one point of
’TT-l( q ».

LEMMA (3.2.2): q e V for almost every choice of A E k.

PROOF: Identical to the proof of 5.3.

LEMMA (3.2.3): For almost every A E k the system of equations ( * * ) below
only has the solutions (0, 0, t ), t E k

PROOF: Consists of the following computation:
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(0, 0, t ) is always a root. Also x = 0 =&#x3E; y = 0.
Let us find all solutions with x =1= 0. We eliminate A from the first two

equations as follows:

or

And we obtain:

We wish to show that the curves

and

have only finitely many points in common. Again x = 0 implies y = 0 so
enough to prove this for x # 0.

LEMMA (3.2.4): The curve gy = 0 is smooth and irreducible.

PROOF: Consider the projective curve (closure of gy = 0)

At points at infinity, i.e., where W = 0, we have:
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or if

at infinity implies

Thus, there are no singularities at infinity. We dehomogenize:

and check for singularities at finite distance:

First of all x = 0 is impossible if y = 0 then x = 0, contradiction. Assume
y # 0 and transform
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x = 0 is excluded. We obtain

Now we must have

If P =1= 13 then B = 1 by our assumption and 13 = 0 a contradiction. If
p = 13 then B = -1, - 9 = - 4 or 5 = 0, again a contradiction.

Q.E.D. (for lemma 3.2.4).
In order to complete the proof of (3.2.3) it is enough to find one point

on the curve gy 
= 0 which is not on the first one in the system ( * * * )

(3.2.3.2).
Take a Doint with

and with

so that

The first curve gives

or

since
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Thus

contradiction since p &#x3E; 5.

COROLLARY (3.2.5): For almost every A E k ( * * ) (3.2.3.1) has only the
(0, 0) solution in (x, y).

LEMMA (3.2.6): For almost every choice of A E k the intersection number of
gx = 0 and gy 

= 0 at the points at infinity is p - 2.

PROOF: Analogous to (3.1.8). We omit it.

LEMMA (3.2.7): Assumptions as in (3.2.6). The intersection number at the
origin is two.

PROOF : Simple computation using p =1= 2 and p =1= 3 (omitted).

COROLLARY (3.2.8): The cardinality of u - 1 (q) is p 2 - 3 p + 2 = degff - 1.
The hessian is non-zero at all but one point of ’TT-I( q). It is zero at one point
which we call q, q E ’TT-I( q).

PROOF: The total intersection number of the curves gx = 0, gy = 0 is

( p - 1)2 by Bezout’s theorem. The number of intersections at finite
distance is ( p - 1 ) 2 - ( p - 2) -1 by the above. Thus it is p 2 - 3 p + 2.
Also the local intersection number is equal to one at every point where
the hessian is non-zero. Q.E.D.

PROPOSITION (3.2.9): Let A be as in example (3.2.1). Let L be the line in
A = Spec k [ Tij ] corresponding to polynomials of the form :

then 7rL: EL - L, EL is an irreducible and smooth curve. There is exactly
one ramified point lying over q, let us call it q with ramification index
e(q) = 2.

LEMMA (3.2.10): EL is smooth and irreducible.

PROOF :
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Now we have shown above that the last curve is smooth and irreducible,
see (3.2.4). EL  L is isomorphic to the projection to the Spec k[À] axis
of the space curve defined in Spec k[x,y,À] by the two equations:

q corresponds to the point À = 0. The matrix of partials with respect to x,
y, À is:

or

We have shown above that if

for every point of the space curve except À = x = y = 0. Thus, all of those
points are smooth. Also, À = x = y = 0, the point q, is smooth and x is a
uniformizing parameter at q. Finally, we see that the hessian has a simple
zero at q and e ( q ) = 2. All this follows from the matrix.

Similarly, we consider the map

DL is isomorphic to the curve in 4-space Spec k[x,y,À,W] ]

The Jacobian matrix is:
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all points with W = 0 are clearly smooth.... If À = 0 and W = 0 then we
must be at the point = given by x = y = À = W = 0 by (3.2.9). We
compute matrix there:

it has rank 3, thus the point is non-singular.
W is a uniforming parameter at q and gxxgyy - (gXy)2 = W2 has a

zero of order two at q. From this we see that the projection ’TTL 0 ~L :
DL ---&#x3E; L ( L corresponds to the Spec ]A; [À] axis) has ramification equal to
four at q. Also cfL (q) = q and e"’L (q) = 2, therefore, e,,(q) = 2.

LEMMA (3.2.11): DL is Irreducible.

PROOF: (PL: DL ---&#x3E; EL is finite and generically two to one. Thus DL may
have at most two components. Let CL be the component which contains
q. Now q is a smooth point of CL and e(q) = 2. Also, CL - EL is a finite
map (proper and quasi finite), thus CL - EL must have degree two.
Therefore, CL = DL (inclusion of a closed subscheme is proper - [5]. p.
102) 48 (a).

The following theorem summarizes what we have shown:

THEOREM (3.2.12) ( Existence of a Special Pencil) : There exists a point in
q E h - U and a smooth rational curve L closed in V such that q E L and

Lu = Ln U is open and dense in L and closed in U. Further, let L1 be the
open subset of L defined by LI = LuU{ q}. We have the induced coverings:

are very simple coverings
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REMARK (3.2.12.1): Lu c U is closed and the bottom line may be induced
directly by the base change Lu - U from Eu. DLU --+ ELU ---&#x3E; Lu are étale
maps. 

U U

REMARK (3.2.12.2): EL, EL,, DL, are smooth irreducible curves.

PROOF:To obtain Lu = Lrl U remove from L the finitely many points
over which ’1T : EL --- &#x3E; L is ramified (’1T is not everywhere ramified, for
example, it is not ramified at N-2 points of ’1T-l( q ». Now q corresponds
to À = 0. The smoothness of DLU can be seen from the matrix (3.2.10.1)
above. 

U

All the other assertions have been shown before.

COROLLARY (3.2.13): Let b: Spec 03A9 - Lu be any geometric base point,
then a) the action of ’1Tl(Lu, b) on FtU(EL ) includes a transposition; b)
the action of 7r, (Lu, b ) on FbLu(Dju) - FbLU(ELu) includes a double flip.

PROOF: a), see Theorem CI (2.2.1) above; b), see Theorem C2 (2.2.2)
above.

COROLLARY (3.2.14): For any geometric base point b in U we have
a ) the action of 77, (U, b ) on Fb(Eu) includes a transposition;
b ) the action of 7r, ( U, b ) on Fb (Du) - Fb ( EU ) includes a double flip.

PROOF: See propositions (2.1.3), (2.1.4), and (2.1.4.1).

(3.3) Twice transitivity of the action of r1, (U, b) and Fb (Eu)

THEOREM (3.3.1): For any base point b in Zu ’TTl(ZU’ b ) acts on Fbzu(Ezu)
in such a way that there is an element A E FbZU(Ezu) whose stabilizer in
’TTI (Zu, b) acts transitively on Fb ( Ezu) - {A}.

COROLLARY (3.3.2): ’TI1 (U, b ) acts on Fb ( EU ) transitively and twice transi-
tively for any base point b in U.

PROOF OF THE COROLLARY: Transitivity has been shown before. If b is in
Z Y we have Fbzu(Ezu) = Fbu(Eu) and we recall the induced homomor-
phism ’TTl(ZU’ b) - ’TT1(U, b) which is such that the actions of ’TI1(U, b) on
Fbu(Eu) and of ’TT1(ZU’ b) on FbZU(Ezu) are compatible so that by the
above theorem there is an element A E Fbu(Eu) whose stabilizer in in
’TI1(U, b) acts transitively on Fbu(Eu)- (AI. This shows transitivity and
twice transitivity. If b is not in Zu then the conclusion still holds since all
the functors Fbu are isomorphic by [3].
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PROOF OF THEOREM:

We get a section from sending X - 0, Y - 0. Let S : Zu --+ Ez, be the
section. By SGA I, Cor. 5.3, p. 7, we have

T is reduced, smooth by SGA 1 9.2, p. 16. We only need to show that T is
topologically connected. Now T is covered by two opens Tx where X # 0

and T where y # 0. T is homeomorphic to Spec k[Too,To2,..,[X,Y][ ] ]
thus connected. TY is homeomorphic to Spec k[TOO,T20, ... ][ X, Y][ 1 ]y
again connected.
To see that TXnTy =1= 0 note that for the point T from example (3.1.6),

at least one point in ’TT -1 ( T) has X = 0, Y # 0. Thus, T is connected and
therefore irreducible by SGA I, Prop. 10.1, p. 21.

Now:

Now ’TT} (Zu, b) stabilizes A and acts transitively on Fbzu(T) by SGA I, p.
140. Q.E.D.

REMARK (3.3.2): The above theorem was inspired by reading J. Harris’
paper "Galois Groups of Enumerative Problems," Duke Journal of Math,
1980.

Chapter IV

Proof of Theorems Gl, G2 and G2’ and of DRL

THEOREM (4.1): For any geometric base point b: Spec Q - U the action of
7ri (U, b ) on Fb (Eu) is the full symmetric group.

PROOF:It is transitive by (3.1.4). It is twice transitive by (3.3.2). It
contains a transposition by (3.2.14). All the above properties do not
depend on the choice of the base point. Q.E.D.
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THEOREM (4.2): In the notations of Theorem 1, the action of ’TTI(U, b) on
Fbu(Du) --+ Fbu(Eu) contains a double flip.

PROOF: This is a restatement of (3.2.14) b).

PROOF OF THEOREM Gl (1.3): Let b: Spec k-(-Tî,)- ---&#x3E; k(Ti.) be the base
point of U. We have a surjective map G - -u, (U, b) --- &#x3E; (e) by SGA I, p.
143. Also Sing S H Fb (Eu) and this identification is G equivariant where
G acts on Fb (Eu) via G - 7r, (U, b) this follows from the proof on page
143 of SGA I. This proves Gl.

PROOF OF THEOREM G2 (1.4): Choose b as in the proof of Gl. Now
Fb(Du)set of pairs (a,t) where a E Sing S, t 2 = Ha, t E L = k T,
(see 0.3 for the definition of Ha ). Let us call this set of pairs P. The map

corresponds to projection  a, t) to a. The diagram

is G equivariant,

where G acts on Fb (Du), Fb (Eu) via the map G - -ul(U, b) - (e).
Theorem G2 follows immediately from Theorem (4.2).

PROOF OF THEOREM G2’ (1.5): Follows immediately from Gl, G2.

PROOF OF DRL (1.6): Since we have already proven G2’ it is enough to
prove the implication G 2’ -- DRL. The proof is somewhat tedious thus
we only sketch it here.

SKETCH OF PROOF THAT G2’- DRL: Let a be as in G2’ then a induces
an automorphism of S and it can be shown that there exists a commuta-
tive diagram:

with à an automorphism. It can be shown that ô induces the desired
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isometry as in DRL. We omit the details of the proof except to point out
that 9 is the result of 2 ( p - 1) blow ups.

and in fact we can construct Q12  (p -1) = Õ by induction. The influence of à
on Ta’ 7p, TY can then be seen if we write out the local equations for the
resolution.

Chapter V

Proof of the main theorem

We only need to show the implication:

DRL =&#x3E; MTHG.

We begin with an easy lemma:
Let a E Sing S. Let Pa be the subgroup of Pic( S ) generated by the

curves cla, i = 1, 2, ... p - 1. Pa inherits the intersection form from Pic( S ).

LEMMA (5 .1 ) : Let xa E Pa have the property that Xa. W == o ( p ) for every
W E Pa. Then Xa = naDa + pz where0n«p-1, zEP«.

PROOF: Let Pa = Pa/pPa. This is a Z/pZ vector space. Let u: Pa ~ Pa =
Pa/pPa be the natural map. We have a commutative diagram:

where i is the intersection form and il is the intersection form modulo p.
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Now i has a one dimensional kernel over ZIPZ because the intersec-
tion matrix of i with respect to the basis u(C«), u( c2a),... u( Cpa-l) which
is

of size ( p - 1 )_x ( p - 1 ), has rank p - 2 over ZIPZ. u(Da) is in the kernel
and is =1= 0 in Pa. Thus we have u(xa) = n a u(Da) for some 0  n "  p - 1.
Consequently, Xa - naDa = pz for some z E Pa as asserted. Q.E.D.

COROLLARY (5.2): Any element x E Picob(S) which satisfies the condition
that x. Çj03B1 = o ( p ) for all a E Sing S and 1  j  p - 1 can be written in
the form

where y E PiCOb(S) and 0  ni’ mY  p - 1 and £ is taken over all the

singularities of S.

PROOF OF THE MAIN THEOREM (1.1), (1.2): We only need to show that

since there is no torsion.
Let x E p Pic( S ), then x E picob(g ) because of (0.5.1). Write

where 0  no, n ,,  p - 1,yE = Pic°b(,S ). This representation is possible
because of (5.2). We only need to show that n a = 0 for all a E Sing S and
that n o = 0.

Pick any pair of singularities a # 03B2 and apply the DRL, thus we get a
Q E G and if 1( J ) is the induced isometry of Pic( S ) we have
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in any case since p =1= 2 we conclude that

and then p 2 must divide

by (0.4.5) so that p must divide n2 â + n1, thus for any pair of singularities
a, 03B2 a = /3 we have shown that n 2a = - n203B2 modulo p. But there are at least
3 singularities and we conclude that in fact this is only possible if n a = 0
for all a c- Sing S.

Thus x - py = n o l belongs to p Pic(É). Squaring again we get that p 2
divides ( n o l ) 2 = pn 0 2 so that n o = 0. Q.E.D.
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