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In this appendix we show how to pass from generic to general and how to
prove our conjecture stated in the introduction to [1] and [2] (see
Theorem 7(2) below).
We use techniques of P. Samuel and Jeffrey Lang and of course the

main result of [1] which was proven with the help of Deligne.
We begin by introducing some notation which is analogous to [3] and

[1]. If R is a normal noetherian domain we denote by Cl R its divisor
class group.

k algebraically closed field of characteristic p 2 5 ;
Tij indeterminates; we consider the polynomial ring

and two polynomials

and

with ta,/3 also indeterminates over k.

We denote . We consider the system of equations:

We consider the above equations as equalities of polynomials in X, Y.
By comparing coefficients of the various monomials in X and Y we get
an equivalent system
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If we specialize the indeterminates 1;j to have values (clj) E Speck[T,j], a
closed point, then we denote the corresponding system LSI( CI J) +
PLSI(c,_,).
We use the following facts.

THEOREM 1 (J. Lang): Let A be any algebraically closed field of characteris-
tic p &#x3E; 0. Let G ( x, y ) E A [ x, y ] be a polynomial such that aG/ax and
3G/3y are relatively prime polynomials in A[x, y]. Then the surface S:
zP = G(x, y ) is normal and its divisor class group Cl S is isomorphic to the
set of polynomial solutions t ( x, y ) E A [ x. y of degree deg t - deg G - 2 of
the following system of equations:

PROOF: See [3], 2.1, 2.3, 2.9.1.

THEOREM 2 (Blass-Deligne): The only solution of (LSI) + (PLSI) in L
= k T J i.e. with ta, /3 E L is the identically zero solution ta, p = 0.

PROOF: T set f solutions is isomorphic to Cl 
L[X, Y, Z ] 

bPROOF: The set of solutions is isomorphic to CI ( L [X, Y, Z] ) by(zp - -Tij Xi Yj)
above theorem, but the latter group is shown to be zero in [1]. From now
on Y- means 03A3.

0i+j=p
The following is simple.

LEMMA 3. If q = ( cl J ) E Speck [ T J ], then the set of solutions ( ta, /3) of
LS( c, J ) + PLS( c, J ) is finite.

PROOF: Lang [3], proof of Lemma 2.8.

In what follows, Let H be the subscheme of Spec k[T,,] ] X Spec k[ta, /3] ]
defined by ( LS + PLS) or equivalently by ( LSI and PLSI).

Consider the projection Hed ---&#x3E; H --+ Spec k [Ti_,]. We denote by K-I(q)
the set (group) of closed points of Hrea that map to q.

REMARK 4. We point out that if q = (CI}) E Spec k[1;}] ] is a closed point,
then K -1 (q) is in one to one correspondence with the solution set of
equations LSI ( c; J ) + PLSI( CI}).

PROPOSITION 5 : There exists an open and dense subset (9p of Spec k [ T J ]
such that for q E (9p, K -1 ( q ) consists of a single point with coordinates
ta, /3 = 0 for all a, 8.
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LEMMA 6 :Let Z c Hred be the subset of Spec k[T,,] ] X Spec k[ta, p] defined
by ta, /3 = 0 ( all a, 8). Let C by any irreducible component of Hred whose
image K ( C ) is dense in Spec k [ Tj 1. Then C = Z.

PROOF: First of all, dim C = dim Z = dim k [ Tj ] because of Lemma 3.
Consider the diagram

Let [ta, p] be the class of ta, a in (9(C). (9(C) has fraction field which is
finite algebraic over k[tlj]. Hence we get an injective map m.

Suppose that for some a, {3, [ ta, /3] = 0 in (9(C) then m([ta, pD # 0 and
we would get a non-trivial solution of (LS) + (PLS) in L which con-
tradicts the Blass-Deligne theorem. Thus [ ta, /3] = 0 in (9(C) for all a, /3,
i.e. C c Z and consequently C = Z since Z is irreducible.

PROOF OF PROPOSITION 5. Let Hred = ZU Cl ... UCs be a decomposition of
Hred into irreducible components.
We have K Cj c Spec k [ T,_, ] by Lemma 6. Thus set Op = Spec k [ Tj

s

U KT(C)J. For every q E O(p), K -1 ( q ) is a single point of Z. Q.E.D.
j=1

REMARK 6. There exists an open and dense subset of Spec k [ T j ], for
example the subset defined in [1] (0.2), such that if q = ( c,ij ) belongs to
it, then

PROOF : For q E V, q = (cij)’ the polynomialsa(Lcl}xlyl )/ax and

a(LCi}Xlyl)/ay are relatively prime. Thus Remark 6 follows from Re-
mark 4 and Theorem 1. Q.E.D.

THEOREM 6. There exists an open and dense subset D c Spec k[Til such
that for every closed point q = (cij) E D,

(1 ) K -1 ( q ) consists of the single point,

(3) CI of the above ring in (2) is the zero group
(4) The system SLI(cij) + PSLI(cij) has only the zero solution.

PROOF: Set D = VnC9p. Then (1) follows from Proposition 5 and we
deduce (3) and (2) from Remark 6. Finally (4) follows because the closed
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points of K -1 ( q ) are in one-to-one correspondence with the solutions of
the system SLI(cI}) + PLSI(cI}). Q.E.D.

References

[1] P. BLASS: Picard groups of Zariski surfaces I. Comp. Math. 54 (1985) 3-36.
[2] P. BLASS: Groupes de Picard des surfaces de Zariski. Comptes Rendus des Seances de

I’Academie des Sciences, I-315, 19 septembre 1983.
[3] JEFFREY LANG: The divisor class group of the surface zpn = G(x,y) over fields of

characteristic p &#x3E; 0. Journal of Algebra (2) 1983.

(Oblatum 16-1-1984)

Piotr Blass

Department of Mathematical Sciences
University of Arkansas
Fayetteville, AR 72701
USA

Jeffrey Lang
Department of Mathematics
Harney Science Center
University of San Francisco
San Francisco, CA 94117
USA


