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SMOOTHINGS OF CUSP SINGULARITIES VIA TRIANGLE
SINGULARITIES

Robert Friedman " and Henry Pinkham ?

Introduction

The purpose of this note is to verify a conjecture of Looijenga ([L1]
II1.2.11) concerning the existence of smoothings of cusp singularities in
case the number r of components in the minimal resolution is less than or
equal to 3. The cases r <2 and r=3 with multiplicity m <11 were
considered in [FM], with very different methods. We exhibit here smooth-
ings for all smoothable cusps with r <3 and m =r+ 9. By a result of
Wabhl any smoothable cusp satisfies m < r + 9 [W2], and such cusps must
at least satisfy an additional condition (the dual cusp must sit on a
rational surface). The case m =r + 9 turns out to be the most delicate
case as the cases m <r+ 9 can frequently be deduced from the cases
m=r+9, using a method of Wahl [W1].

The essential point is to locate the cusps we wish to smooth on
smoothing components of the negative part of the versal deformation of
a Dolgachev (or triangle) singularity D, , ,, where ( p, g, r) is determined
by the cusp. We do this by constructing an appropriate degenerating
family of K3 surfaces, using the period map. The tricky part is to arrange
a model for the central fiber which is a singular rational surface with the
right cusp singularity. We do this by looking at the versal deformation of
the D, , . singularity and by using a combination of monodromy argu-
ments and discriminant computations which will rule out various possi-
bilities for the central fiber, until at the end we are left with the cusp we
want. The relevant discriminant computations are summarized in a table
at the end of this note. For more information on 7, , lattices and
Dolgachev singularities, the reader is encouraged to look at [L1] and [L2],
and, for information on cusp singularities, at [P3] and [FM] and the
references cited there.

D This material is based upon work partially supported by the National Science Founda-
tion under Grant No. MCS-8114179.

D This material is based upon work partially supported by the National Science Founda-
tion under Grant No. MCS 8005802.
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304 Robert Friedman and Henry Pinkham [2]

The introduction of the Dolgachev singularities is somewhat artificial,
and certainly peripheral to our main purpose. What we really need is a
geometrically meaningful compactification of the moduli space of “M-
marked K3 surfaces” where M is the orthogonal complement of the
lattice generated by the components of the exceptional divisor of the cusp
in the rational surface (this terminology is that of [P1]). By the results of
[P1], we have such a compactification when r < 3. Analogous construc-
tions for r > 3 would suffice to generalize our results to the case where
the resolution of D sits as an anticanonical divisor on a rational surface
(and m=r+9), at least up to r =6 since for r > 6 the lattice M is no
longer an “extended affine root system” ([L1]) so that Looijenga’s theory
of “good embeddings” into K-3’s no longer applies.

As the reader will doubtless notice we use in an essential way the work
of Nikulin [N]. We would like to thank, among others, Lee McEwan,
Rick Miranda, Dave Morrison, and Nick Shepherd-Barron for explaining
this work to us and for many helpful conversations (in part during the
course of a seminar organized at the Institute for Advanced Study,
Princeton).

We would also like to thank J. Wahl for an interesting letter on the
first version of this note, especially for providing an example (see
Remark 5) showing that a statement we claimed was incorrect. Finally we
thank J. Morgan for helping us find that statement.

§1. Statement of the theorem

The first assertion of the following theorem is Looijenga’s conjecture for
r < 3. For the definition and properties of cusps see [P3], [L1], [La2], and
[FM]. Suffice it to say here that a cusp is a normal singularity whose
minimal resolution consists in a cycle of rational curves. We usually
identify the cusp by listing the self intersections of the rational curves in
cyclic order.

THEOREM 1: Let D be a cusp singularity with r <3 components and
multiplicity m = r + 9. If the minimal resolution of the dual cusp D sits on a
rational surface as an anticanonical divisor D is smoothable. More precisely
D lies on a smoothing component in the negative part of the versal

deformation of the appropriate D, , , singularity (the one with C*-action).

The D, ,, are the so called Dolgachev or triangle singularities. They
have a resolution with dual graph:

-Pp



3] Smoothings of cusp singularities 305

where each vertex represents a smooth rational curve and its weight is its
self intersection. For more details see [L2].

The property of D in the statement of Theorem 1 is rather difficult to
use. Instead, we shall use a lattice-theoretic property of D, which we now
explain. Under the assumption that r <3, the (reduced) exceptional
divisor E of minimal resolution of D itself sits as an anticanonical divisor
on the rational surface V. Let L C H,(V; Z) be the sublattice generated
by the components of E and R= L* in H,(V; Z)., It follows from [L1]
theorem 1.1 that L € H,(V; Z) is primitively embedded. Moreover R is
even and nondegenerate.

As we shall see in a moment, Ris a T, ,, lattice ((L1], [L2]). This is a
lattice with Dynkin diagram:

14 r
A A
¢ AY4 Y
o —@ - cee-@
q
é
where each vertex has self-intersection —2, and ®@——@® means the

corresponding vertices have intersection 1.

DEFINITION: A surface S has a 7, ,, configuration if there exist smooth
rational curves in S, not passing through the singular locus of S, such
that the lattice generated by these curves in H,(S; Z) is T, , , and such
that the homology classes of the curves are the vertices of the T, _ .

LEMMA 2:
(i) Risal,,, lattice for appropriate p, q, r.
(ii) There exist a rational surface with a cusp of type D such that V has
aT,,, configuration.
(iii) R determines the unordered triple (p, q, r).
(iv) If the reduced exceptional divisor E' of the minimal resolution of the
D, , . singularity sits as an anticanonical divisor on a rational
surface V', then the orthogonal complement in H,(V'; Z) to the

, .
components of E’ is the T, , , lattice.

PROOF:

(i) This is proved in [L1], 1.2, and in any case follows easily from the
construction of the 7, . , configuration in (ii) plus a discriminant compu-
tation.

(i) If r =1, start with a nodal cubic and make m + 9 infinitely near
blowups at an inflection point on the cubic. This lowers the self-intersec-
tion to —m, and we leave it to the reader to locate a 7, , , configuration
disjoint from E, where ( p, q, r)=(2, 3, m + 6).
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If r =2, start with the transverse intersection of a line and conic, and
blow up appropriately many times at infinitely near points to the
intersection of a tangent line to the conic at the conic and line. Again, the
reader will easily locate the T, , , configuration. Here, if the self-intersec-
tions of the two components of E are —x and —y,(p, q,r)=(2,x+2,y
+2).

If r = 3, start with three lines in general position and make all blowups
at infinitely near points to the intersection of a general line with the given
three. If the self-intersections of the components of E are —a, —b, —c,
we have (p,q,r)=(a+1,b+1,c+1).

(iii) In the case m=r + 9, this follows by a direct inspection of the
table at the end of this paper, since no value of the discriminant appears
twice in the list.

(iv) is well known, and indeed is the source of the terminology. The
proof is the same as that of (1).

ReMARK 3: Using (ii) of the lemma it can be shown that D appears on
the negative part of the versal deformation of D, , ,, independent of the
condition m = r + 9 (use [P4], 6.7). The problem is to decide if D actually
lies on a smoothing component. We can show directly that if the cusp
smooths at all, it will smooth on the negative part of the versal deforma-
tion of D, , ,; we omit the argument, since we do not need the result and
since it is a special case of a new result of Looijenga which says that the
negative part of the versal deformation of a D, ,, is versal everywhere
except at the origin.

This remark will motivate our construction.

We now fix notation which will be used throughout this paper.

A =the K3 lattice (—E;) ®(—E;) oHO H® H.
N=(-E)o(-E)oH®H.

Here, — Ej is the unique negative definite even unimodular lattice of rank
8 and H is the hyperbolic plane [S]. We can now state a theorem which
together with a result of [FM] will imply Theorem 1. We will need the
notion of a good embedding ¢ of a 7, ,, lattice into A, notion due to
Looijenga ([L2]); it is equivalent to saying there exists a K-3 surface S
witha T, , configuration such that the embedding 7, , , = A = H,(S; Z)
is equivalent to ¢. Furthermore Looijenga shows all primitive embed-
dings are good, which is all we need to know here about good embed-

dings.

THEOREM 4: Let D be a cusp singularity with r <3 components and
multiplicity m=r + 9. Assume that R=T, ,  admits an embedding into A’
(not necessarily primitive). Then for every good embedding ¢: R = A there
is a flat and proper family #'— A, A = disk|t| <1 such that, if W, denotes
the fiber above t:
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(1) for t # 0, W, is a K-3 surface with a T, , , configuration embedded by
¢oin A=H,(W;: Z)

(2) W, is a rational surface with a T, , , configuration and exactly one
singularity D’ which is either a cusp or a D, .. singularity with (p’, q', r’)
#(p, q,r). In both cases if r' denotes the number of components in the
minimal resolution and m’ the multiplicity, than r' <3 and m’=r"+9.
Thus, if W, is the minimal resolution of W, then the components of the
resolution of D" generate the orthogonal complement of the T, , , lattice in
H,(Wy; Z).

(3)If D" isa D, ., and R’ is the primitive lattice spanned by T, , , in
H,(Wy; Z) (which is T, . . by the last statement in (2)), then there exists a
natural embedding : R’ — the primitive lattice spanned by Im ¢ C A. In
particular, if @ is a primitive embedding, then this case cannot occur by (iii)
of Lemma 2.

REMARK: To a given ¢: R — A, the number of “different” % — A is, in
the notation of Lemma 8 below, the number of points of C —C.

Let us see how to deduce Theorem 1 from Theorem 4. First, by [P3]
§3, if the resolution of D sits as an anticanonical divisor on a rational
surface, then R admits an embedding into A’, so that the hypothesis of
Theorem 1 implies that of Theorem 4. (Actually, the only fact used about
R in Lemma 6 is that there is some embedding of R into A for which the
orthogonal complement represents 0. This is really a statement about
Q-lattices, so it suffices to show that there is an embedding over Q of R
into A’. This can easily be verified by the standard results of [S]; the
corollary on p. 78 reduces this question to a computation of Hasse
invariants, without the more refined theory of the discriminant form
given in [N].)

Next note that for each D the corresponding R has a primitive
embedding into A (Lemma 6), which by the result of Looijenga already
mentioned ([L2], §3, remarks preceeding Prop. 3) is good, so that we do
have a #'— A. If we knew the singularity D’ of W, were D, we would
have Theorem 1. So assume it is not. Theorem 4, (2) and (3) imply that
D’ is a cusp singularity given in the table at the end of this paper, and
that |disc. D|=n?|disc. D’|, where n is the index of one lattice in the
other. By inspection of the table below the only pairs of possibilities for
which this can occur are (we list the p, ¢, r involved):

D (p.q.r) (disc. (D) D’ \disc. (D")|
(=2, =5, —11) (3, 6,12) 32.10 (—10) 10
(-4, =5, =9) (5, 6, 10) 42.10 (~10) 10
(-4, =5, -9) (5, 6, 10) 22.40 (-4, —-11) 40
(-4
(-3

, —11) (2,6,13) 22.10 (—10) 10
-3,-3,-12) 4,4,13) 2.2 (-2, -13) 2
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Therefore for all cusps except those with p, g, r listed in the left-hand
column, Theorem 1 is proved. By [FM], Prop. (4.8) and (4.9), the dual
cusps of (—4, —11) and (-3, —3, —12) do not sit on rational surfaces
and therefore do not satisfy the hypothesis of Theorem 1 (although they
do satisfy that of Theorem 4) so we need not concern ourselves with
them.

Two cases remain: (—2, —5, —11) and (—4, —5, —9). For
(—4, —5, —9) an easy additional argument (given in the appendix)
shows that the singularity of W, is indeed the (—4, —5, —9) cusp. The
case of (—2, —5, —11) is more complicated: see remark 5 below for
further discussion. Fortunately in both these cases D is shown to be
smoothable in [FM], so that the proof of Theorem 1 is complete,
assuming Theorem 4 and the result of [FM].

REMARK 5:

(a) When D= (—4, —11) or (—3, —3, —12) and ¢ is primitive, the
singularity on W, must be the cusp (—10) and (—2, —13) respectively, as
D does not smooth ([L2], I11.2.9 and [FM], prop. (4.8) and (4.9)). This
pathology is explained by the “exotic” elliptic deformations of Karras-
Brieskorn-Wahl ([W1], 5.6 (b) and (d)). These examples pointed out to us
by J. Wahl show that the lattice theoretic hypothesis of Theorem 4 is not
equivalent to the more subtle condition in Theorem 1.

(b) The pair (=2, —5, —11)—(—10) again corresponds to an exotic
elliptic deformation ((W1], 5.6 (e)), but this time both cusps turn out to
be smoothable. This fact makes the cusp (—2, —5, —11) hard to treat by
our method. As the proof that (—2, —5, —11) and (—4, =5, —9)
smooth given in [FM] uses totally different techniques (those of [F]), it
seemed worthwhile (to the second author) to give a proof, in the
appendix, closely related to the techniques of this paper. What is shown
is that there is a good, nonprimitive embedding of T, ;, into A such that
for the corresponding #'— A, W, has a (—2, —5, —11) singularity. It is
not known what happens for families associated to the primitive embed-
ding, except that some of them at least must go to (—10).

(c) Using the techniques of [S], one checks easily that the only cases
where the orthogonal of R in A represents 0 are either when D sits as an
anticanonical divisor on a rational surface or when D = (—4, —11) or
(=3, =3, —12).

§2. Some arithmetic and Hodge theory

LEMMA 6: With hypotheses on R as in Theorem 4, there exists a primitive
embedding of R into A. Moreover, for every embedding of R in A, the
orthogonal complement R* represents 0.
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PrROOF: The existence of a primitive embedding follows from a result of
Nikulin [N] (1.12.3) as R* /R has at most two generators [L2], [P2] and is
of rank 19 (and signature (1,18), by Hodge index).

Now let R C A be any embedding. For the remainder of this proof, we
view R, A as Q-lattices, as this suffices to check whether or not R+
represents 0.

By hypothesis, there is some embedding R C A = A’ & H, whose com-
plement has the form (over Q)

S=S8"®H,

S’ one-dimensional. Hence S represents 0. But, over Q,

A=R®R'=R®S,

so, by [S], (IV.1.5), p. 59, corollary to Witt’s theorem, R* and S are
isomorphic over @. Since S represents 0, R+ does as well, Q.E.D.

REMARK 7: From [N], theorem 1.14.4 one sees that, if there exists a
primitive embedding of R into A’, then the primitive embedding of R in
A is unique. This is the case for all cusps with r < 3 and m = r + 9 whose
duals sit on rational surfaces, except for (—2,—2,— 14), (=2, —5, —11),
and (=6, —6, —6).

In these remaining cases, using a result of Kneser (cf. [N], 1.13.1), one
can likewise show that the primitive embedding of R in A is unique (use
Lemma 1 of [P2)).

On the other hand as pointed out to us by Wahl the two primitive
embedding of the dual cusp to (—2, —6, —10) into a rational surface
constructed in [FM], §6 are lattice theoretically distinct.

LEMMA 8: Let R be a lattice of signature (1,18) and ¢: R— A an
embedding such that R+, the orthogonal complement of Im o, represents 0.
Let C be the coarse moduli space of all K3 surfaces W such that, under the
map ¢: R—> A= H,(W; Z), R is of type (1,1) (so that C is a connected
algebraic curve). We call a K3 surface W in C an R-marked K3 surface.

(i) C is not complete.

(ii) If C is the completion of C, then, locally around any point P of
C — C, there is a non constant map f: A — C with f(0)= P and a family =
W '— A such that the family W' * — A* is a smooth family of R-marked K3
surfaces and f: A* — C coincides with the natural map.

(iii ) For any such family w: W — A as in ii), if the monodromy, acting on
H,(W,), is unipotent and N is its logarithm, then N2+0, ie. > A is
birationally a Type 111 degeneration of K3 surfaces.
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PrOOF: Consider the corresponding period space for K3 surfaces as in
the statement:

D= {anlineinRé=Rl ®,C: F?
is isotropic and, if
wEF? w#0, thenw->0}.

Moreover, © = SO(2,1)/K for an appropriate maximal compact K, and
® is a symmetric space isomorphic to the upper half plane. By local
Torelli, C maps finite-to-one to I' \ ®, where I'= {g € SO(A);:g|R =
Id}, an arithmetic group, and the main point of the lemma is that I' \ ©
is noncompact. While this follows immediately from a well known
compactness criterion for quotients of symmetric spaces by arithmetic
groups, we prefer to give an explicit construction which will be used later.
We will locate an integral unipotent 7€ SO(A),, which fixes R. If
N =log T, the corresponding monodromy weight filtration lives in R+
and is necessarily of Type III as R+, of signature (2,1), does not contain
any two dimensional isotropic subspaces. (This shows that all cusps of T',
to use a highly confusing phrase, correspond to Type III degenerations;
in our construction, it will be clear that N2 # 0.)

Since R* represents 0, there exists a nonzero isotropic vector y € R+ .
Define

W,=Q-yCRi=R"®,Q

al

W,=W; in Rg, =Qy+ @8, say (nonorthogonal sum)
al

W,=Rs, =W,+Q-vy.

We may assume, after replacing y’ by y’ + ¢ for an appropriate c,
that v’- 8 = 0. Note that §-8 # 0 by looking at the signature and that
Y -y#O0sincey &€ W,.

Define the rational nilpotent matrix N by

N(y)=38
N(8)=—((8-8)/(v-¥))v

N(y)=0,
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extending by linearity. Note'that N2+ 0. A simple calculation gives
() N(a)-B+a-N(B)=0, all a BERS.

Via the splitting A=R® R* over Q, we may view N as a rational
nilpotent matrix acting on A, with N(R)=0 and such that (*) holds.
After multiplying by a suitable integer, we may assume 7 =exp N is
integral, hence T € T.

To locate an explicit map A* — I'\ D with the required monodromy,
and corresponding to a cusp of T, it suffices to use

(T")\D ->TI'\9D,

noting that (7")\ D = A*. We have completed the proof of (i) of Lemma
8, and (ii) is now immediate.

As for (iii), note that it follows immediately for any point P lying over
a cusp of I'\ D constructed in the course of the proof of (i), which is all
we need for this paper. That all cusps of '\ D satisfy N2+ 0 is, as
already remarked, an easy consequence of the fact that R+ has signature
(2,1). Finally, that a point of C —C must actually map onto a cusp of
'\ D follows from the surjectivity of the period map for K3 surfaces.

REMARK. It follows from global Torelli that C is actually isomorphic to
'\®. We do not, however, need this result.

§3. The deformation space of D, ,

We begin by fixing some notation. Let S be the base of the negative part
of the (mini)versal deformation of the D, , , singularity with C* action,
with 0 € S the distinguished point. Thus, S is an affine scheme with good
C* action. By the general theory, there is a corresponding family ¥™— S
with compact fibers, and C* acts equivariantly on ¥"as well. We will need
the following facts about S:

LEMMA 9:

(i) There are no D, ,, singularities in the fibers of ¥"— S away from 0
(with or without C*-action).

(ii) All fibers of ¥ — S have a T, , , configuration. They are irreducible
and are (birationally) either K-3 surfaces or rational.

(iii) The quotient scheme (S —{0})/C* exists and is complete. It
contains an open set which is a coarse moduli space for K3 surfaces
with a T, , , configuration.

PROOF:

(i) By a result of Laufer [Lal], there are precisely two isomorphism

classes of DP.q‘r singularities: those with C* action, and those without.



312 Robert Friedman and Henry Pinkham [10]

Since S is part of a miniversal deformation, we may ignore those with C*
action: they occur only at 0. By [La3] a family of D, ,, singularities
without C* action degenerating to one with C* action can be resolved
simultaneously. But then the deformation is equisingular in the sense of
Wabhl, and by [P4], 4.6 cannot be in S. This proves (i).

(i1) and (iii). The existence and compactness of (S — {0})/C* are
standard, and the remaining assertions follow from [P1] and [P4] (cf. also
(L2)).

Let m and r be the multiplicity and number of components in the
minimal resolution of the D, , . singularity; hence they are equal to the
corresponding m and r for the cusp. (The 2 uses of r in this context are
regrettable but unavoidable).

For V, the fiber of ¥"— S over ¢, let ¥, denote the minimal resolution
of the corresponding singular surface. Note that ¥, has at most one
nonrational singular point, which is then minimally elliptic (this is
because V; is in the deformation space of a minimally elliptic singularity,
which implies its singularities are Gorenstein, and the sum of their genera
is < 1), and if such a point exists, then as ¥, has a non trivial effective
anticanonical divisor and a 7, , , configuration of rational curves, V,is a
rational surface. Assume V, has a minimally elliptic singularity and let E’
be its fundamental cycle, i.e. simply an anticanonical divisor supported
on the exceptional set of the minimal resolution. Let »’ be the number of
components of E’ and m’ = —E’- E’. R’, the orthogonal complement in
H,(V,; Z)= Pic V, to the components of E’, contains a T, ,.lattice by
Lemma 9.

As V, is rational, rank Pic ¥,=10+ m’. On the other hand since 7,
contains the T, lattice which has rank 19, and in its orthogonal

P.q.r ~
complement a lattice of rank ', we have rank Pic ¥, > 19+ r’. So

10+m'>19+r'=10+m—r+r’,
so that
m—r'>m-—r=9.
Note that by [La2] m’ is the multiplicity of ¥, at the elliptic singularity.

LemMma 10:

(i) For any good embedding ¢: R — A there exists a map p: A — (S —
{0})/C* and hence after finite base change a lifting p: A — S — {0}
such that if W= A is the family pulled back from ¥"— S by p, then
# — A is a type 111 degeneration as constructed in Lemma 8.

(it) If Wy =V, is the surface corresponding to t = p(0), then W, has a
minimally elliptic singularity D’ which is either a cusp with at most 3
components or a triangle singularity with (p’, q’, r'Y# (p, q, r).

By construction D’ is a smoothable singularity.
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PROOF:

(i) Via Lemmas 8 and 6, we may construct a family # * — A*, using
the embedding ¢. Since ¢ is good in the sense of Looijenga, the fibers W,
t+0, have a T, , . configuration, ([L2], Prop. 3) and by Lemma 9 we
obtain a map p*: A* — (S — {0})/C* which by compactness of the right
hand side extends to A. Thus we obtain (i).

(i) Since m'—r'>m—r, then r—r'>m—m’ >0, since m is the
multiplicity of D, ., and m’ is the multiplicity of a singularity in its
deformation space. So r — r’ > 0, therefore r’ <r < 3.

Examining the list of minimally elliptic singularities [La2], (3.4) and
(3 5), we see that W0 must be simple elliptic, a cusp, or a Dolgachev

D, .. (with (p’, q', r')# (p, q, r), by (i) of Lemma 8). (The case of only
rational double points or W, smooth are impossible since the mono-
dromy is not of finite order.) If W, had a simple elliptic singularity, the
corresponding degeneration of K3 surfaces would be Type II (N? = 0),
as one sees easily by considering the semi-stable model. Another proof
would consist in noting that simple elliptic singularities with m" —r" > 9
are not smoothable ([P0], 7.5: note that ' =1 so m’ > 10) and W, comes
with a smoothing. We have proved (ii).

§4. The end of the proof of Theorem 4

To finish the proof it remains to show:

Om' —r'=m-r;

(2) if the singularity of W, is a Dolgachev singularity D, then
4.~ 18 a sublattice of the primitive lattice spanned by the image of
o.r i A under ¢.

We already have m’ —r’ > m — r=9. Since cusps with m’ —r’ > 9 are
not smoothable by [W2], 5.6, we may now assume that D” is a Dolgachev
singularity. Our main goal here again is to prove m’ — r’ = 9, since that is
all we really need to prove Theorem 1 (it is the condition that permits us
to examine discriminants), but for the proof of (1) we need (2). The
argument that ruled out simple elliptics and cusps will not work for
triangle singularities since there are smoothable triangle singularities with
m’' —r’>9 ([P2)).

We first do (2).

G

LEMMA 11: Let 3 — A be a deformation of the compact analytic surface Z,,,
where as usual Z, is the fiber above t. Assume that Z,, t # 0, is smooth, and
that aside from rational double points, Z, has a unique normal singular
point p. Let Z, be the minimal resolution of Z,, and R’ C H,(Z,, Z) the
orthogonal complement of the lattice generated by the components of the
exceptional divisor E’ at p. Finally assume that H'(E'; Z)= 0. Then there
is a natural inclusion R’ = H,(Z,; Z), t #0, and the image of R’ is
invariant under some power of the monodromy.
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PROOF: We may assume Z; has the unique singular point p since by
assumption the other singularities, which are rational double points, may
be simultaneously resolved after finite base change.

Using the exact sequence of the pair (Z,, Z, — E) as in [L1], L.5.1 and
writing (coefficients in Z)

- - - a - B - -
Hy(Z,, Z,— E') > H,(Z,~ E') > H,(Z,) > Hy(2y,Z,~ E)
AR
H'(E") H*(E’)

we see that a is an injection and that R’ is the image of H,(Z,— E’) by
a.

Let B be a Milnor ball ((W2]) around p for the smoothing 3 — A. Let
Y,= Z, — B. For appropriate B and if necessary after shrinking A we may
assume that for all ¢ including 0, (Y,, dY,) is a compact manifold with
boundary. By the Ehresmann theorem, all the (Y,, dY,) are diffeomorphic.
Thus we have the composite map:

% R'zHz(Zo_E/)sz(Yo)sz(Yz)_’Hz(Zx)-

Since ¢ is clearly an isometry and R’ is nondegenerate, y is injective.
Since there is a representative for the geometric monodromy on Z, which
is the identity on Y,, R’ is invariant under monodromy. Going back to
the original family (before the finite base change made at the beginning
of the proof), we get the last statement.

REMARK:

(a) The hypotheses of Lemma 11 apply to #— A when W, has a
triangle singularity, but not when it has a cusp.

(b) If H'(E’; Z)# 0, there is still some lift of R’ to H,(Z,— E’) and
an inclusion R’ — H,(Z,; Z) which is invariant under some power of the
monodromy. In the case of a cusp, the kernel of H,(Z, — E’) = H,(Z,)
is of the form Z - y, where v is isotropic In particular, the lift of R’ to
H,(Z,— E’) need not contain the given T, , lattice R in this case.

. . ,
Assertion (2) is now easy: R’ contains 7;, q.».and, undery, T, _ is sent

to “the” T, , . on W, so thatif 7, ., and R’ are of the same rank we are
done. So suppose not. Then the rank of R’ is at least 20. Referring to the
proof of Lemma 8, this forces R’ = Ker N (over Q). But R’ is nondegen-
erate, whereas ker N contains y which is orthogonal to ker N, a contradic-
tion.

Thus rank R’ = rank T

pP.q.r
Il Il
104+m' —r' 10+m—r

= m’ — r’ = m — r which proves (1), and finishes the proof of Theorem 4.
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A table of discriminants

cusp (p,q,r) discriminant = +( pq + pr + qr — pqr)
r=1 —-m (2,3, m+6) -m
-10 (2,3,16) -10
r=2 (—-x,~—y (2, x+2,y+2) xy —4
(-2, —13) 2,4,15) 22
(-3, -12) 2,5,14) 32
*(—4, —11) (2,6,13) 40
(-5, —10) 2,7,12) 46
(—6,—-9) 2,8,11) 50
(=17,-8) 2,9, 10) 52
r=3 (—a —b —c¢) (a+1L,b+1,c+1) 2+a+b+c—abe(=20— abc)
(-2,-2,-14) (3,3,15) -36
(-2,-3,-13) (3,4,14 —58
*(-2, —4,-12) (3,5,13) —-76
(=2, -5,-11) (3,6,12) -90
(-2,—-6,—-10) (3.7,11) -100
(-2,-7,-9) (3,8,10) -106
*(=2,-8,-8) (399 —-108
*(—3,-3,-12) (4,4,13) —88
*(—3, -4, -11) (4,5,12) -112
(=3, -5, -10) (4,6,11) —130
(-3,-6,-9) (4,7,10) —142
*(=3,-7,-8) (4,8,9) —148
*(—4, -4, -10) (5,5,11) —140
(-4, -5 -9 (56,10) -160
*(—4,-6,-8) (57,9 -172
*(—4,-7,-7) (58,8) -176
*(—=5,-5,-8) (6,6,9) -180
(-5, -6,-7) (6,7,8) -190
(-6,—-6,—-6) (7,7,7) —196

* Indicates that the dual cusp does not sit on a rational surface as an anticanonical divisor.
((FM] prop. 4.8).
Note the relations: p + g+ r=21=124+(m—r)and m—r=9.
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