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MONODROMY OF FUNCTIONS DEFINED ON ISOLATED
SINGULARITIES OF COMPLETE INTERSECTIONS

Alexandru Dimca

Compositio Mathematica 54 (1985) 105-119.
O 1985 Martinus Nijhoff Publishers, Dordrecht. Printed in The Netherlands.

A basic tool in the study of an analytic function germ f : (C", 0) - (C, 0)
with an isolated singularity at the origin (or of the corresponding
hypersurface germ Y = f-I(O» is the wellknown local monodromy group
(f4) [8], [12]).

This widely studied monodromy group can be defined in two equiva-
lent ways:
(i) Using a morsification of the function f.
(ii) Using a line in the base space B of a versal deformation for Y, in

general position with respect to the discriminant hypersurfaces à c B.
In this paper we extend the construction (i) above to function germs f :

X, 0) - (C, 0) defined on a complete intersection ( X, 0) c (C " ’ P, 0)
with an isolated singular point at the origin and such that Xo = f -1 (o) is
also a complete intersection with an isolated singularity at 0 (here
n = dim X &#x3E; 0).

In this way we obtain an action of a fundamental group 7r = 7r, (disc B (s
points}) on the exact sequence of the pair ( X, Xo ) in homology (with
Z-coefficients):

where X, Xo are the Milnor fibers of X and Xo ([5]) chosen such that
Xo c X and s = p ( X) +.t( Xo) is the sum of their Milnor numbers.

More precisely, the action of qr on Hn (X) is trivial, while the actions
on the other two homology groups can be described in terms of Picard-
Lefschetz formulas with respect to thimbles Ak e H,,(Îl Xo ) and corre-
sponding vanishing cycles Sk aàk e Hn _ 1 ( Xo )-

The 7r-exact sequence (*) is proved to be a contact invariant of the
function f i.e. it depends only on the isomorphism class (in a natural
sense) of the pair of complete intersections ( X, Xo ). This fact, as well as
the independence of the sequence ( * ) on the choice of the morsification
for f is obtained by a simple application of the Thom-Mather Second
Isotopy Lemma.
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To give some explicit examples, we compute next the 77-sequence ( * )
for all the s9-simple functions f defined on an isolated hypersurface
singularity X of dimension n &#x3E; 1, as listed in [1].

Note that the 77-sequence (*) gives us in particular two monodromy
groups

We prove that Go ( f ) is precisely the monodromy group of the complete
intersection Xo defined as in (ii). In fact the morsification process used
above gives rise to a line in the base space B of a (suitable chosen) versal
deformation of Xo, whose direction depends on the function f and is not
generic with respect to the discriminant à c B.

That is why we need a slightly modified version of a result of

Hamm-Lê on the fundamental group ’TTl(BBLl) (see Lemma 3.5).
Then we show that the other monodromy group G ( f ) is a semidirect

product of Go ( f ) with a free abelian group 7L a and we also give some
estimates for the rank a.

Finally we remark that constructions similar to some of ours (i.e.
morsifications and connections with versal deformations) have been used
many a time before (e.g. by Iomdin [7] and Lê [10]) but always with
different aims in view, as far as we known.
We would like to express our deep gratitude to Professor V.I. Arnold

for a very stimulating discussion.

§1. Morsif ications and monodromy map of pairs

Let X: gl =... = gp = 0 be an analytic complete intersection in a

neighbourhood of the origin of cn+p, with an isolated singular point at 0.
( n &#x3E; 1, p &#x3E; 0). Consider also an analytic function germ

such that Xo = f-I(O) n x is again a complete intersection with an iso-
lated singularity at 0.

For E » 8 &#x3E; 0 chosen sufficiently small, it is known that the Milnor

fiber of X

is a compact C’-manifold with boundary for any r E C P sufficiently
general with 0  Irl  8, where
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The space Xr (denoted in the introduction by X ) has the homotopy
type of a bouquet of n-spheres, the number of which is by definition the
Milnor number p. (X) of the complete intersection X.

For r small enough, it is easy to see that f’ = flInt Xr has only a finite
number of critical points a,,..., ak and moreover al - 0 when r - 0 for
any i = 1,...,k.

Let us denote by p.(f’, a i) the Milnor number of the function f ’ at the
critical point a,.

One has the following property, in analogy with a result of Lê ([10],
(3.6.4)).

PROPOSITION 1.1: .

PROOF: Let Ds denote the open disc {z E C; 1 z 1  &#x26; 1. For E, &#x26; and r
suitable chosen, the inclusion

is a homotopy equivalence (see for instance [10] (3.5)) and moreover the
restriction

is a submersion.
Let b E Ds be a regular value of f = f JE and let ci = f(a i ) e Ds be the

(not necessarily distinct) critical values of J. 
B

Then F = f -1 ( b ) is the Milnor fiber of the complete intersection Xo
and the exact sequence of the pair ( E, F ) shows that Hn ( E, F ) is a free
abelian group of rank s = JL( X) + JL( Xo). (Z-coefficients for homology
are used throughout in this paper).
We compute now this group in a different way, following ([9], §5).

Choose small disjoint closed discs D, centered at the critical values c, and
fix some points bi r= aD; .

For each i, take a C°°-embedded interval 1, from b to bi such that
1 = U 1, can be contracted within itself to b and Ds can be contracted to
C= UDIUI.

Since f induces a (proper) locally trivial fibration

these retractions can be lifted to the corresponding subsets of E and we
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get the following isomorphisms

By excision, the last group is equal to

Assume that a il’ ..., a,m are the critical points of f in the fiber over c,. Let
BJ. be the intersection of a small closed ball centered at aJ with f -1 ( D, )
and denote with F, the fiber f -1 ( b, ).

It follows that

Moreover

is a free abelian group of rank ii(f’, a,j) by the definition of the Milnor
numbers of f’, if the discs Di and the balls Bj are chosen small enough. D

We consider now the problem of the existence of morsifications of the
function f’: Xr - C, i.e. small deformations of f’ having only nondegen-
erate critical points with distinct critical values.

If P denotes the vector space of polynomials in xl, ... , xn + p of degree
 3, it is easy to show by standard transversality arguments that there is
a Zariski open subset U c P such that the function

is a Morse function for any q E U.
Moreover, if we have chosen already e » 8 &#x3E; 0 such that (1.2) and

(1.3) hold true for any generic r E C P with Ir 1  8, then there is an q &#x3E; 0
such that 1 ql  q implies similar properties for fq.

Suppose now we have two polynomials qo, ql E U such that lqil  n.
We can find a C-path q, in U such that q, = qo for 0  t  a, qt = ql for
1 - a  t  1 and Iqtl n for any t E [0, 1], where a E (0, 1/3).

Consider the spaces
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and the proper map

If a1, ( t ) (resp. c, ( t )) denote the critical points (resp. critical values) of f,,
for i = 1, ... , s = p.( X) + p.( Xo ), then we can stratify the map (p as follows
([2], Chap. I). The strata in D are given by

The strata in É are given by

the union of the other strata Ék defined above.

The lower index gives the real dimension of the stratum. (These
definitions work for n &#x3E; 2. The simpler case n = 1 is left to the reader.)

The Whitney-Thom regularity conditions are obviously satisfied for
any pair of strata.

By Thom-Mather Second Isotopy Lemma ([2], II, (5.8)) we obtain a
commutative diagram

where a E (0, a) and H, h are homomorphisms compatible with the
induced stratifications.

In particular we get the following result.

LEMMA 1.4: The topological type of the map of pairs
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where C is the set of critical values of the function fq is independent of the
polynomial q E U, lql  n.

It is also clear the independence of the topological type of the map
above of the choice of (suitable) E, 8 and r. Moreover, if we change the
function f to a function f, = f + k, where k is a function in the ideal
( gl, ... , gp ) of the complete intersection X, note that the distance IIfI - fllxr
can be made as small as we want by taking r small enough. 

Using a stratification argument as above it follows that the topological
type of the map of pairs in (1.4) depends only on the restriction f X i.e.
on a function in m x = m/(gI’... ,gp), where m e r2n+p is the maximal
ideal.

(We shall consider throughout in this paper only functions f E m x
such that Xo = f-I(O) is a complete intersection with an isolated singular-
ity at 0).

The discussion below will also imply independence from the defining
equations g, = 0 of X, and hence we can give the following.

DEFINITION 1.5: The topological type of the map of pairs in (1.4) will be
called the monodromy map of pairs of the function f E m x and will be
denoted simply by

This topological object is constant in jn-constant familles in the follow-
ing precise sense (compare to [12], §9).

Let (Xl’ 0) C (C n + P, 0) be a smooth family of complete intersections
with isolated singular points at the origin such that dim Xt = n and
ti ( X,) = const. for t E [0, 1]. Assume that f, e m x, is a smooth family of
function germs such that it (f,- 1 (0» = const. 

’

Using the construction of morsifications and stratification arguments
as above, one can then show that the monodromy map of pairs of the
function ft is independent of t.
A special case of this situation is the following.

DEFINITION 1.6 [1]: We say that two function germs f l, f2 E m x defined
on the complete intersection ( X, 0) are (contact) -equivalent if there is
an automorphism u of the local C-algebra (9x such that ( u ( f 1 )) _ ( f 2 ),
where ( a ) means the ideal generated by a in (9x.

Since the complete intersections X and X01 = fi-’ (0) i = 1, 2 have
isolated singularities at the origin, the question of .Jt"equivalence of f 1 and
f2 can be settled in a jet space Jk(n + p, P + 1), via the action of a
connected algebraic group G,.,k ,, (the particular case when X is a hyper-
surface is treated in detail in [1]).

It follows that ( X, f1 ) and (X, f2) can be connected by a .t-constant
family ( Xt, ft) as above and we get thus the following.
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COROLLARY 1.7: If two function germs f l, f2 E m X are .K-equivalent then
their associated monodromy maps ft and f2* are the same.

§2. Monodromy exact séquence. Examples

Let’f *: ( E *, E*) - (D, C ) be the monodromy map of pairs of a function
f (-= mx as in §1.

If b e DNC and F=(f*)-’(b), then the locally trivial fibration

E * B E* - D B C defines in the usual way an action of the fundamental
group ff =,u,(DBC) on the middle homology group H n _ 1 (F) of the
fiber.

Moreover, for any homotopy class wEE7r there is a well defined

homomorphism

called the extension along the path w. For a detailed construction and the
main properties of Tw we send to ([9], (6.4)).
We can define an action of the fundamental group qr on the homology

group Hn(E*, F) by the formula

w i rv v i , ,

where a is the connecting homomorphism in the exact sequence of the
pair ( E *, F)

0-Hn(E*) "Hn,(E*,F)-H"-,(F)-O. (2.2)

If we consider the trivial action of qr on Hn ( E *), then this exact

sequence is a u-exact sequence, i.e. the homomorphisms i and a are

qr-equivariant.
Let X (say equal to Xr in §1) and Xo (say equal to Xr nf-l(b» denote

the associated Milnor fibers of the complete intersections X and Xo.
The corresponding exact sequence

is isomorphic to the exact sequence (2.2) and via this isomorphism we can
transfer the 77-actions on the homology groups in (2.3).

DEFINITION 2.4: The qr-exact sequence (2.3) constructed as above is called
the monodromy exact sequence of the function f.
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EXAMPLE 2.5: If the complete intersection X is smooth, then the sequence
(2.3) becomes

and hence it contains the same information as the action of ’TT on

Hn _ 1 ( Xo ) i.e. the classical monodromy action for the hypersurface Xo . 0

Put again s=p.(X)+p.(Xo)=rkHn(X,Xo) and let C={ci,...,c,}.
We denote by wk E 77- the elementary path encircling Ck ([9] (6.1)) and
chose the order of these paths such that

where wo is the class of the path w,(t) = b . e27Tlt, , 0  t  1 (we assume
here Ibl &#x3E; ck) for any k = 1, ... , s ).
We recall from the proof of (1.1) the isomorphisms

Since f * is a morsification, each of the last homology groups is free
abelian of rank one.
We shall denote by A,, .... A, the corresponding generators of the

group Hn ( X, Xo ), which are precisely the thimbles of Lefschetz ([9] (6.2)).
With these notations, the u-actions in the exact sequence (2.3) can be

described in terms of Picard-Lefschetz formulas.

LEMMA 2.6: :

where ( , ) denotes the intersection form on Hn - 1 ( Xo) and k = 1,..., s.

PROOF. The second formula is the usual Picard-Lefschetz formula (see
for instance ([8], §5)). The first one follows from (2.1) and the formula
for Tw given in ([9], (6.7.1)). 0

It follows that in order to determine the monodromy exact sequence it
is enough to fix a basis ( Sk 1 of the group Hn -1 (Xo) and to compute with
respect to it the vanishing cycles ad and the intersection form.
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As examples of this method, we give the description of the mono-
dromy exact sequences of the -W-simple functions defined on an isolated
hypersurface singularity X with dim X &#x3E; 1 which were classified in ([1],
§3).

In all these cases Xo is an isolated hypersurface singularity of type Ak
for some k and we can chose a distinguished basis of vanishing cycles
( 8, ) for Hn-I(XO) corresponding to a Dynkin diagram of type Ak ([4],
(2.4)).

Moreover, using the stabilization of singularities (i.e. addition of a sum
of squares to the given equation of Xo as described in [4] (2.3)), we can
assume n = 1 when we compute a0, .

The results are given below, without these tedious computations.

PROPOSITION 2.7: For the simple function of type Bm ( m &#x3E; 2) given by X:
xr + X2 + ... + xn+ = 0 and f = xi there is a basis of thimbles O1, ... , Om
of Hn ( X, Xo ) and a vanishing cycle 8 which generates Hn _ 1 ( Xo ) such that
ô0 k = 8 for any k = 1,... m.

PROPOSITION 2.8 : For the simple function of type Cm+l i ( m &#x3E; 1) given by X:
xlx2 + x3 + ... + Xi+ 1 0 and f = xi + x2 there is a basis of thimbles
A0, ... à m of Hn(X, Xo ) and a basis of vanishing cycles 8 1 , ... , 8m of
Hn _ 1 ( Xo ) such that a0 0 = 81 + ... + 8m and a0 k = 8k for any k = 1,... m.
( Note that C2 B2)-

PROPOSITION 2.9: For the simple function of type F4 given by X: xi + x2 +
... + n+i 1 = 0 and f = X2 there is a basis of thimbles O1, ... , 04 of Hn ( X, Xo )
and a basis of vanishing cycles 81, 82 of Hn _ 1 ( Xo ) such that

REMARK 2.10: It will follow from the results in the next section, that for
n = 3 (mod 4) the monodromy group Go ( f ) (defined in the introduction)
is a symmetric group for any 9l-simple function f. More precisely

On the other hand, in these cases the monodromy groups G ( f ) are all
infinite (see 3.7 ii).

Therefore one cannot establish a simple connection between these
monodromy groups and the Weyl groups associated to the root systems
of type Bm’ Cm and F4.

REMARK 2.11: It is easy to see that the action of the path wo on Hn _ 1 ( Xo )
is precisely the dual of the monodromy operator in cohomology h *

introduced in [5].
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3. The monodromy groups Go( f ) and G ( f )

F
Let ( Xo, 0) c ( Y, 0) - (B, 0) be a versal deformation of the complete
intersection Xo, with a smooth base space B and let us denote by à c B
the discriminant hypersurface of F [3].

For a base point b E BBLl, the fundamental group ’TTI(BBLl, b ) acts
on the homology of the smooth fiber p-l( b) - Îo and we obtain in this
way the monodromy group of Xo

This group is independent of the choice of the versal deformation F
and of the base point b (provided we take B to be a small enough open
ball in some C N).

Suppose we fix a morsification fq: X, ---&#x3E; C of the given function f as in
(1.4). Then there is a versal deformation F of Xo as above and a line 1 in
the base space B such that after a natural identification 1 = C we have a
commutative diagram

To obtain such a versal deformation F it is enough to take a system of
generators of the C-vector space (9{;l/aG/aXl . (9xo + ... + aG/axn+p ’
(9 Xo (where aglaxi = (agl/axl, ... , agplaxi, aflaxi» including the con-
stant vectors el, ... , ep + 1 and the vector (0, ... , 0, q ).

The set C of critical values of fq corresponds via (3.1) to the intersec-
tion 1 n 0 and since fq is a Morse function it follows that all the points
ck E 1 n 0 are simple points on à and that the intersection 1 n à is
transverse (situation denoted in the sequel by 1 &#x26; A). ([3], 1.3.i).

The number s of intersection points in 1 n à is equal to the intersection
multiplicity ( 0, lo ) o, where 10 is the line through 0 E B with the same
direction as 1 [10].

EXAMPLE 3.2: For the simple function of type Bm introduced in (2.7) one
can take F: (C,, + l@ (» , (C 2@ 0)
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Then the discriminant à is given by the equation yl = y2 and the
morsification fo = xl: X, --- &#x3E; C corresponds to the line 1 : yl = r. Hence in

this case s = m, though à is smooth at 0. It follows that the direction lo:
yl = 0 is not generic with respect to the discriminant, as mentioned in the
introduction. D

The main result of this section is the following.

PROPOSITION 3.3: .&#x3E;

PROOF: Suppose that B is an open neighbourhood of 0 in C N for some
N &#x3E; 2 and let h = 0 be the equation of the discriminant hypersurface à in
B.

We denote here by Bp the closed ball of radius p centered at 0 in CN
and by d a the line determined by a direction dE P(C N) and a point
aEB.

The results of Hamm-Lê [6] prove the existence of a Zariski open set
UeP(CN) such that for any d E U there is a Po=p(d»O with the
property that for any p with 0  p  po there is a BP &#x3E; 0 such that the

homomorphism

induced by the inclusion is an epimorphism for any point a with
0  lai ]  Op and b E (BpBà) n da.
We cannot apply this result to the line 1 in our construction above,

since 1 is not in general position with respect to the discriminant à (3.2).
That is why we need the following.

LEMMA 3.5: Suppose that the direction d E p(C N) is chosen such that

do e A. Then there is p, &#x26; &#x3E; 0 such that (3.4) is an epimorphism for any
point a with lai  &#x26; and da rh à-

PROOF : Let p &#x3E; 0 be chosen such that

(i) Bp n do n = {O}.
(ii) Inside the ball Bp we have a conical topological structure for A, i.e.

where S. = aBP, K = à n S,, as in [11] (2.10).
There is a connected open neighbourhood V of d in P(C N) such that

d’ e v implies d’o n K =,O.
We choose 8 &#x3E; 0 small enough, such that d’ a n K =,O for any d’ E Y

and any point a with lai  5.
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Take now a point a with ] a ]  8 and d a rh A. Using a linear parametri-
zation y: (C, 0) - (da, a), we define the function ç = h y.

Then T is defined on a neighbourhood of 0 E C which contains the
disc D = dan Bp (if p and 8 are chosen small enough) and cp -1(0) =
( xl, .... x, 1 where the roots Xi are all in D and have multiplicity one.
We choose now a direction d’ E V n U such that

where m (à) is the multiplicity of the discriminant à at the origin. An
explicit formula for m ( 0 ) can be found in [3], [10] and it follows that
m(à) &#x3E;- ju(Xo) with equality iff Xo is a hypersurface singularity.

Note that a path connecting d with d’ within V gives rise to a

homotopy gp,: D - C, 0  t  1 of (p = (po with (pl, the function defined as
above with respect to d’

Since the direction d’ is in U, there is a p’ &#x3E; 0 and a 0’ &#x3E; 0 such that,
for any a’ with 0  1 a’I  0’, the corresponding homomorphism (3.4) is an
epimorphism.

Choose a path a(t) 1  t  2 in Bs such that a(l) = a, a(2) = a’ with
0  ]a’]  0’ and d’ a(t) rf, 0 for any t. This gives rise as above to a

homotopy CPt: D - C 1  t  2. Since all the functions Tt have only
simple roots xk ( t ) in Int D, we obtain in this way s paths x 1 ( t ), ... , xs ( t )
for 0  t  2.
We choose the order on the paths such that xl(2),...,x,,,(2) are

precisely the end points within the disc Bp, n d’, c: D, where m = m (à)
(Note the identification D = d,) r1 BP for any t ).

Consider the following commutative diagram.

The isomorphism c * is induced by a path in BpB à from b to b’ and ip
is obtain via the homotopy CPt.

If we denote by wk (resp. wk ) the elementary path in D B
f xl ( t ), ... , xs ( t ) } encircling the point xk ( t ) for t = 0 (resp. t = 2), then
the left hand side of the diagram corresponds to
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where r’( al’ ... , a p ) denotes the free group generated by a a p .
This ends the proof of (3.5) and hence of (3.3). D

COROLLARY 3.6: Suppose Xo is a hypersurface singularity and let m =
m ( à ) = J1( Xo ). Then in the monodromy exact sequence (2.3) of the function
f ( up to a change of indexes) the vanishing cycles &#x26;k = aà k (k = 1,..., m)
form a basis of Hn -1 1 ( Xa ) and the Picard-Lefschetz transformations associ-
ated to the elementary paths Wk (k = 1,... , m) generate the group Go ( f ).

PROOF: The proof of (3.5) implies that (up to a change of indexes) the
images of Wl’...’ wm generate the group GO(f ) = G ( Xo ).

The monodromy group G(X.) acts transitively on the set of vanishing
cycles in Hn-l (Xo) [4], (2.58).

Hence for any such cycle &#x26; there is an element g E Go ( f ) such that
8= +g.&#x26;,.

Since g is a product of Picard-Lefschetz transformations associated to
wl, ... , wn, it follows that

Finally we give some information about the other monodromy group
of f, namely G ( f ).

PROPOSITION 3.7:

( i ) There is an exact sequence of groups

for some a E N with 0  a  p ( X) . p,( Xo).
( ii ) Suppose that Xo is a hypersurface singularity and the intersection

form on Hn-,(Îo) is nondegenerate.
Then a &#x3E;- p,( X).
If moreover the action of Go (f) on Hn _ (Xo)  C is irreducible, then

a = P ( X) . P ( Xo ).

PROOF : Put m = p,( Xo), m’ = p,( X) and s = m + m’. Assume that ( à is
a basis of Hn( X, Xo ) (made of thimbles only in the proof of (ii)!) such
that 8k = aàk for k = l, ... , m form a basis for Hn _ 1 ( Xo ).

Then for any k &#x3E; m there is a combination
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In the basis Vm+ l’...’ Vs’ àj , ... , à the action of wk on H" ( X, Xo ) is
given by a matrix

We define an epimorphism p : G (f ) --+ Go (f ) by associating to an
s X s matrix as above the m X m matrix in the lower right corner. We get
thus an exact sequence

where ker p is a subgroup in the (abelian!) multiplicative group of all the
matrices

It follows that ker p c 7L m. m’and this gives us (i). To prove (ii) we
assume the basis Sk chosen as in (3.6). Note that the matrix Ak defined
above is zero for k  m and has a single nonzero row (that corresponding
to the vector vk ) for m  k  s if the intersection form is nondegenerate.
This proves the first part of (ii).

Moreover, note that if

for some row vector u # 0, then the same is true for the vector u - B for

any B e GO(f).
If the action of Go ( f ) on the homology group H, , - 1 (Îo; C) is irre-

ducible, then it follows that

Hence ker p contains in this case m - m’ C-linearly independent vec-
tors and this implies the result in the second part of (ii). D

REMARKS 3.8:
a. The condition about the intersection form in (3.7.ii) is necessary.

For instance, if f is a simple function of type Bk and n is even, it follows
from (2.7) that Go (f ) = G ( f ) = 0.
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On the other hand, note that both assumptions in (3.7.ii) hold when Xo
is one of Arnold simple hypersurface singularities An, Dn, E6, E7 or Eg
and n --- 3 (mod 4) ([12], §8).

b. In general the subgroup ker p c lL mm’ is not the whole group, even
when they have the same rank.

For instance, for a function of type Bk and n odd, ker p = 2 -Zk-1 c
ik-1.
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