
COMPOSITIO MATHEMATICA

J. W. SANDS
Abelian fields and the Brumer-Stark conjecture
Compositio Mathematica, tome 53, no 3 (1984), p. 337-346
<http://www.numdam.org/item?id=CM_1984__53_3_337_0>

© Foundation Compositio Mathematica, 1984, tous droits réservés.

L’accès aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CM_1984__53_3_337_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


337

ABELIAN FIELDS AND THE BRUMER-STARK CONJECTURE

J.W. Sands

Compositio Mathematica 53 (1984) 337-346.
© 1984 Martinus Nijhoff Publishers, Dordrecht. Printed in The Netherlands.

Stark’s conjectures [11] envision an elegant arithmetic interpretation of
the values of Artin L-functions at s = 1. In [8], Stark considered abelian
L ( s, X) with a first order zero at s = 0 and formulated a refinement of his
general conjecture for that case. Considering instead L-functions having
first order zeroes due to the imprimitivity of the characters X leads to an
analogous conjecture discovered by Stark [9], Tate [10] and Gross [2].
Tate dubbed this the Brummer-Stark conjecture, observing that it refines
an earlier (unpublished) conjecture of Brumer [6] and generalizes Stickel-
berger’s theorem. Until now, this classical theorem directly accounted for
the most general family of cases where the conjecture had been proved,
namely finite abelian field extensions K/Q. In theorem (2.1) we enlarge
this family to include all extensions K/k where K is abelian over the
rationals and k is any base field. Our result handles exactly a situation of
special interest singled out by Tate. The constructive proof is quite
elementary, and entirely algebraic. A second theorem, (2.2), notes that
the construction produces Jacobi-sum Hecke characters. Weil’s theorem
[12] plays a major role in both proofs. Another feature of our method is
that we deduce the integrality results of Deligne and Ribet [1] for all field
extensions under consideration from the knowledge of the Hurwitz zeta
function.

1. The conjecture

To develop the Brumer-Stark conjecture, we use Tate’s excellent article
[10] as a guide.

Initially, let K/k be an arbitrary finite abelian extension of number
fields with Galois group 9. The character group of g is denoted à and we
fix a finite set of primes S of k. S is assumed to have cardinality at least
2, and to include all of the infinite primes as well as the primes which
ramify in K. For X in , Ls(s, X) = Ls(s, X, K/k ) is the Artin L-func-
tion with Euler factors for primes in S removed.
When a is an ideal of k relatively prime to each of those in S, we write

(a, S) = 1 and denote by QQ the corresponding element of g. Then to
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each a in g is associated a partial zeta function

so that

Then the Stickelberger element 0 = 03B8S(K/k) = L 03B6S(0, 03C3)03C3-1 is defined
’gey

and lies in Q[g].
If a = 03A3c03C303C3 is in the group ring C[g], we set X(03B1) = 03A3 X(03C3)c03C3.

Then 0 is characterized by the property that

Also, if wK is the order of the group t’K of roots of unity in K, then w,0
lies in Z[g] by the theorem of Deligne and Ribet. The last ingredient for
Tate’s statement of the conjecture is the group Ko of elements of K

having absolute value 1 at all infinite primes of K.

1.2. CONJECTURE BS( K/k, S): For each ideal a of K, there exists an
element f( a) in K such that

( c ) K ( E ( a ) 1/wK) is an abelian Galois extension of k.
Condition b) is Brumer’s conjecture; a) and c) constitute Stark’s

refinement. Note that a) and b) specify e(a) up to an element of JUK, and
multiplying 03B5(a) by such an element also preserves the verity of c). The
set of ideals a for which -(a) exists clearly form a group, so one may in
fact restrict attention to, for instance, the set of prime ideals of K. We
point out that unless K is totally complex and k is totally real, the

conjecture holds trivially since 0 = 0 by (1.1).
In [10], Tate offers some useful reformations of the conjecture. Of

special interest to us is the following proposition involving the annihila-
tor

1.3. PROPOSITION: Given an ideal a of K there exists an 03B5(a) satisfying
(1.2) a), b), and c) if and only if there is an assignment a - aa = aa( cr)
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from AnnZ[g] (03BCK) to Ko such that (a03B1) = a03B103B8 and a " = a§ for all a and y
in AnnZ[g] (03BCK). Then 03B5(a) = awK(a).

For a principal ideal a (8) one can set a a = 03B403B103B8 and verify the
conditions in (1.3). Thus to prove the conjecture it suffices to consider a
set of ideals which generate the ideal class group of K. In particular, we
will later choose the set of ideals relatively prime to a fixed modulus.

Our results are closely tied to the relations among cases of the

conjecture. As a primary example of such relations, we mention (but do
not use) the following.

1.4. PROPOSITION (Tate): If K ~ K’ D k is a tower of fields then BS( K/
k, S ) implies BS(K’lk, S).

To complement (1.4) one would like to know that BS(K/k, S) implies
BS( K/K’, S’) when S’ denotes the set of primes of K’ dividing those in
S. However, the only currently available application of such a result (or
of (1.4) for that matter) would be to the specific situation handled in this
paper. A weaker version of the general statement is proved in the
author’s thesis [7]. At present we find it instructive to work directly with
the simple and illustrative special case.

2. Statements of theorems

Fixing a positive integer f, we let ILl be the group of f th roots of unity
and K( f ) = Q(03BCf). So wf = wK(f) is f or 2 f , according as f is even or odd.
We henceforth assume that K is contained in K(f), k is a totally real
subfield of K, and S is the set of primes of k which are either infinite or
divisors of f. The following principal results are proved in Section 6.

2.1. THEOREM: BS(K/k, S) is true. For each ideal a of K relatively prime
to 2 f , E( a ) is given explicitly as a product of powers of Gauss sums.

2.2. THEOREM: The explicit assignment a - f( a) is a Hecke character with
defining ideal (wI)2.

3. Stickelberger elements

Let G(f) = Gal(K(f)/Q), G(f) = Gal(K/Q), G = Gal(K(f)/k), and
G = Gal(K/k).
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Fixing S(f) as the set consisting of the infinite prime of Q and the
primes dividing f, we put 01 = 03B8(K(f)/Q, S( f )), 0 = 0( K( f )/k, S ), and
0 = O(K/k, S). Via the characterizing property (1.1) of Stickelberger
elements, the standard induction and inflation identities for Artin L-
functions imply relations among 03B8f, 03B8, and 0. These relations are captured
by certain maps between the appropriate group rings.

First we extend the quotient map 7r: G ~ G to a group ring homomor-
phism gr : C[G] - C[G]. That 0 = 03C0(03B8) follows immediately from the
principles just mentioned. Consequently, we may denote the extended
map by 03C0(03B1) = â from now on.

Because C[G(f)] is a free module of finite rank r = (G(f):G) over
C[G], a norm map is defined between the two. For a = L c03C303C3 in

aEG(f)

C[G(f)], Na in C[ ] is the determinant of multiplication by a, regarded
as a C[G]-linear transformation on C[G(f)]. Fixing a set of coset

representatives 1 y,: i = 1, 2, ..., r} for G ( f )/G as a basis of C[G(f)]
over C[G], one obtains matrix entries of the form L capa’ with p in

G(f). We define 03B1(03C1)= 03A3 c03C303C103C303C1, which depends only on the coset

p* = pG, and then N« = det[03B1(03B3l-103B3J)03B3-1J03B3l]. Multiplying the i th row of
the matrix by -y,-’ and the j th column by 03B3J for every i and j preserves the
determinant, so that Na = det[03B1(03B3l-103B3J)]. In particular, NOl = det A upon
defining A = 03B8f(03B3-1l03B3J).
We would like an interpretation of 0 involving characters X of G(f).

For such a x, and an arbitrary a as before, define X[al L c03C3X(03C3)03C3.
QEG

Also let X o denote the principal character.

3.1. PROPOSITION

Then 0 = 03B203B8f and 03B2 is the determinant of the matrix B obtained from A by
substituting 1 for every entry in the last row.

PROOF:

(a) The characterizing property (1.1) of 0 reduces the first identity to
the induction property of Artin L-functions.
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From representation theory for G ( f )/G, we have a formal identity in
the indeterminates y(03C1*) indexed by the elements of this group :

Upon substituting 0(p) for y(03C1*) one obtains the second identity.
(b) That 0 = 03B203B8f is clear from a ) and the definition of 03B2. To show that

03B2 = det B, we start with identity (3.2). Note that when X = X0, the

corresponding factor on the right is just Y_y(p*). The determinant on the
P*

left is unchanged upon adding all rows of [y(y*-Ip*)] to the last row,
which then has every entry also equal to 03A3y(03C1*). Removing this factor

p*
from the entire row and from the product on the right yields an identity
which gives the result upon substituting 0(p) for y(03C1*) again.

4. Integrality properties

The values at s = 0 of partial zeta functions possess integrality properties
which are aptly expressed in terms of Stickelberger elements and the
annihilation of roots of unity by group ring elements. In general, this
follows from the theorem of Deligne and Ribet [1], but our methods yield
a much more elementary proof for the case of absolutely abelian fields
K/k. The proof parallels the derivation of similar integrality properties
for the element 8 of the last section. Both sets of properties are essential
to the proof of the conjecture, and we find it natural to develop them
simultaneously.

Our starting point is the formula for 01 known by the classical results
of Hurwitz [3]. When (b, f) = 1, 03C3b in G(f) is defined as usual by
(Vab = (Vb for a in it f. Then

4.1. PROPOSITION: If a is in AnnZ[G(f)](03BCK(f)), then aOI lies in Z[G(f)].

PROOF: This is easily checked for a = w f and a of the form ab - b, with
(b, wf) = 1. Such elements generate AnnZ[G(f)](03BCk(f)) as an additive

group.
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4.2. PROPOSITION: If a is in AnnZ[G](03BCK(f)), then aO and af3 lie in

Z[G(f)]. In particular 03B2 ~ 1 Z[G(f)].wi

PROOF: Again let A be the matrix Of (-y,-’ -y.) and obtain B by replacing
every entry in the last row of A by 1. So 0 = det A and 6 = det B as in
(3.1). We may assume for convenience that yl = 03C31, and for each i choose
b, relatively prime to wf such that y, = ab, -

The determinant of A (resp. B) is unchanged if for each i, 1  i ~ r

(resp. 1  i ~ r - 1), we subtract bl03C3-1bl 1 times the first row from the i th
row to produce a new matrix we call A’ (resp. B’). The new i th row then
has entries in Z[G(f)] by (4.1). Indeed, this statement is equivalent to the
fact that (1 - bl03C3-1bl)03B8f lies in 7-[G(f )]. To conclude that aO = a det A’
and af3 = a det B’ lie in Z[G(f)], we multiply the first row 03B8f(03B3J) of A’
and B’ by a and observe that we again obtain entries in Z[G(f)]. This fact
simply restates (4.1) in the case where a lies in Z[G].

Note that the first r - 1 rows of A and B each contain a factor of
1 - 03B1-1. Consequently, one could show that all of our results remain

valid with 03B8, 03B2, 03B8 and fl replaced by (1/2r-2)B, (1/2r-2)f3, (1/2r-2)03B8,
and (1/2r-2)03B2. We leave the details to the interested reader.

4.3. PROPOSITION: If 03BB is in AnnZ[G](03BCK), then X0 and Xfl lie in Z[G(f)].

PROOF: It suffices to prove the proposition for À = wK and À = Qb - b,
since these generate AnnZ[G](03BCK), as an additive group. The case of
À = Q6 - b follows from (4.2). To handle the remaining case of À = wK, we
introduce the corestriction map

This homomorphism of additive groups is defined by the property that

the equation then holds for all 8 in Z[ G (f )]. Clearly wK03B8 and wfl- lie in
Z[G(f)] if and only if their corestrictions wK03B803A303C3b and wK03B203A303C3b lie in

Z[G(f)]. But the last condition follows from (4.2) once we verify that
wK03A303C3b is in AnnZ[G(f)](03BCK(f)). For w in 03BCK(f) we have 03C903A303C3b = NK03C9,
which is in 03BCK. Thus ",wKLah = (NK03C9)wK = 1 and the proof is complete

5. Gauss sums

The solution of the conjecture for K(f)/Q is provided by Gauss sums.
We review the facts which play a role in this and our more general result.
For more details, see Lang [5].
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Fixing a prime idéal 13 of K(f), we let the absolute norm be

N 03B2 = q = ps, where p is a rational prime. The power residue symbol
X03B2 = X03B2,f: (DK(f)/03B2)* ~ 03BCf is defined when p is relatively prime to f:

Letting Tr denote the trace to Z/pZ, and letting a be an element of Z or
Z/fZ, the Gauss sum Jf(a, 03B2) = - 03A3 Xa03B2(u) e203C0iTr(u)/p lies in

K(fp), and Jf(a, 03B2)f lies in K(f). Extending (Jt in G(f) to be the
identity on K(p) we obtain an element at in Gal(K(fp)/Q). Then

For an arbitrary idéal 9t of K(f), relatively prime to f, the generalized
Gauss sum Jf(a,u) of Weil is defined by multiplicativity in 9f and lies in
K(fN u). Furthermore, when a is an ideal of the subfield K, (a, f) = 1,
we let Jf(a, a) = Jf(a, a OK(f)). Using the transformation property (5.1),
one then finds that Jf(a, a)wK lies in K and Jf(a, a) lies in K(03BCNa). For
the absolute value, one has |Jf(a, u)|2 = N u, whenever a =1= 0 (mod f ).

Using the Jacobi symbol, we let

in K(fN u) and gf(a) = gf(aOK(f)).

5.2. PROPOSITION: BS(K(f)/Q, S( f )) is true with -(91) (2t)
g 1 (2[)’f for 2f relatively prime to f.

PROOF: For the given ef (9f ), (1.2) a) and c) follow from the above
discussion, and (1.2) b) is precisely Stickelberger’s theorem. By the
remarks accompanying (1.3), this suffices to establish the conjecture.

6. Jacobi-sum Hecke characters

Now we exploit the relations between Stickelberger elements to pass
from BS(K(f)/Q, S( f )) to BS( K/k, S). The Gauss sums in the solu-
tion of the first precipitate Jacobi-sum Hecke characters in the second, as
the integrality results perfectly afford the application of Weil’s theorem
[12,], [13].
We use Kubert and Lichtenbaum’s [4] statement of this last theorem.

For K c K( f ) as always, we let IK(f) be the group of ideals of K
relatively prime to f. We also use [b] ] to denote the least non-negative
representative (mod f ) of the integer b.
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6.1. THEOREM: For ri, r2, ... , rf - 1 in Z, define X on IK ( f ) by

Then X is a Hecke character if and only if the element y in Q[G(f)]
defined by

lies in Z[G(f)]. When this occurs, X has defining ideal ( f 2) and infinity
type y, and takes values in K.

In order to consider the gf(u) collectively, we let K(f)~
= U K(n). Then every gf(A) lies in K(f)·K(f)~ and we put

(f) = Gal(K(f) · K(f)~/Q). Inevitably then G(f) = Gal/(K ·
K(f)~/Q) and we obtain monomorphisms

by extending elements to act as the identify on K(f)~. Of course there
are corresponding homomorphisms of group rings, denoted by p - p.

Since Jf (1, a)03C3a = Jf ( a, a ) when ( a, f ) = 1, we obtain a reformation of
(6.1) which relates it to 01’ For this let

6.2. COROLLARY: Suppose 03BB = 03A3 raQa is in Z[G(f)]. Then x(a) =

JI(l, a) is a Hecke character for K if and only if the element y = 03BB(03B8f + 1 2~)
is in Z[G(f)]. In this event, X has defining ideal (f2) and infinity type y,
and takes values in K.

6.3. THEOREM: Fix a in AnnZ[G](03BCK) and for each a in IK(wf) let

a03B1(a) = gf(a)03B2. Then a - aa( a) is a well-defined Hecke character for K
with values in K and defining ideal (w2f).

PROOF: Firstly, a is in ll G by (4.3) and Jf(1, a ) and [(-1 Nan) N an]1/2
are in K(03BCNa) so that
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is well defined ( n = [K(f): K]). We claim that both the numerator and
denominator are Hecke characters with defining ideal (w2f) and values in
K.

The case of the numerator is covered by (6.2), for which we must show
that 03B103B2(03B8f + 1 2~) is in Z[G(f)]. But 03B103B203B8f = 03B103B8 by (3.1) and this is in

Z[G(f)] by (4.3). For the remaining term 1 2 03B103B2~, there are two cases. If
03B2 = 1, one easily checks that this term lies in Z[G(f)] when a is a

standard generator. Otherwise we note that 01’ and hence 03B2 = PJ X [03B8f],
X*Xo

lies in (1 - 03C3-1)Q[G(f)]. (Recall that 0’-1 is in G.). Thus f311 = 0.

In this latter case àï3 is in (1 - -1)Z[G(f)]. As [(-1 Nna) Nna]1/2 lies in
Q(03BCNa), which is fixed by G(f), the denominator is identically 1. When
f3 = 1, one checks that for a a standard generator, the denominator is a

power of the Hecke character (-1 Na) Na, with defining ideal (4).
The next proposition, combined with (6.3), (1.3), and the accompany-

ing remarks, establishes the theorems of section 2, with e(a) = awk(a).

6.4 PROPOSITION: For each a in IK(wf), and a and y in AnnZ[G](03BCK),

PROOF: Since a03B1(a) is in K by (6.3), a ) and c) follow from the definition
of a03B1(a) and the fact that the power 03B5f(aOK(f)) = gf(a)wf of g f ( a ) is in
K°. As for b), it suffices to prove the equality when raised to the wf
power. Thus we can apply (5.2) and (3.1). 
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