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ORE SETS IN ENVELOPING ALGEBRAS

Kenneth A. Brown

1. Introduction

Let g be a finite dimensional Lie algebra over C, with enveloping algebra
%(g). In the study of #(g) and its representation theory, localisation
has proved to be the most useful weapon from the armoury of non-com-
mutative ring theory. In this paper we sharpen that weapon by describ-
ing, for a prime ideal P of the enveloping algebra of a solvable subalge-
bra p of g, the largest Ore set &(P) contained in €y, (P)=%(p)\P,
(5.3) and (7.1). (A subset Fof a ring R is a right Ore set, or satisfies the
right Ore condition if for all s € #and r € R there exist d € ¥and u € R
such that su=rd. In this case one can localise at & to form the ring
R ={ac"': a€R,c€¥), where denotes imagesin R/I,I={reR:
rs =0, s € % }. Similar definitions apply on the left. An Ore set is a right
and left Ore set.)

In §§2, 5 and 6, we deal with the case p=g. In §2 we derive a
necessary condition on & (P) in terms of certain subsemigroups of
(g/[g, g)* arising from the Jordan-Holder values of g (2.3). In §5 it is
shown that the largest subset € (P) satisfying this necessary condition is,
in fact, an Ore set (5.3); analogous results are obtained for the maximal
right, and left, Ore sets, ’(P) and ‘¥ (P), in €(P). Sections 3 and 4
contain results needed for the proof of (5.3) which may be of indepen-
dent interest to non-commutative ring theorists.

The structure of the ring %(g)p, is examined in §6, (again here
g =p is solvable). We prove that %(g)yp, is a Noetherian domain with
only countably many maximal right or left ideals, each of which is a
twosided ideal generated by the image of P under a suitable winding
automorphism of %(g). Let M be one such ideal. Then U(g),p,/M is
isomorphic to the division ring of quotients of %(g)/P, and M has a regular
normalising set of t generators, (see (5.3) for the definition), where t, the
height of P and of M, is the global dimension and the Krull dimension of
U(8) s (py. Every primitive ideal of U(g)py is maximal, U(g)yp, has
stable range 1, (see (6.2) for the definition), and every projective module
over %(g) . (py is free. When P is localisable, that is, when #(P)= € (P),
then of course %(g)py is a “local ring”. In view of the above proper-
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ties, one might feel that the tranditional generalisation of the definition
of “local ring” from the commutative to the non-commutative context
has been too restrictive; we discuss this further in (6.3).

By localising at &’(P) instead of #(P), one can obtain interesting
right Noetherian left Ore domains; see (6.4).

In the next section we consider the general case where pCg. A
sufficient condition for an Ore subset of Z(p) to be Ore in #(g) was
obtained in [5, 4.5]. Theorem 7.1 shows that, with the addition of a mild
technical assumption on the Ore sets in question, this condition is also
necessary. One can thus describe the maximal Ore subset of % ,,(P) in
«(g), for a prime ideal P of (p). In Theorem 8.2 we specialise this
description to the case where p is a Borel subalgebra b of a semisimple
Lie algebra g. The statement is particularly neat where P is the annihila-
tor of a 1-dimensional %(b)-module, say P=1/(C,) where pEh*, h a
Cartan subalgebra in b; here, &(P), the largest Ore subset of €y,,(P)
in %(g),is N €y),(/(Cy)): A € p+ Z R}, where R is the set of roots of g
relative to h, (8.2(iii)). The rest of §8 consists of some observations on the
structure of %(g)p, for this choice of g and P.

A word about coefficient fields. While we have assumed throughout
that Lie algebras are complex, much of [7], and hence, much of this paper
can be routinely generalised to a completely solvable Lie algebra over an
arbitrary field. The results on Ore sets described here can be applied to
enveloping algebras over other coefficient fields using the following
results.

1.1. LEMMA: Let K C F be fields and g a Lie algebra, finite dimensional
over K. Then a subset ¥ of % (g) satisfies the Ore condition if and only if &
satisfies the Ore condition in %(g) ®F.

1.2. LeMMA: Let KC F be fields and let U be a K-algebra with the
ascending chain condition on ideals. Let P be a set of completely prime

ideals of U ®  F. Suppose that |P| <|K | and that = ()| €(P) is an Ore
Pep
set in U® F. Then ¥NU is an Ore set in U.

The proof of 1.1 is an easy exercise; the proof of 1.2 is sketched in 4.7.

In the hope of stimulating applications of this work to the further
study of enveloping algebras, we have tried to make this paper readable
by the non-specialist in Noetherian ring theory; but it may be as well to
note that the approach to localisation described here originates in work
of A.V. Jategaonkar, recent accounts of which may be found in [12], [14].
The fact that Jategonkar’s theory, much of which applied originally only
to FBN rings, could be made to apply to certain other classes of
Noetherian rings, was observed independently by Jategaonkar and the
author [13], [6]. The key idea from this theory which underlies the present
paper is that of a prime link, which is implicit in 2.1.
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The nature of the “prime links” for enveloping algebras of complex
solvable Lie algebras was determined in [7], but for this paper we in
effect need to know only the connected components of the graph of links,
rather than the exact form of the edge set. It is an interesting but
apparently difficult question for Noetherian ring theory, whether the Ore
sets obtained in this paper, as intersections determined by the graph of
links between primes, exist in a more general, more abstract, setting. The
only other results obtained to date in this direction apply to certain P.I.
rings [18]. *

2. Maximal possible Ore set

In this section g denotes a finite dimensional complex solvable Lie
algebra. Let P be a prime ideal of #(g). Our target is a necessary
condition (2.3) for a subset of €(P) to satisfy a one-sided Ore condition.
(We denote the set of regular elements modulo an ideal I of a ring S by
€(1), or €5(1).)

2.1. LEMMA: Let R be a Noetherian ring with prime ideals P and Q, and let
P C €(P) be a left Ore set. Let A C B be ideals of R with I[(B/A)= P and
r(B/A)= Q. Then < €(Q).

PROOF: The case where B/A4 is R/P- and R-Q-torsion free is given by
[14, 2.3], (or see [7, 1.4]). The required result reduces easily to this case,
noting that if / is a prime containing Q, and C ¢ ([I), then < € (Q).

22. Let0=g,C...Cg,=g be a composition series of g, so g,<g and
g./8,_ has dimension one, 1 <i<n, [4, 6.6]. Let A, € g* be the eigen-
value of ad gon g,/g;,_,,1<i<n,so A, ..., A, are the Jordan-Holder
values of g.

Fori=1, ..., n, fix x, €g,\g,_,. For a prime ideal P of #(g), let
P=PN%(g,), 0<i<n,and FC {1, ..., n} consist of those integers for
which P, # P,_, %(g,). For i €., let m, be the minimal degree in x, of an
element of P\ P,_,%(g,;).

Let the subsemigroups of (g/[g, g])* generated by {mA;: i€f},
{(-mA:ief}, and {£mA;: i€F} be denoted by L(P), R(P) and
Q( P) respectively. (This notation is apparently defective, since L(P), etc.
seem to depend on our choice of composition series for g. But, as will
become apparent from 5.3, these subsemigroups are independent of this
choice.) Recall that for p € (g/[g, g])* the winding automorphism 1, of
% (g) is defined by 7(x) = x + u(x) for x € g, [4, 10.2].

* Added in proof: For recent developments, consult the published version of [12].
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2.3. THEOREM: Let P be a prime ideal of %(g), where g is a finite
dimensional solvable complex Lie algebra. Define the subsemigroups L(P),
R(P)and O(P) of (g/18, g])* as in 2.2. Let ¥C F(P) be a (i) left Ore,
(ii) right Ore, or (iil) Ore set. Then

)sce(P)n N %(n(P)),

AEL(P)

(i) £c €(P)N ﬂ( ¢ (m\(P)),
AER(P)

(i) #c €(P)n () €(m\(P)), respectively.
A€0(P)

PROOF: Let n be the nilpotent radical of g. If i€ £Fand A, # 0, then g, Cn
since n acts trivially on g,/g,_;. Hence, If A € (g/[g, g])*,

L(P)=L(n\(P)). (1)

Fix i€ #with A, # 0. The image € of the subset €5, ,(P,_;) of %(g)
in the factor ring (g) = %(g)/P,_,%(g) satisfies the Ore condition [4,
4.4). The ring R=%(g)¢ contains a g-invariant subring (%(g,)/
P_,%(g))¢=K[X; D], where K is the quotient division ring of
%(8;,_1)/P;,_, x; maps onto X, and D is the derivation of K induced by
x; [4, 4.4]. The (non-zero) image of P, in K[X; D] generates an ideal I of
K[X; D] which is (left and right) principal, generated by g-eigenvector
with eigenvalue m A, [7, 2.1].

Now put B=IR and 4 = PIR, ideals of R. Since B=aR = Ra is a
free left R-module, /(B/A)=PR. If y€g, then ya=a(y+ mA (y))
(modulo A); hence, r(B/A)= m‘A’(I_’)R, (where, abusing notation, 7,,
denotes the automorphism of R induced by the corresponding winding
automorphism of #(g)). Intersecting ideals of R with % (g) and taking
inverse images in %(g), we obtain ideals 4, C B, of %(g) with £(B,/
Ao) =P, r(By/A,) =1, »,(P). Under hypothesis (i), 2.1 now shows that
FC E(1,(P)), fories.

In view of (1), we can repeat the above argument with 7, (P) in
place of P. Since 77, =y, , for A, p€(g/[g, gD*, () follows. Similar
arguments (ii) and (iii), using the analogue of 2.1 for right Ore sets, and
the appropriate analogues of (1).

3. A lifting theorem for Ore sets

3.1. A result of P.F. Smith gives a criterion for a prime ideal with a
normalising set of generators to be localisable, expressed in terms of the
generating set [20, Theorem 2.4]. We need the following slight generalisa-
tion of his result:
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THEOREM: Let S be a right Noetherian ring and I an ideal of S with a
normalising set of generators { y,, ..., y,}. Let & be a non-empty multiplica-
tively closed subset of € (1), such that

(i) the image of &in S /I satisfies the right Ore condition in S /I

(ii) for all c€ €, for all s€ S and for all i=1, ..., n there exists
—1
ue Zijsuch that c+ x, s+ u€d;
j=1
(iii) for all cE &and for all i=1, ..., n there exists d, €& and u,€ S
such that

1—1
Eij if i>1,

Jj=1

0 if i=1.

yldl - cul e

Then & satisfies the right Ore condition in S.

3.2. To prove 3.1 we need the following refinement of [20, Proposition 2.1
(iv) = (i)], which can be proved by making trivial adjustments to Goldie’s
proof of the parent result [20, page 43]. The right AR property is defined
in [20, page 39].

LEMMA: Let I be an ideal of the right Noetherian ring S, and let & be a
non-empty multiplicatively closed subset of ¢(I). Suppose that
(i) I has the right AR property;
(i) ifcefandrel, thenc+red;
(iii) the image of &in S /1" satisfies Ore condition, for all n > 1.
Then & satisfies the right Ore condition in S.

3.3. PrROOF OF 3.1.: Since passage to a factor ring preserves all the
hypotheses, we can assume by a Noetherian induction that the image of &
in S/y;S is right Ore. Let c €£and s € S, so there exist ¢, €ESand r, € S
such that

cry — sc, € y,S. (1)
We claim that for all # > 1 there exist , € S and ¢, € & such that

cr, — s¢, € y;S. (2)

The claim is proved by induction on ¢, t =1 being (1). Assume (2) holds
some ¢ > 1. By hypothesis (iii), there exists d € £and u € S such that

yid=cu. (3)



352 Kenneth A. Brown (6]
By (2), there exists a € S such that
cr,— sc, = yia. (4)
Since &'is right Ore modulo y, S, there exists d’ € £and f, e € S such that
ad’—de=y,f. (5)

From (3), (4) and (5),

sc,d’ — c(r,d' —ue) = —yiad’ + cue

—yi(ad’ — de)

=

Thus (2) holds for (¢ + 1) with ¢,,, =c,d’ and r,,, = r,d’ — ue.
Now the ideal y, S has the right AR property, by [17, Lemma 8], and
(i) of 3.2 is implied by (ii) of 3.1. Hence 3.1 follows from 3.2.

4. Intersections of Ore sets

4.1. Let R be a Noetherian ring and {%;: i €#} a collection of Ore
sets in R. Let &= [)<,. Under what circumstances is %an Ore set? This

is an interesting and — it would appear — difficult problem, which has
received little or no attention up to now. Even in the case of particular
interest to us, where R is a ring of polynomials over a division ring, and
each &, is ¥(P;) for a prime ideal P,, we have been unable to obtain a
general solution. However, we offer here two partial solutions, either of
which suffice for our purposes — the first is included because of an
important corollary (6.1 (vi)), the second because of its generality, and
because essentially the same argument proves 1.2.

4.2. We only require the first part of the following lemma, but its proof is
very similar to, and in fact modelled on, that of (ii). Part (ii) i1s an
unpublished result of J.T. Stafford, whom we thank for permission to
include it here.

LEMMA: Let D be a division ring with centre k, such that D ®, K is a
division ring for all finite field extensions K of k. Let R = D[ X, ..., X, ] for
some n > 1, and let P be a set of maximal ideals of R. Let a, b € R be such
that I = aR + bR satisfies INC (M) # O for all M € P. Suppose that either
(1) |2| < |D| or (ii) D is not algebraic over k. Then there exist d € D and a

positive integer m such that for all k >m, a+ bd* € () €(M).
Me®
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Norte: If R arises as a partial quotient ring of a factor ring of #(g), for a
solvable Lie algebra g, then D satisfies the hypothesis of the lemma,
essentially because all the prime ideals of % (g ®K) are completely
prime; see [4, 5.2].

PRrROOF: (i) The ideals of R are generated by elements of the centre, k[ X;,
..., X,]. Let F be the subfield of k generated by the coefficients of a set
of generators (of cardinality |#|) of the ideals in 2. By hypothesis (i),
there exists d € D transcendental over F. Let L be the algebraic closure of
F and K the subfield of the algebraic closure of k generated by k and L.
Since D ®, K is a division ring, for each M € & there are finitely many
maximal ideals M, ..., M, of R®K, (witlht depending on M), with

(\M,=M® K. Each M, is of the form ), (X,—a,)(R® K), where
i j=1
a L.
Let V be the vector space spanned over L by 1 and the coefficients in
D of a and b. Now d is transcendental over L, and W= VL[d] is a
finitely generated torsion free L[d]-module, so that [ Wd' = 0. Since V

is finite dimensional, there exists m > 1 sucht that, fo;' all k > m,
vnvd* c vOwd* = 0. (2)

Let S be R ® K. We claim that for all k > m

HM)

a+bde N ) €(M). (3)

Me® i=1

Clearly, (3) implies (i). Fix M e Pandi€ {1, ...,t(M)}. Thena e M, +
V and b€ M, + V. Let k > m suppose a+ bd* € M,. Now bd* € M, +
Vd*, and so

a=(a+bd*)—bd*e M + Vd*.
Butae M, + V, so
ac(M,+ V)N M+ Vd<)=M+(VNvd*)=M,,
by (2). Hence bd* € M, and so I < MNR = M, a contradiction. Thus

a+ bd* ¢ M,. Since M, is completely prime, by hypothesis, this proves
(€)2

(i1) The proof is similar to (i) — one simply chooses d to be an element
of D transcendental over k.

4.3. Suppose that the hypotheses of Lemma 4.2 hold, with the exception
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that 7 is an arbitrary right ideal of R such that ING(M)+# 0 for all
t
Me®P, say I= ) a,R.If t>1, the argument used in 4.2 yields d € D

i=1

and a positive integer m such that for all k > m and all M € £ there exists

i, 1<i<t—1, such that a,+ a,d* € €(M). Repeating the argument
-1

with I’ = Y (a,+ a,d™)R, we conclude that IN [ €(M)+ 0 in this
i=1 MeZp
case too. It is now easy to deduce the following corollary.

4.4. CorOLLARY: Under the hypotheses and notation of 4.2. (i) or (ii)
%= () €M) is an Ore set.
Mexp

PROOF: Let d€ € and r € R, and let K be the kernel of the canonical
homomorphism from R to rR + dR/dR. Each M € &, being centrally
generated, is localisable [20, Theorem 2.2], so that KN€ (M) # @ for all
M e 2. We conclude from the remarks above that KN %+ ().

4.5. The following lemma follows immediately from the fact that a
straight line cuts a hyperplane in at most one point.

LEMMA: Let D be an infinite division ring and V a finite dimensional
D-vector space. Let S be an index set with |F|<|D|, {v;: i€F} a
collection of non-zero vectors in V, {V,: i€F} a collection of proper
subspaces of V. Let 0 #+ v € V. Then there exists w € vD such that w & v, +
V, foralli€$.

4.6. Since the ideals of polynomial rings over division rings are centrally
generated, another approach to Corollary 4.4 is via the following

THEOREM: Let R be a ring with the maximal condition on ideals, D a

division subring of R. Let P be a set of completely prime right localisable

ideals of R, with |P|<|D|. Let ¥= [\ €(P). Then ¥is a right Ore set.
Pep

PrOOF: Note that D C.%, so ¥ is non-empty. Clearly, we may assume
that D is infinite. Let r € R and ¢ € ¥. Fix P € #. By hypothesis, there
exist u € R and y € €(P) such that

ry=cu. (4)
Set 2, ={QeP:yeQ),D,=P\#,,andI,=RN () Q.Sinceyel,,

QeP,
I, +# 0. Clearly

P,={QeP::I cQ}. (5)
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Using the ascending chain hypothesis, choose y € € (P) so that . is as
large as possible. We claim that in this case I, = R. Suppose not, so that
2, + 0, choose M € 2,. There exist § € (M) and w € R such that

ré =cw. (6)

Let V' be a finite dimensional D-subspace of R with y, § € V. Let £be a
suitable index set, and define V, = VNQ, for Q, € 9, , i 4. By 4.4, there
exists d € D such that, for all i €.#,

ddeEy+ V. (7)
Now put ¥’ =y — 8d. By (4) and (6),
ry' =c(u—wd).

Since yEL,c M, y' € €(M). Let Q€ 2,; then y' ¢ Q by (7), so ' €
%(Q). Hence Z,, ¢ 2, and so, by (5), I, & 1,.. By maximality of I, this
is impossible. Hence I, = R and £, =, as required.

4.7. Let us sketch how an argument similar to the above proves 1.2. We
are given a K-algebra U, with the ascending chain condition on ideals, a
field extension F of K, a set 2 of completely prime ideals P of U’ = %
® F, with | 2| <|K]|, and we suppose that = (| €(P) is right Ore.

Peo

The assertion to be proved is that #NU is right Ore in U. Let s € ¥NU

and u € U, so there exist d €% and b€ U’ with sb=ud. Let {¢,} be a
n n

basis for F over K, so that b= Y be, d= ) d,e, say, and we have

i=1 i=1
sb,=ud, fori=1, ..., n. For each P € 2 there exists i such that d, & P.
Thus an argument like that in 4.6 can be used to adjust an initial choice
of d, to obtain an elemtn d’ € ¥NU, with sa = ud’ for some a € U.

5. Affirmation of the Ore condition

5.1. In this section g denotes a finite dimensional complex solvable Lie
algebra. We retain the notation introduced in 2.2; in particular, P
denotes a fixed prime ideal of #(g). Define &#’(P) [resp. " (P)] [resp.
F(P)] to be E€(P)N [\ €(n(P)) [tesp. €(P)N [\ € (r\(P))]
AER(P) A€ L(P)
[resp. €(P)N () #(7,(P))]. We shall show that these sets are right
AE0(P
Ore [resp. left Ore(] [)resp. Ore] (5.3) — this is the converse of 2.3.

5.2. Putt=N{ker A,: i € £}, so tis an ideal of g containing the nilpotent
radical. Let & be an ideal of g chosen maximal such that PN%(h)= PN
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U(t))%(h). By [7, 2.9] PN%(h) is a localisable ideal of #%(h). Put
&L= U(h)\(PN%(h)); by [5, 4.5]Fis actually an Ore set in %(g). Let
S=4%(g),and let D be the quotient division ring of % (h)/PN%(h).
Let m = dim g/h.

LEMMA: S/(PN%(h))S is isomorphic to D[ X, ..., X,,], the polynomial
algebra over D.

PROOF: Let x € g\ h and put 1 = h ® Cx. Thus

PNu(1)# (PN (h))u(1), (1)
by the maximality of A. Let x,, ..., x,, be a basis for a complement to A
in g. From (1) with x=1x, we see that for i=1, ..., m the skew

polynomial ring D[x,] is split, in the sense of [4, 4.7]. Hence, there exists
d, € D such that D[x,]= D[ X,], where X,=x, —d, and X, is central in
D[ X)]. Thus

S/(PN%(h))S=D[x,, ..., x,]
=D[X,....X,].
Let 1 <i, j < m. Then, writing Z(D) for the centre of D,
[X,Xx]=[x.x]-[x.d]-[d,.x,]+[d,.4]
=[x, x,]1-[d..d] € z(D),

since [x;, ]=[d,, ]on D. Therefore, if [X,, X;]# 0 then D[ X, X ] is
A,(D), the first Weyl algebra over D, which is impossible since D[ X, X|]
has at least one proper ideal, namely that generated by the image of the
intersection of P with #(h® Cx, ® Cx,). Hence [X;, X;]=0 and the
lemma is proved.

5.3. Recall that an ideal / of a ring R has a regular normalising set of

J
generators { x,, ..., x, } if Z x,R is an ideal for allj=1, ..., ¢, x, is not

i=1
Jj—1

t
a zero divisor modulo Y x,R,j=1, ...,t,and I= ), x,R.
i=1 i=1

THEOREM: Let g be a finite dimensional complex solvable Lie algebra, let P
be a prime ideal of %(g), and define &'(P), 'L (P), and ¥ (P) as in 5.1.

(1) If < €(P) is a right Ore set [resp. left Ore set] [resp. Ore set], then
FCL(P) [resp. TP (P)] [resp. < F(P)).
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(ii) L'(P) is a right Ore set, 'S (P) is a left Ore set, and S (P) is an
Ore Set.

PROOF:

(1) is a restatement of 2.3.

(ii) We shall prove that &’( P) satisfies the right Ore condition; the
proofs for ‘¥ (P) and & (P) are similar. Fix h as in 5.2, and note that
F=U(h)\(PN%(h)) lies in #’(P). As observed in 5.2, ¥is an Ore set.
Let S=%(g)., so that, by 5.2, S/(PN%(h))S is a polynomial ring S
over the quotient division ring D of % (h)/(PN%(h)). Since C C D, D is
uncountable. Now #’(P)= () %(m(P)), and R(P) is countable.

AER(P
Every prime ideal of S is centr:flll)y generated, and so localisable [20,
Theorem 2.2]. Thus the hypotheses of 4.6 hold for the image &’( P) of
#’(P)in §, and so &#’(P) is a Ore set in §.

As shown in [7, §4 and 2.1], the ideal (PN%(h))S of S has a regular
normalising set of generators { y;: i €4 }, (Fas in 2.2). Here, the element

+(Eij)/ Zij of S/ Eij is a g-eigenvector with eigenvalue

j<i J<i
m,\,. (This is shown in the second paragraph of the proof of 2.3.) Hence
fue#(g)andies,

uyl_lem,)\,(u)E Zyjs (1)

J<i

Now R(P)={(-mA;:i€F) and ¥ (P)= () €(r\(P)), so that
AER(P)
T (&) S Flor i € F. Therefore, by (1) and 3.1, #'(P) is a right Ore set

in'S. Since C &’ (P), &#’(P) is aright Ore set in %(g).

5.4. Continue to assume the hypotheses of 5.3. The above proof shows

that if E is any finitely generated subsemigroup of (g/[g, g])* containg

R(P), and = () %(7\(P)), then Lis a right Ore subset of €(P).
EU{0)

Similar remarks apply to L(P) and O(P).

5.5. The symmetry inherent in Theorem 5.3 may be better appreciated in
the light of the following result. (A subset & of a ring R is saturated if
ab € ¥implies a € and b))

THEOREM: Let g be solvable and P a prime ideal of %(g). Let ¥ (P)=
(€ (\(P)): A € O(P)} as before, and O(P)= E(N{ 7\(P): XA € O(P))}),
so that ¥(P)C €(P)c O(P).

(i) O(P)= €(PNU(h))%(g)), where h is defined as in 5.2.

(ii) O(P) is the smallest saturated Ore set [resp. right Ore set] [resp. left
Ore set) containing € (P).

(iii) P is localisable if and only if ' (P)= €(P)= O(P).
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PROOF:

(i) It follows easily from the definition of A in [4, proof of 11.3] that
(PN%(h)%(g)=N{m(P): A€ O(P))}.

(ii) O(P) is an Ore set by [7, 2.9(iv)].
To prove that O(P) is the smallest saturated right Ore set containing
% (P), one first inverts the elements of %,,,,(PN%(h)) in %(g), (which
is possible by [7, 2.9] and [5, 4.5]), to obtain a ring R, say. As noted in the
proof of 5.3, (PN%(h))R has a regular normalising set of generators { x,,

.., x,} such that for each i, rx,=x,m\(r) modulo () x;R), where
j<i

A=mA. ’

Put x = x, for some i/, and A = m,A,. We claim that if ¥(P)C Fand &
is a saturated right Ore set, then

TA(F)cs. (2
Given (2), Then 7_,(¢(P))= €(7_,(P)) C¥; repeating the argument
(a) with 7_,(P) in place of P and (b) for all i =1, ..., ¢, we see that

U{€¢(7(P):A\eR(P)} c¥. (3)

But N{7(P):AER(P)}=(PN%(h))%(g) as in (ii), so (3) implies
C(PN%(h))%(g)) <. Thus (ii) follows from (i); (iii) is a consequence

of (i1) and 5.3. It remains to prove (2); in doing so we may clearly factor
i=1

by Y x R, and so arrange that x is a normal clement. Then (2) follows
j=1
from 5.6.

5.6. LEMMA: Let {x =X, ..., x,} be a regular normalising set of genera-
tors of the prime ideal P of a ring R, and let ¥ be a saturated right Ore set
containing € (P). Let c € € (P), so there exists (a unique) d € R such that
cx=xd. Thend € %.

PROOF: An easy induction on ¢ shows that €(P)C € (xR). Since Lis a
right Ore set and ¢ € %, there exist y € R, v € ¥such that ¢y = xv. Since
c € €(P), y €xR; say y = xu. Thus

X0 = cy = cxu = xdu.
Since x € €(0), v = du. Thus d €%, because v € ¥and Sis saturated.

6. Structure of the localised rings

6.1. Once again, g denotes a finite dimensional complex solvable Lie
algebra and P is a prime ideal of its enveloping algebra #(g). Write &,
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¥ and & for £'(P), ' (P) and S (P) respectively. It is not at first
glance obvious that #need contain many elements; or equivalently, that
the localisation of %(g) at &is markedly different from #(g) itself. We
dispel these doubts with the following result; some of the terminology
used in its statement is explained in 6.2.

THEOREM: Let R be the ring (a) %(g) .y, (b) %(g) .o, (€) %(g) -

(i) R is a domain and is (a) right Noetherian, (b) Left Noetherian (c)
Noetherian.

(i1) R has countably many maximal one-sided ideals, namely the
(two-sided ) ideals (a) T,(P)R, A € {O}UR(P), (b) R7,(P),A € {0JUL(P),
(¢) R7,(P), A € {0}UO(P).

(iii) Let M be a maximal ideal of R. Then R/M is isomorphic to the
quotient division ring of %(g)/P, and M has a regular normalising set of
generators containing t elements, say.

(@iv) In (iii)

t = height P = height M = gl. dim. (R) = k — dim. (R) = grade (M).

(Here, the dimensions are taken on the right in case (a) and the left in case
(b). In case (c), dimensions can be taken on either side. The grade of an
ideal I of R is inf{i: Ext'x(R/I, R)# 0}, the modules R /I and R being (a)
right, (b) left, (c) right or left.)

(v) The Jacobson radical J(R) is given by

J(R)=(PN(t))R, wheret =N{ker\: A€ O(P)}.

(vi) R has right stable range and left stable range one.
(vii) Every projective right or left R-module is free.
(viii) The graph of links of the maximal ideals of R is connected. In fact
there is a directed path of (a) right [(b) left] [(c) right or left] links
connecting PR to each maximal ideal of R.

6.2. A ring S has right stable one if, given a, b € S such that S = aS + bS,
there exsits d € S such that S = (a + bd)S [22, p. 199]. With reference to
6.1 (viii), the graph of links is discussed and defined in [18, pp. 235-236].
In (iii), k-dim( ) denotes the Krull dimension in the sense of Gabriel
and Renschler, and gl. dim.( ) denotes the global dimension.

6.3. Theorem 6.1 seems to be the appropriate generalisation of the result
of P.F. Smith [21] that the localisation of the enveloping algebra of a
nilpotent Lie algebra at a prime ideal yields a “non-commutative regular
local ring” in the sense of R. Walker [24]. Note that this result, and more
generally the case of a localisable prime ideal of an enveloping algebra of
a solvable Lie algebra treated in [7, §4], are included in 6.1; they
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correspond to the case where h = g, in the notation of 5.2.

Indeed, we venture to suggest that, in the light of 6.1, the conventional
definition of a non-commutative Noetherian local ring S, which requires
that S/J(S) be simple Artinian, is too restrictive a generalisation of the
commutative definition. The stimulating idea that Noetherian rings might
exist possessing the properties listed in 6.1, and that such rings could
justifiably be regarded as “local”, was first suggested to the author by
A.V. Jategaonkar in 1979.

6.4. Let us illustrate some of 6.1 by examining the augmentation ideal

P = (x, y) of the enveloping algebra % of the 2-dimensional non-abelian

Lie algebra g=(x, y:[y, x]=x). In this case #= {1}, m; =1 and

A, Eg* is given by A;(y)=1, A,(x)=0. Thus ¥ (P)= ) €((x, y —
n>=0

nd), ‘L(P) () €(x, y+n)) and #(P)= N €(x, ytn)). If R=

n>0 nelZ
U(g)y, U(g) 01 U(g),then J(R)= xR. The chains of links between
maximal ideals of R described in 6.1 (viii) are

(%, y)(x,y = 1y(x,y = 2)(x,p = 3) for %(g) s,

(% 3%y + 15(x, y + 25(x, y + 3) for (g).s,

and
(xey = 2)(x.y = Ik, p)(x, y + I(x,y + 2y for %(g) o

Let R=%(g) . Then it is not hard to show that the right ideal
Y (y = 1)™xR of R is not finitely generated; hence no improvement is
i1
;j)ossible in 6.1(i). Note that in this case R is a left Noetherian right Ore
domain which is not right Noetherian; the existence or otherwise of such
rings was raised as a question by J. Cozzens and C. Faith [8]; the first
such example was constructed by D.A. Jordan [15]. That localisations of
% (g) gave such examples was pointed out to me by I.N. Musson.

6.5. Note the following generalisation of 6.1:— As in 5.4, let
E <(g/[g, g])* be an arbitrary finitely generated semigroup containing
R(P)andlet &= [) %(m(P)), a right Ore set as noted in 5.4, and
A BU(0

put R=%(g),. Then t{he)v statements and proofs of 6.1 (i), ..., (vii) apply
equally well to R (Except that now ¢t ={ker A\: A € E} in (v)). And the
generalisation of (viii) is: The connected components of the graph of links
of max spec (R) are in 1 — 1 correspondence with the cosets of R(P) in E.
Similar remarks apply to L(P) and O(P).

The proof of 6.1 occupies the next four paragraphs. We shall work
throughout with ‘#( P); the other cases are similar.
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6.6. PROOF OF 6.1 (i), (ii), (v) AND (iii): Since R is a partial left quotient
ring of the Noetherian domain %(g), (i) is clear. Let I be a maximal right
or left ideal of R. By 5.2, R/(PN%(t))R is a polynomial algebra over a
division algebra D satisfying the hypothesis of Lemma 4.2, as noted in
42. If ye%(g) and y=1 (modulo (PN%(t))%(g)), then y €'Y by
definition of ¢. Hence

(PN (t))RCJ(R), (1)

and so (PN%(t))R c I. Since the elements of ‘are invertible in R (and
thus in R/(PN%(t))R), 4.2(1) now shows that I = R7,(R) for some
A € L(P)U{0}. (Here, we need also remark 4.3.) This proves (ii).

Now (PN%(t))R = R7(P): A € L(P)U{0}}, by [4, proof of 11.3],
so J(R)C (PN%(t))R. Coupled with (1), this proves (v). Let E be the
quotient division ring of #(g)/P, (so that E has the form D ®, K for a
finite extension K of the centre k of D). As already noted, R/PR is a
simple factor ring of a polynomial algebra over D, so R/PR = E. Since
every maximal ideal of R is the image of RP under an automorphism 7,
of R, the first part of (iii) follows.

We have already observed, in the proof of 5.3(ii), that the ideal
(PN%(t))R has a regular normalising set of generators. As shown above,
if M is a maximal ideal of R, then (PN%(t))R=J(R)C M, and M /J(R)
is a localisation of a maximal ideal of a polynomial algebra over D. This
proves the remainder of (iii).

6.7. PROOF OF (iv): Since R/J(R)=D[X,, ..., X,]., where '#is the
image of ‘&,

t=gl. dim. (R) = k-dim(R) (2)
by [24, 1.4 and 1.9]. Clearly, height M > ¢; since height M < k-dim(R),
¢t = height M by (2). Also, height P = height PR = height M since M =
7,(PR).
Trivially, grade (M) < gl. dim. (R), so it only remains to prove
t > grade (M). (3)

Let M = QR, so Q is a prime ideal of %(g) of height r. By [3, 2.7.1] and
[23, 2.5 and 2.6],

grade (Q)=1. (4)
It follows from (4) that

Exty ) (%(g)/Q, %(g))=0 (5)
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for 0 <i<t—1, (where we take left modules in the arguments). Take an
injective resolution of 4., %(g), and apply #(g)',,® - to it, to get an
injective resolution of R. From (5) and (2) we see that that injective hull
of R/M occurs only in the th term of this resolution. In other words, (3)
is proved.

6.8. The argument in 6.7 also shows that %(g)/P occurs in the ¢th term,
and only in the th term of a minimal injective resolution of %(g). This
result is due to M.P. Malliavin [26, §4]; her proof is completely different.

6.9 PROOFS OF (vi) AND (vii): The ring R/J(R) has right and left stable
range 1 by 4.2. The same is thus true of R since 1+ J(R) consists of
units.

Since R/J(R) is a localisation of a polynomial algebra over a division
ring, K,(R/J(R))=1Z by Grothendieck’s theorem [2, Ch. XII, (3.1)].
Hence K ,R)=Z by [2, Ch. IX, (1.3)], so if M is a finitely generated
projective right or left R-module there exist r, t € N such that M & RV =
R[22, 11.1.10]. By (vi) and the proof of [22, 12.4], M is free.

Finally, let M be a projective R-module which is not finitely generated.
Since M is a direct sum of countably generated modules [16], without loss
we may assume M is countably generated. By Nakayama’s lemma
M/J(R)M is not finitely generated, so M/J(R)M is a free R/J(R)-
module [1]. In particular, M/PM is not finitely generated, for each
maximal ideal P of R. Hence, M is free by [1], since R clearly has no
proper idempotent ideals.

6.10. PROOF OF 6.1(viii): Let M be any maximal ideal of R, so M = QR
for some prime ideal Q of %(g), and there exists a chain of prime ideals
P=P, ....,P=0Q0of %(g) such that fori=1, ..., t — 1 there are ideals
A;C B, of %(g) with I(B,/A,)= P, and r(B,/A,)= P, ,, by definition of
'#(P) and the proof of Theorem 2.3. Be enlarging A, if necessary,
%(g)/A, can be chosen to be left P-primary; (see [7, §6]). By [7, 6.3(ii)],
P, ,,/A;1s a minimal prime of %(g)/A;, and there is a path in the graph
of left links %(g) connecting P, to P, ;. Since '¥(P)C €(P,)NE(P, ;)
P.R and P, R are proper prime ideals of R and P,R is connected by a
directed path in the graph of left links of R to P, R. Joining these paths
together, we get a directed path from PR to M.

7. Ore sets and subalgebras

7.1. In [5, 4.5] W. Borho and R. Rentschler obtained a sufficient
condition for a right Ore set of (p) to be a right Ore set in #(g),
where p is a solvable subalgebra of the Lie algebra g. The following result
shows that, given a mild and natural additional hypothesis, their condi-
tion is also necessary.
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THEOREM: Let g be a finite dimensional complex Lie algebra and let p be a
solvable subalgebra of g. Let & be a saturated right [resp. left] Ore set in
U(p). Then & satisfies the right [resp. left] Ore condition in %(g) if and
only if 1,(FL)C P[resp. 1_,(F)C F] for every eigenvalue X € p* occur-
ring in a composition series of the p-module g/p.

The maps 7, are the winding automorphisms of [4, 10.2].

7.2. We isolate a special case of 7.1: —

LEMMA: Let b be a subalgebra of codimension one in the Lie algebra g. Let
& be a multiplicatively closed and saturated subset of U(g) which is right
[resp. left] Ore in %(g). Let X € b* be the eigenvalue of the b-module g/b.
Then 7\ (L) C Plresp. 1_\(¥)CF].

PrOOF: We prove the result for & right Ore. Fix x €g such that
g=ba®Cx. If yeb, then yx=x(y+A(y)) +0o(y), where 6:b—b. It
follows easily that there is a map o: %(b) — %(b) such that

ux =x7\(u)+o(u)

for all u € %(b). Let c € %. Then there exists a € %(g) and d € ¥ such
that

ca=xd.

Now x%(b)=U(b)x + %(b), so a = a,x + a,, say, where a,, a, € %(b).
Hence

xd = ca; + ca,x
= ca, + cxmy(a,) +co(a,)
=c(a, +o(a,)) +0o(c)r(a,) +x7(cay).

Since the first two terms of the final expression above are in % (b), using
the Poincaré-Birkhoff-Witt Theorem we deduce that

d=m\(cay) = \(c)7\(ay). (1)
Because d € #and £is saturated, (1) implies 7\(¢) €.

7.3. PROOF OF 7.1: We prove the right hand version. If 7,(%) € #for all
the relevant A € p*, then #is right Ore in %(g) by [5, 4.5]. Suppose for
the converse that #satisfies the right Ore condition in #(g). Let r be the
solvable radical of g and b/r a Borel subalgebra of g/r containing
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p + r/r. There is a chain of subalgebras
P=pPoCpP,C...Cp,=b

with dim¢ p,,,/p, =1 for all i, since b is completely solvable. Now ¢
applications of 7.2 show that 7,(.¥)C.% for all Jordan-Holder values A
of ponb/p.

Fix a Cartan subalgebra h/r in b/r. There exists a basis § of the root
system of g/r relative to h/r such that b/r=h/r® Y. (g/r), [11,

page 86]. Let a € A; if B is any positive root, then 8 — aaisonot a root, by
the defining properties of a basis. Hence, [(g/r)z, (g/r)_,] S r and so
there exists x € g such that Cx + b/b is a b-module with eigen value —a.
Thus, by 7.2 again 7_ (%) c & for all « € A. But every Jordan-Holder
value of b on g/b is a positive integral linear combination of { —a: a €
A}. Since 77, =7y, for A, p € b*, this completes the proof of 7.1.

8. The semisimple case

8.1. In this section, g denotes a finite dimensional complex semisimple
Lie algebra, h a Cartan subalgebra, R C h* a root system for g relative to
h with root spaces {g,: « € R}, R*"UR™ = R a decomposition of R into
positive and negative roots, with a basis AC R*, and b the Borel
subalgebra containing k with b=h & Y @ g . (Note that every Borel

a€R*
subalgebra of g arises in this way for some choice of A and R*, [11, page

86].) Let ZR C h* denote the root lattice [11, page 67], and N X denote
the subsemigroup generated by a subset X of h*. Note that if A € h* then
A€ (b/[b, b])* and so A defines a winding automorphism 7, of Z(b).

8.2. Combining 5.3. and 7.1 we obtain immediately:
THEOREM: Let g be a semisimple Lie algebra and b a Borel subalgebra of g.
Let hC b and R be as in 8.1. Let P be a prime ideal of %(b). Define the
subsemigroups L(P) and R(P) as in 2.2, so that L(P)CNR™", R(P)=
—L(P)C NR™. Define
P (P)=N{%a,(m(P)): AEN(L(P)UR™)},
FL'(P)=N{Ey(1n(P)): \EN(R(P)UR")},
and
L (P)=N{byu)(1n(P)): AEZR}.

(i) L(P) [resp. F'(P)] is the unique largest subset of €y p)(P)
satisfying the left [resp. right] Ore condition in U(g).
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(i) L(P) is the unique largest Ore subset of €y, (P) in %(g).
(iii) Suppose that U(b)/P is Artinian, so P =I(C,), the annihilator of
the 1-dimensional b-module defined by p € h*. Then

F(P)="9(P)="(P)=N{%y4 (I(CX)): N\Ep+ZR}.

8.3. Notation: In case 8.2(iii) we shall denote & (P) by ¥ (u).

8.4. Let p € h*. What can be said of the ring #(b)(,,? In particular,
what are its prime ideals? Let P be a prime ideal of %(g). Then P is
primitive if and only if PNZ(g) is a maximal ideal of Z(g) (where Z(g)
is the centre of #(g)), and if M is a maximal ideal of Z(g), the M%(g)
is primitive, [9, 8.5.7, 8.5.8]; the ideal M%(g) is thus called a minimal
primitive ideal. Every minimal primitive ideal is contained in only finitely
many primitive ideals [9, 8.5.7(b)]. Every primitive ideal Q of #(g) is the
annihilator of the unique irreducible image L(A) of a Verma module
M(M) by Duflo’s theorem [10]. Now if z € ¥ (p), then z + u € £ () for
all u€ n*%(b), where n* = Y@ g . Hence,

oNS (u) # 9 = (ON%(h))NF (1) # 9. (1)

As a %(h)-module, L(A) is a direct sum of weight spaces. Each weight
v € h* defines a 1-dimensional % (h)-module % (h)/I(v), say, and so

ON%(h)=N{I(v):vaweightof L(A)}. (2)

In view of 6.1(ii), an ideal J of % (h) satisfies JN& (p) # 0 if and only if
J ¢ I(v) for all vE€ p+ ZR. Therefore, we can deduce from (1) and (2):

THEOREM: Let Q = [(L(A)) be a primitive ideal of %(g). Let p € h*. Then
oONL(p)=0 if and only if

pEZR+ {v:vaweightof L(N)},

(the closure being with respect to the Zariski topology on h*).

8.5. To illustrate 8.4, consider the cases where (i) Q is co-Artinian and (ii)
Q is a minimal primitive ideal [9, 8.4.3, 8.4.4]. In case (i), L(A) is finite
dimensional; that is A € A, the lattice of integral weights, and A is
dominant. Here, {v:v a weight of L(v)} is a finite and hence closed
subset of A + ZR < A. Thus

oNF(p)=0=pneX+1ZR.

When (ii) Q is a minimal primitive ideal we can take L(A)= M(A) [9,
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8.4.3] and it follows easily that {v: v a weight of L(A)} = h*. Hence in
this case 8.4 yields: — For all p € h*, QNS () = 0.

8.6. Suppose now that Q =/(L(A)) is an arbitrary primitive ideal. Let
A={ay, ...,a,} and let h, = h, be the corresponding basis of 4. It is not
difficult to generalise one direction of the implications in 8.5 to show
that:

If p € h* and there exists 1 € Z R such that (u— A)(h,)=1(h,) for all i
such that A(h,) €N, then QNS (pn) = 0.

We omit the routine deduction of this result from 8.4.

8.7. Let us sketch some possible directions for further work in the
semisimple case. It is easy to show that the semigroup generated by a
family of Ore sets of regular elements in a ring is itself an Ore set. In
particular, there is a unique maximal Ore subset #(P) of €(P), where P
is a prime ideal. What is this set when P is primitive ideal of #(g) and g
is semisimple? Let P, be the minimal primitive ideal contained in P; then
%(g)\P, and 1 + P, are both Ore sets, since P, is centrally generated.
Thus if P = P,, ¥(P)=%(g)\P, since P, is completely prime [9, 8.4.3,
8.4.4(1)]. In general, & ( P) contains 1 + P, and the various & (u) supplied
by 8.4 as b ranges through the Borel subalgebras of g and A and p range
through their permitted values. Do we perhaps have & (P)= (1 + P,,
{&u5)(1): b a Borel subalgebra, p given by 8.4})? What are the
maximal ideals of %(g)p,? We say that prime ideals M and N of %(g)
are linked if there are ideals J C I of %(g) with I(1/J)= M and r(1/J)
= N, and define ~ , the equivalence class on Spec %(g) generated by the
links [12]. In view of 2.1, if P ~ Q then Q generates a proper prime ideal
of %(g)ypy It is tempting to conjecture that the maximal ideals of
U(g) s py are precisely the ideals Q% (g)y(p), where P ~ Q. It follows
from [27, Theorem 2.2] that the ideals in the equivalence class containing
P all have (a) the same central character as P and (b) the same associated
variety; moreover, if one restricts to integral central characters, then the
associated variety is always irreducible [25], and then, as noted by Borho
in a forthcoming paper, (a) and (b) characterise the equivalence classes
under ~ .
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