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JACOBI-SUM HECKE CHARACTERS OF IMAGINARY

QUADRATIC FIELDS

Gudrun Brattström * and Stephen Lichtenbaum **

Compositio Mathematica 53 (1984) 277-302.
O 1984 Martinus Nijhoff Publishers, Dordrecht. Printed in The Netherlands.

In this paper we formulate a hypothesis concerning the values of the
L-series of Jacobi-sum Hecke characters of an abelian number field k,
and verify that this hypothesis is true if k is imaginary quadratic of odd
class number. Roughly, this hypothesis asserts that if 03C8 is a Jacobi-sum
Hecke character of k, such that the infinity-type of 03C8 is in the "good
range", then L(03C8, 0) is equal up to a rational number to the inverse of a
product of values of the r-function at rational numbers which is associ-
ated to 03C8, multiplied by the square-root of the discriminant of the
maximal real subfield. More precisely, we have the following:

Using the notation of paragraph 1, let 03C8 = 03A0tj=1(J(03B8j, kj) o Nk/kj) for
subfields kl, k2,..., kt contained in k. The functional equation of the
L-series of 03C8 may be written 0393(03C8) L(0, 03C8) = W03C80393(03C8-1N-1)-
L(0, 03C8-1N-1). Here W03C8 is a non-zero constant and 0393(03C8) and 0393(03C8-1N-1)
are, up to non-zero numbers, products of some values of the r-function.
If both 0393(03C8) and 0393(03C8-1N-1) are finite and non-zero, then we say that
the infinity-type I(03C8) of 03C8 is in the good range, or, following Deligne
([Del]), that 4, is "critique". As Katz points out in ([Ka], p. 203), if k is
imaginary (hence CM since we are assuming k to be abelian) this is

equivalent to saying that there exists a CM-type £ of k such that I(03C8) is
in what we may call C(£), i.e. that I(03C8) = 03A303C3~03A3 - n03C3 + d03C3(03C3 - 03C3), and
either (a) n &#x3E; 1 and all d03C3  0 or (b) n  1 and all d03C3  1 - n.

It is easy to verify that £ must be unique. Let d+ be the discriminant
of the maximal totally real subfield of k. We then state the r-hypothesis
as follows:

REMARKS: 

(1) This does not preclude L(03C8, 0) being zero, in which case the

r-hypothesis is automatically true.

* Supported by a Swedish Natural Science Research Council grant.
* * Supported in part by NSF grants.
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(2) It is by no means obvious that 039303A3(03C8, 03B8) is independent of 0 in
R /Q , as is implied by (0.1) if L(03C8, 0) ~ 0. For k imaginary quadratic,
this follows from the generalized Deligne’s theorem proved by Kubert
and one of the authors in [K-L] and quoted here as Theorem 1.9, but it is
still unknown in general.

(3) If k is real, we may make the analogous statement with £ replaced
by the set of all embeddings of k into C, and this has been proven by
Brattstrôm in [B].

(4) Using results of Shimura, it is proved in [L] that (0.1) is true for
any k if 0 is replaced by Q.

(5) G. Anderson has recently shown ([A]) that the r-hypothesis is a
consequence of Deligne’s conjecture ([Del], p. 323).

(6) All of the above should be extended to the still more general
Jacobi-sum characters defined in Kubert [Ku].

Some of the intermediate results obtained in this paper are themselves

of independent interest. In paragraph 3 we show that if k is imaginary
quadratic with class number one and is not equal to Q(-1), Q(-2),
or Q(-3), then the Jacobi-sum Hecke characters are exactly the Hecke
characters of k of type A0 which are Galois-equivariant. In paragraph 4,
we prove Damerell’s theorem for all imaginary quadratic fields of odd
class number up to an element of the imaginary quadratic field in

question (rather than up to an algebraic number as in Damerell’s original
paper [Da] or in Weil [W3]). A related version of Damerell’s theorem is
proved in [G-S].
We should like to express here our debt to André Weil, who first

suggested that there should be a relationship between the values of
L-series of Jacobi-sum Hecke characters and corresponding products of
values of the r-function. We should also like to thank Dan Kubert for his

contributions to this paper. Finally we thank the referee for suggesting
valuable simplifications of the arguments in paragraph 4.

§1. Jacobi-sum Hecke characters

This paragraph is devoted to reviewing the basic definitions and results
about Jacobi-sum Hecke characters, to be found in [W1], [W2], and
[K-L].

First, let F be a finite field, X a non-trivial additive character of F, and
03C8 a non-trivial multiplicative character of F. We define the (modified)
Gauss sum G(X, 03C8) associated to X and 4, to be -03A3a~F  X(a)03C8(a).

Next, let N be an integer greater than 1, and let K = Q(03B6N) be the field
obtained by adjoining a primitive N-th root of unity 03B6N to Q. For
b E (Z/NZ) , we define Q6 E G(K/Q) by 03C3b(03B6N) = 03B6bN, thus identifying
(ZINZ) " with G(K/Q). For each rational prime p, let 03C8p be the additive
character 03C8p(a) = e203C0ia/p, a ~ Z/pZ. For any finite field F of character-
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istic p, let 03C8F be the additive character obtained by composing 03C8p with
the trace from F to Z/pZ. Fix once and for all an embedding of
K = Q(03B6N) into C. Let p be a prime ideal of K prime to N, and let
Np = q = pf. Let a ~ Z/NZ be different from 0.

Define Xap(x), for x in 03BA(p), to be t(xa(q-1)/N), where t(À) is the

unique N-th root of unity in K reducing to the N-th root of unity À in
Kip ). Then define a function JN(a) from the set of prime ideals of K
prime to N to the complex numbers by JN(a)(p) = G(Xap, 03C803BA(p)). Extend
JN(a) multiplicatively to a homomorphism from the group of fractional
ideals of K prime to N into C ’. Let 0 be an element of the free abelian
group Z[Z/NZ - {0}], and define JN(03B8) be extending JN(a) multiplica-
tively.
Now let k be an abelian extension of Q, and assume that k c Q(03B6Nl)

for i = 1,... s, and that all the N are distinct. Let 0 be an element of the
free abelian group on the disjoint union of Z/NlZ - {0}, i = 1, ... s, and
write 0 = 03A3sl=103B8l, 03B8l = 03A3nl(a)[a]Nl. If a is an ideal of k prime to every N,,
define JNl(03B8l, k)(a) to be JNl(03B8l)(aoNl), where oNl is the ring of integers
in Q(03B6Nl). Then define J( B, k)(a) to be 03A0sl=1JNl(03B8l, k)(a). When is

J(03B8, k ) a Hecke character? The answer is given by the following result
([K-L]) which is a straight-forward generalization of the similar result of
Weil ([W1], [W2]):

If a is in Z/NZ, let a be any integer representing a, and write
~03B1/N~ = ~a/N~ = the fractional part of a/N. Let B = 03A3sl=103B8l and 0, =

03A3nl(a)[a]Nl. Let K; = Q(03B6Nl). Define I(03B8, k) to be 03A3sl=103C1l(03A3a03A3bnl(a)~-
ab/Nl~03C3-1b), where b runs through (Z/NlZ)  and p, is the natural map
from Q[G(K,/Q)] to Q[G(k/Q)].

THEOREM 1.1: 

(a) The following are equivalent:
(i) J(03B8, k) is a Hecke character.
(ii) I(O, k) lies in Z[G(k/Q)].

(b) If these conditions are satisfied, then
(iii) I(O, k) is the infinity-type of J(O, k).
(iv) J(O, k) has values in k.
(v) If 0’ is any automorphis in G(k /Q), then J(O, k)(a03C3) =

(J(03B8, k)(a))03C3,
i. e. J(O, k) is Galois-equivariant.
(vi) If 0 = 03A303A3ni(a)[a]Nl and b is any integer prime to all the N,, then
(J(03B8, k)(a))03C3b = J(b*03B8, k)(a), where b*B = 03A303A3nl(a)[ba]Nl.

DEFINITION 1.2: A Hecke character of k which may be written in the
form J(03B8, k) for 0 as above is called a strict Jacobi-sum character of k.

DEFINITION 1.3: If s = 1, so 03B8 = 03B81 = 03A3n(a)[a]N, we say that J(03B8, k) is
pure of level N.
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DEFINITION 1.4: If k is any number field, then 03C8 is a Jacobi-sum character
of k if there exist abelian extensions kj of Q, j = 1,... t, such that kj 9 k,
and corresponding 01, such that 03C8 = 03A0tj=1 (J(03B8j, kj)oNk/kj), where each
J(03B8J, kj) is a strict Jacobi-sum character of kJ.

DEFINITION 1.5: Let 03B8 = 03A3l03A3anl(a)[a]Nl, and let a be in G(k/Q).
Choose b, prime to N such that 0’ = Qh . Define 039303C3(03B8, k ) in R ’/0 ’ to be
the class of 03A0l03A0a03A0c0393(cbla/Nl)nl(a), where c runs through G(Q(03B6Nl)/k).
(It is immediate that this is independent of the choice of b,.) In particu-
lar, we let 0393(03B8 k ) be 039303C3(03B8, k ) when a is the identity element of G(k/Q).

DEFINITION 1.6: Let 03C8 = 03A0tJ=1J(03B8J, kj)oNk/kj. Define 039303C3(03C8, 03B8) to be

03A0tj=1 039303C3(03B8j, kj) in R /Q . (We write 039303C3(03C8, 03B8) to emphasize the depen-
dence of fa upon the choice of Jacobi-sum representation 0 for 03C8.)

Let k be a CM-field, so a totally imaginary quadratic extension of a
totally real number field. Let £ be a CM-type of k ; so S contains exactly
one element from each pair of conjugate complex embeddings of k.
Assume that k c C, and identify embeddings with elements of the Galois
group G(k/Q).

DEFINITION 1.7:

LEMMA 1.8 : Let 41 = J(03B8) be a Jacobi-sum character of a field k c C. Let
or = O’c be an element of G(k/Q). Define 03C803C3 by 03C803C3(p) = (03C8(p))03C3 for .p a

prime ideal of k. Then 0393(03C803C3, c*03B8) = 039303C3(03C8, 0).

PROOF: We may assume that 4, = J(03B8), 0 = 03A3l03A3anl(a)[a]Nl. Then 03C803C3 =

J(c*03B8), by Theorem 1.1, (vi). So 

where b runs through G(Q(03B6Nl)/k). On the other hand, by definition
039303C3(03C8) = 03A0l03A0a03A0d0393(da/Nl)nl(a), where d in G(Q(03B6Nl )/Q) restricts to

a = O’c in G(k/Q). But clearly abc restricts to O’c if and only if ab leaves k
fixed.

THEOREM 1.9 (Generalized Deligne’s theorem): Let 41 = J( B, k) be a strict
Jacobi-sum character of k, and assume that 03C8 is of the form XNr, where
r ~ Z and X is a Dirichlet character of k. let
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Then 0393*(03B8, k) transforms via X, in the sense that:
(i) f*( 0, k) generates the abelian extension K of k corresponding to X;

(ii) if 0’ is in G(K/k), then 03C3(0393*(03B8, k)) = X(03C3)0393*(03B8, k).

PROOF: This is the main result of [K-L]. For pure characters it is due to
Deligne ([Del], [De2]).

§2. Jacobi-sum characters of 0

In this section we completely identify all Jacobi-sum characters of 0 and
show that the r-hypothesis holds for 0. Along the way, we demonstrate
various results which will prove useful in subsequent sections. The

complete identification of the jacobi-sum characters is a special case of a
result of one of us (Brattstrôm), who solved the analogous problem for
arbitrary real abelian fields.

Let 0 = Y-s=10,, 0, = 03A3ni(a)[a]Nl. Since 0’ - 1 is in G (K,/Q) and is
different from 1 if Nl &#x3E; 2, we see immediately from Theorem 1.1 that:

PROPOSITION 2.1: The only condition for J(03B8, Q) to be a Hecke character is
that if Ni = 2, n, (a) must be even.

It then follows that if J(03B8, 0) is a Hecke character, so are all the

J(Oi’ Q), and it suffices to assume s = 1 to determine all Jacobi-sum Hecke
characters of Q. So let 0 = En (a)[ a 1 N with n(1) even if N = 2, and write
JN ( B, Q) = J(03B8, Q). Since J(03B8, Q) is a Hecke character of 0 with values in
Q, it must be of the form XdNr, where r is an integer, N is the norm
character of Q and X d is the character corresponding to the extension

Q(d) of 0 of degree 1 or 2. We write J( B, Q) = Xd(03B8)Nr(03B8). Let ~(03B8) =
En (a). Let ~ denote the Euler ~-function. Then we have, precisely,

THEOREM 2.2: The infinity-type of JN(03B8, Q) = r = ~(N)~(03B8)/2. If 0 =
[a] 1 N then d = 1, unless:

(i) N = lk, 1 prime ~ 1(mod 4), when d = 1.
(ii) N = lk, 1 prime 3(mod 4), when d = -1.
(iii) N = 2k, k  3, a odd, when d = 2.
(iv) N = 2l k, 1 prime 1 (mod 4), a even, when d = 1.
(v) N = 21k, 1 prime 3(mod 4), when d = - l if a is even and d = -1

if a is odd
(vi) N = 4, when d = -1 if a is even and d = - 2 if a is odd.

If N = 2 and 0 = 2[1]2, then d = - l.
The proof is given in [B].

We now wish to describe completely when a character XdNr can be of
the form J(03B8, Q), i.e. is a Jacobi-sum Hecke character of Q.
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COROLLARY 2.3 : Let d be square-free and let r E 7L. XdNr is a Jacobi-sum
Hecke character if and only if either r is even d is positive, or r is odd and d
is negative.

PROOF: Let S be the subgroup of Jacobi-sum characters. From Theorem
2.2, we know X-3N E S, hence N 2 E S.
If 1 ~ 1(mod 4), xlNl-1/2 ~ S, hence xl E S.If 1 3(mod 4), x-lNl-1/2 E S, hence X-/’" E S.
From (vi) x-1N and X-2N E S.
From (iii) x2 ~ S, and it is easily checked that these generate all char-
acters of the desired type and that no other occur.
We now define rN(a) to be the class of 03A0b(b,N)=1 0393(ab/N) in R ’/0

for a E Z, a =1= 0 (mod N), where the product is taken over b strictly
between 0 and N and prime to N. We wish to compute this in all cases up
to a rational number. (Note that 0393N(a) = 0393(03B8, Q) for 0 = [a]N.)

THEOREM 2.4:

(i) If a n c(mod N), TN (a) = TN(c).
(ii) If N is divisible by two odd primes, or by 4 and an odd prime, then

r ,(a) = 03C0~(N)/2.
If N = 2k, k  2 and a is even, 0393N(a) = 03C0~(N)/2.
If N = 2k, k  2 and a is odd, 0393N(a) = 03C0~(N)/2. 21/2.
If N = lk, and 1 is odd, 0393N(a) = 03C0~(N)/2. l1/2.
If N = 2l k and a is odd, 0393N(a) = 03C0~(N)/2.
If N = 21 k and a is even, 0393N(a) = 03C0~(N)/2. l1/2.

( All equalities are of course in R /Q .)

PROOF: (i) follows immediately, since 0393(z + 1) = z 0393(z). For (ii), let us

first assume (a, N) = 1 and N &#x3E; 2, and let K= Q(03B6N). Since F(z)lr(l -
z) = 1T jsin 7rz,

Let RN = 03A0Nb=1(b,N)=1 sin(03C0b/N). Then RN is obviously real and positive.
Observe that if 03B6N = e203C0i/N,

But 03B6b2N - 03B6-b2N = 03B6-b2N(03B62b2N - 1). As bruns from 1 to N, with (b, N) = 1,
(03B62b2N - 1) = (03B6bN - 1) runs through a complete set of conjugates for (03B6N -
1). So RN = 03B6-03A3b2N. NK/Q(03B6N - 1)/(2i)~(N). Now NK/Q(03B6N - 1) = l if N is
a power of l, 1 prime, and is equal to 1 otherwise. Since RN is real and
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positive, RN = IR NI = l/2~(N) if N is a power of 1, 1/2~(N) if not. So if
(a, N) = 1, FN (a) = 03A0Nb=1(b,N)=1 0393(ab/N) = 03A0Nb=1(b,N)=1 0393(b/N), which

equals 03C0~(N)/2. l-1/2 if N is a power of 1, 03C0~(N)/2 if not. Next we consider
the general case. Let (a, N ) = d, and write a = kd, N = md, with (k, m )
= 1. Since (Z/NZ)  maps onto (Z/mZ) , we have:

Since we have just computed fm(k), an easy case-by-case analysis
concludes the proof of the theorem.

PROPOSITION 2.5 : Let X d be the character corresponding to Q(d), and let
r E Z. Then L(Xd, - r) = 7r -’FI dl in R /Q  if r is negative and even and
d is positive, or if r is negative and odd and d is negative.

PROOF: This follows immediately from standard results on the L-func-
tions of Dirichlet character. (See [1], especially pp. 9 and 12.)

Now, if 03C8 is any Hecke character of Q, let L(03C8) = L(03C8, 0). Observe
that L(XdNr) = L(Xd, -r). If N is even, let ~1(03B8) = Ln(a), a odd, and
~2(03B8) = 03A3n(a), a even, so ~(03B8) = ~1(03B8) + ~2(03B8). For convenience, let

J(O)=JN(0,0), L(03B8) = L(J(03B8)), and 0393(03B8) = 0393(03B8, Q). It follows im-

mediately from our previous results that we have:

PROPOSITION 2.6 : Let m = ~(N)/2.
(1) If N is divisible by two odd primes or by 41, 1 an odd prime, then
J( 0) = Nm~(03B8) and 0393(03B8) = 03C0m~(03B8).

(2) If N = lk, 1 prime ~ 1(mod 4), then J(O) = X~(03B8)lNm~(03B8) and 0393(03B8) =
03C0m~(03B8)(l1/2)~(03B8).

(3) If N = lk, 1 prime 3(mod 4), then J(O) = X~(03B8)-lNm~(03B8) and 0393(03B8) =
03C0m~(03B8)(l1/2)~(03B8).

(4) If N = 21k, 1 prime - 1(mod 4), then J(03B8) = X~2(03B8)lNm~(03B8) and
0393(03B8) = 03C0m~(03B8)(l1/2)~2(03B8)Ú

(5) If N = 2l k, 1 prime 3(mod 4), then J(O) = X~2(03B8)-lX~1(03B8)-1Nm~(03B8) and
0393(03B8) = 03C0m~(03B8)(l1/2)~2(03B8).

(6) If N = 2k, k  3, then J(O) = X~1(03B8)2Nm~(03B8) and 0393(03B8) =
03C0m~(03B8)(21/2)~1(03B8).

(7) If N = 4, J(O) = X~1(03B8)-2X~2(03B8)-1Nm~(03B8) and 0393(03B8) = 03C0m~(03B8)(21/2)~1(03B8).

Now let 0 = 03A3si=103B8i, and let ~(03B8) = 03A3si=1~(03B8i), and f(O) = 03A0si=10393(03B8i).

THEOREM 2.7: Assume r(03B8)  0. Then L (J(O» = F(O) - in R ’/0 ’.
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PROOF: If 03C8 is a Hecke character of Q of the form XdNr, with either r
even and d positive or r odd and d negative, define E(03C8) to be 03C0r|d|.
Clearly E(03C8) is multiplicative in 03C8. By corollary 2.3, E(03C8) is defined for
every Jacobi-sum character. We claim that E(J(03B8)) = 0393(03B8). Both sides
are obviously multiplicative in 0, so we may assume that 0 is pure. (See
Definition 1.3.) But then the claim follows immediately from Proposition
2.6. J(03B8) = Xd(03B8)Nr(03B8), so if r(03B8)  0, then Proposition 2.5 gives L(J(03B8))
= E(J(B))-1 and hence L(J(03B8)) = 0393(03B8)-1 in R /Q .

REMARK 2.8: This is indeed the full r-hypothesis for Q since if r &#x3E; 0 then
I(03C8) does not lie in the good range. By Corollary 2.3 either Xd is real and
r even or xd is complex and r odd. In the former case the functional
equation involves the factors 0393((1 - s)/2) and r(s/2) (along with some
exponential factors which never have poles or zeros). Since r is even

r( s/2) has a pole at s = - r if r &#x3E; 0 and is otherwise finite and non-zero
at this point, whereas r((l + r )/2) is always finite and non-zero. Hence
I(03C8) is in the good range if and only if r  0. Similar considerations show
that this is true when r is odd also.

§3. The independence and existence theorems

Let k be an arbitrary imaginary quadratic field, with ring of integers
o = ok. In this section we will prove that our main theorem is indepen-
dent of the choice of the Jacobi-sum representation for a given Hecke
character. If k has class number one and is not Q( 1 ) or Q(-3) we
will give a complete characterization of all Jacobi-sum Hecke characters,
and we will obtain a partial characterization in the cases k = Q(-1) or
Q(-3).
We also will explicitly compute the periods of our basic elliptic curves

with complex multiplication by o k if k = Q(-1), Q( 0), or Q( 0).
Let G = G(k/Q), and let e and p be the identity and non-identity

elements of G, respectively. Denote the norm character of k by N.

LEMMA 3.1: 

(a) Let k = Q(-p), p prime, p = 3(mod 4), p ~ 3. Let 03C8 = J([1]p, k),
and let h be the class number of k. Then the infinity-type of 4, = 1 4 (p - 1
+ 2h)e + 1 4(p - 1 - 2h)03C1.

(b) If k = Q( 1 ), let 03C8 = J([1]4 + [2]4 - [3]4, k ). Then the infinity-type
of 03C8 is e. 

(c) If k = Q(-2), let 03C8 = J([1]g - [5]g, k)N. Then the infinity-type of 03C8
is 2e.

(d) If k = Q(-3), let 03C8 = J([216 + [3]6 - [5]6, k). Then the infinity-type
of 03C8 is e.
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PROOF: (a) By Theorem 1.1, the infinity-type of 03C8 is equal to Ae + Bp,
where A = 03A3a~-a/p~ and B = 03A3b~-b/p~, where a runs through
quadratic residues mod p and b runs through quadratic non-residues. By
the analytic class number formula for imaginary quadratic fields (see for
instance [B-S], p. 344), A - B = h. On the other hand A + B = ( p - 1)/2,
so the lemma follows immediately. The proofs of (b), (c), and (d) are just
simple computations from Theorem 1.1.

LEMMA 3.2: Let k = Q(-2), and let 41 be any Jacobi-sum character of k.
Let the infinity-type of 4, be Ae + Bp. Then A B(mod 2).

PROOF: Any character induced from Q via the norm has infinity-type a
multiple of the norm. It follows readily from the results of [K-L] that any
strict Jacobi-sum character of k has an infinity-type which differs by a
multiple of the norm from the infinity-type of a pure character of level 8.
An explicit computation of all Jacobi-sum characters of level 8 completes
the proof.

REMARK 3.3: This exceptional lack of a Jacobi-sum character of infinity-
type e is due to a not sufficiently general definition of our Jacobi-sum
characters. For the correct definition, see [Ku].

Let k be an imaginary quadratic field with odd class number; this is
wellknown to imply that k is of the form Q(-p), where p is either 1, 2
or a prime congruent to 3 modulo 4. For p &#x3E; 3, let E be the Q-curve
A( p) defined in [G], p. 35.

More precisely, we choose an embedding 1: k - C (which will remain
fixed for the rest of the paper) such that the modular invariant of E is
mapped to j(o) ~ C . Then E has complex multiplication by o and in all
cases except p = 3 (where 0394 = -24 · 33) E has bad reduction only at
primes dividing the discriminant of k. Let H be the Hilbert class field
and h the class number of k.

Let 0 be an isomorphism k - End( E ) ~ Q such that w - 03B8(03B1) = aw for
all differential forms w of the first kind and all a E k. (See [La2] p. 119.)
Given 0 and the embedding 1: H ~ C, we can associate to E a

(complex-valued) Hecke character XE of H. Composing it with the
inclusion of the ideals of k into those of H produces a Hecke character
03C8E of k. 03C8E is of type Ao, has infinity-type he (e being the trivial element
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of G(k/Q)) and takes values in k. Our assumption that E is a Q-curve
implies that XEO = XE for any 0’ E G ([G], Lemmas 9.3.1 and 11.1.1), so if
we define 03C8E03C3 in analogy with 03C8E then we have 03C8E03C3 = 03C8E. (The latter
statement is in fact true even if we do not assume E to be a Q-curve; this
follows readily from Lemma 9.3.1 in [G] and the fact that XE takes values
in k.) By [G], Lemma 11.1.1, XE is Galois-equivariant, and hence so is
03C8E.

LEMMA 3.4:

PROOF : (a) By Lemma 3.1, 03C8E and 03C8JN-d have the same infinity-type, so
there exists a Dirichlet character Xo such that 03C8E = X003C8JN d. By [W2]
the conductor of 03C8J is a power of p = (-p). (On p. 14 of [W2], Weil
states that the conductor of a Jacobi-sum Hecke character JN( 0, k) is
divisible only by primes dividing 2 N, but what he actually proves is the
same statement with 2N replaced by N.) By Theorem 11.2.4, p. 33 in [G],
XE is ramified only at primes lying over p, so the conductor of XE is also
a power of p. Hence so is the conductor of X0. Moreover, since 03C8E, 03C8J
and N all values in k so does Xo, so Xo is either quadratic or trivial. If we
let ko be the extension of k corresponding to X o then the conductor of X o
equals the discriminant Dk0/k. Since the p-ramification in ko/k is tame,
Dk0/k is either .p or o (see [La1], p. 62), whence ko c Hp, the ray class field
mod of k. However, G(Hp/H) ~ (o/p) /{±1}, so [Hp:k] =
[Hp: H][H: k ] = 1 2 (p - 1)h is odd and we conclude that ko = k and X o = 1.
Hence 03C8E = 03C8JN-d.

(b) The curve y 2 = x3 - 4x is birational over Q to the curve E’ : y2 =
x4 + 1. It is shown in [W1] ] that the Hecke character 03C8E’ is equal to
X2,kJ([1]4 + [2]4 - [3J4)’ ( This is the special case of Weil’s paragraph 2
where e = 2, f = 4, y=6=l. Then in Weil ’s notation, mo = 4, and the
only Hecke character to occur is J1,2, which is easily seen to be X2,k(J([1]4
+ [2]4 - [3]4) in our notation.)

(c) By Lemma 3.1, 03C82E and J([1]8 - [5]8)N have the same infinity-type.
Since they are both Galois-equivariant and unramified outside of 2, they
must either be equal or differ by the quadratic character of Q(-2)
corresponding to Q(03BC8). Since this quadratic character is equal to -1 on
the prime ideal .p = (1 + -2) of Z[-2] lying above 3, if suffices to
check whether 03C82E(p)/9 and (J([1]8 - [5]8)N)/9 are congruent mod p.
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1 (mod ). We then use Stickelberger’s theorem to show that

and we are done.

(d) Weil shows in [W1] that = J([2]6 - [3]6 - [5]6). (This is the

special case of paragraph 2 where e = 2, f = 3, Y = 8 = 1. Then in Weil’s
notation, m0 = 6, and the only Hecke character to occur is J2,3’ which is
easily seen to be X-1,kJ([2]6 - [3]6 - [5]6) in our notation, where X-1,k is
the quadratic character of k = Q(-3) corresponding to k(-1).)

THEOREM 3.5: Let 03C8 be a Hecke character of k, and assume that k has class
number one.

(a) Let k ~ Q(-1), Q(-2), or Q(H). Then the following are
equivalent:

(1) 03C8 is a Jacobi-sum character, i.e. 03C8 J(01, k)(J(03B82, 0)’Nk/0) for
some 01 and O2,

(2) 03C8 is of type Ao, takes values in k, and is Galois-equivariant.
(3) 03C8 may be written in the form Xd,k03C8a-bENb, where a, b ~ Z, dE Q,

d &#x3E; 0 and Xd,k is the quadratic character of k corresponding to

k(d).
(b) Let k be Q(-1), Q(-2), or Q(H). Then the following are

equivalent:
(1) 03C8 is a Jacobi-sum character. 

X03C8a-bENb,(2) 03C8 may be written in the form E where X is a Jacobi-sum
Dirichlet character, and a - b is an arbitrary integer if k is Q(-1)
or Q(H), and an even integer if k is Q(-2).

PROOF: That 1) - 2) has been shown in [W2] and in [K-L]. We next show
2) - 3). If 41 is of type Ao, it has infinity-type ae + bp with a, b E 71, and
so can be written in the form 03C8 = X03C8a-bENb, with X a Dirichlet character.
Since 03C8, 03C8E and N have values in k and are Galois-equivariant, the same
must be true of X. Let F be the extension of k corresponding to X via
class field theory. Then since X is Galois-equivariant F is left fixed as a
set by any element of G(Q/Q), hence is Galois over Q, hence abelian,
being of degree four over 0. Moreover, G(F/Q) is non-cyclic since F
contains the two distinct quadratic subfields k and F+ , the maximal real
subfield of F. From this it follows that F = k(d), with d E Q, d &#x3E; 0, so
X = Xd,k-
We now show 3) ~ 1). We have seen in Section 2 (Corollary 2.3) that

X-pNQ is a Jacobi-sum character of 0. Composing this with Nk/Q, we
see that N = N k is a Jacobi-sum character of k. It then follows from
Lemma 3.4 that 4E is a Jacobi-sum character of k. Again, by Corollary
2.3, if d &#x3E; 0, then Xd is a Jacobi-sum character of Q, hence Xd,k is a
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Jacobi-sum character of k. It follows that 03C8 is a Jacobi-sum character of
k.

(b) Let k = Q(-3). Then 03C8E is a Jacobi-sum character by Lemma
3.4d. Let k = Q(-1). Then X2,k = X 2 ° Nk/Q is a Jacobi-sum character
by Corollary 2.3, so 03C8E is a Jacobi-sum character by Lemma 3.4b. Let
k = Q(-2). Then 03C82E is a Jacobi-sum character by Lemma 3.4c. (Note
that N is a Jacobi-sum character as above.) This shows that 2) ~ 1).

To show 1) ~ 2), we observe that by Lemma 3.1 if k = Q(-1) or
Q(-1), and by Lemmas 3.1 and 3.2 if k = Q(-2), any Jacobi-sum
character has the same infinity-type as 03C8a-bENb for suitable integral a and
b where a - b is even if k = Q(-2). Since 03C8E and N are Jacobi-sum
characters, so is X = 03C8(03C8b-aEN-b), and X is clearly Dirichlet.

For an imaginary quadratic field we prove the generalized Deligne’s
theorem for all Jacobi-sum characters of the form XNr, not just the strict
ones:

THEOREM 3.6: Let k be an arbitrary imaginary quadratic field. Let 03C8 be a
Hecke character of k, and suppose 03C8 = J(03B81, k)(J(03B82, Q) 0’" klO) = Nr
where r Eland X is a Dirichlet character. Then 0393*(03C8, 03B8) =

0393(03B81, k)0393(03B82, 0)(2wi)-r transforms via X in the sense of Theorem 1.9.

PROOF: As in paragraph 2 we have J(03B82, Q) = X2Nr2Q, where r2 E 7L and
X 2 is a Dirichlet character of Q. (So for this proof we are deviating -
temporarily - from our usual notation, in which X 2 would have meant
the character corresponding to Q(2).) Thus J(021 Q) ° Nk/Q =
(X2 ° Nk/Q)Nr2. On the other hand we are assuming 03C8 = XNr, so it
follows that J(03B81, k) = X1Nr1, with r1 an integer and X1 a Dirichlet

character of k. J(03B81, k) is strict, so by Theorem 1.9 0393*(03B81, k) =
0393(03B81, k)(203C0i)-r1 transforms via X1, Also by Theorem 1.9 0393*(03B82, Q)
transforms via X 2 over Q, hence transforms via X 2 0 Nk/Q over k. (See for
instance [C-F], Prop. 3.2 p. 166.) From this it readily follows that

0393*(03C8, 0) = 0393*(03B81, k)lr*(02, 0) transforms via X = X1(X2 ° Nk/Q).
COROLLARY 3.7: If k is imaginary quadratic then 0393(03C8, 03B8) and 039303C1(03C8, 0)
only depend on 03C8 and not on 0.

PROOF: It suffices to show that 0393(03C8, 03B8) and 039303C1(03C8, 03B8) are rational if 03C8 is
the trivial Dirichlet character. By Theorem 3.6 0393(03C8, 03B8) then lies in k, and
since 0393(03C8, 03B8) is real, it lies in Q. By Lemma 1.8 039303C1(03C8, 0) = 0393(03C803C1, c*03B8)
for some integer c. But 03C803C1 = 03C8 ~ 1 so the corollary again follows from
Theorem 3.6.

DEFINITION 3.8: If 03C8 = J(03B81, k)(J(03B82, Q) o Nk/Q we may define 0393(03C8) to
be 0393(03B81)0393(03B82) and 039303C1(03C8) to be 039303C1(03B81)0393(03B82), and these definitions are
independent of the choice of 03B81 and 03B82 by Corollary 3.7.

COROLLARY 3.9: If 03C8 = 03C8103C82, then 0393(03C8) = 0393(03C81)0393(03C82) and I’P(4,)
039303C1(03C81)039303C1(03C82).
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PROOF : Immediate from the fact that Definition 3.8 is independent of the
choices made.

In the remainder of this section, we will compute the real periods for
curves with complex multiplication by Ok’ where k = Q(-1), Q(-2),
or Q(-3). This is necessary because the theorem of Gross on which we
rely heavily in paragraph 5 leaves out these exceptional cases.

First, let k be an arbitrary imaginary quadratic field, and let L = o k
have the basis (1, 03C4} as a lattice. Let ~(03C4) = e03C0i03C4/1203A0~n=1(1 - e203C0ni03C4), and
cj = 203C0|~(03C4)|2. It follows then that

where 0394(L) is the discriminant of the lattice L.

LEMMA 3.10 : Let e6(L) = 03A3’x~L1/x6, where the sum is taken over all

non-zero x in L. Then if k =1= Q(H), e6(L) is real and positive. If k =
Q(-1), e6(L) = 0. Let e4(L) = L:EL1/X4. Then if k = Q(-1), e4(L)
&#x3E; 0.

PROOF: If we let L = [1, 03C4], then e6(L) has the q-expansion C(1 -
50403A3~n=103C35(n)qn), where 03C35(n) is the sum of the fifth powers of the

divisors of n, q = e203C0i03C4, and C is the positive constant 1/252 . (203C0)6/(5!).
(See for example [W3], p. 20.) If T = ai with a real, then qn = e -2,na and
e6([1, 03C4]) is a strictly increasing function of a. If a = 1, then e6(L) = 0
since changing x to i x shows that e6(L) = -e6(L). So e6 ([1, ai]) &#x3E; 0 for

a &#x3E; 1.

If T = 1 2 + ai, a real, then qn = (-1)ne-203C0n03B1. Then

and so is positive if a &#x3E; 1. We have now covered all imaginary quadratic
fields except k = Q(-3). But if a = !13, easy estimates yield that

so e6 is still positive. Finally, if k = Q(-1), e4(L) is a positive constant
multiplied by 1 + 03A3n1 24003C33(n)qn, so positive.

Now, let L be the lattice corresponding to E and the differential
d x/2 y. Let wE be the real period of E. Since L has complex multiplica-
tion by ok and h(k) = 1, L = 03A9ok for some complex number 03A9, defined
up to a root of unity in k. Since E and d x/2 y are defined over Q, L = L.
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PROPOSITION 3.11:
( a ) If k = Q(-3), g may be taken to be purely imaginary, and then

03C9E = 03A9-3 = ·31/4·2-1/3.
(b) If k = Q(-2), g is purely imaginary and ()) E = 03A9-2 = cj ’ 2-3/4.
(c) If k = Q(-1), g may be taken to be real and 03C9E = 03A9 = 2-1,

where all equalities are up to sign.

PROOF: (a) As before, we must have g = 03B603A9, with f a root of unity in k.
If g = ± pg with p3 = 1, replacing g by pQ we may assume that g = ± g,
i.e. that g is real or purely imaginary. By Lemma 3.10, e6(ok) &#x3E; 0, so,
since e6(L) = 03A9-6e6(ok), g is imaginary if and only if e6(L)  0. but
e6(L) = g3(L)/140 and g3(L) is easily computed from the formularly in
[T], p. 180 to be -4. Since g is imaginary, ())E = 03A9-3, and since
-33.24 = 0394E = -03A9-1212, it follows that ())E = ±31/4. 2-113.

(b) Again g is real or purely imaginary. Since e6(L) = g3(L)/140 =
- 28 · 7/(140 . 216)  0, g is imaginary, and wE = 03A9-2. Since 29 = Ll E
= 03A9-1212, and 03C912E = 12 · 2 - 3, we have WE =  · 2-3/4.

(c) We have e4(ok) &#x3E; 0, by Lemma 3.10. Also 03A9 = 03B603A9 with 03B68 = 1. So
g8 is real, and g, which is only defined up to a fourth root of unity, may
be taken to be either real or a real multiple of (1 + i). With E = (y2 = x3
- 4x), g2(E) = 16, hence e4(L)&#x3E;0. But e4(L) = 03A9-4e4(ok), so g may
be taken to be real. Hence 03C9E = 03A9, and since -212 = 0394E = -03A9-212,
03C912E = 2-1212 and 03C9E = ± 2-1.

§4. A ref ined version of Damerell’s theorem

Damerell’s original theorem (see [Da] or [W3]) computes the value of the
L-function of a Hecke character of an imaginary quadratic field up to an
algebraic number. However, to prove the r-hypothesis we need a result
up to an element of the imaginary quadratic field itself; hence the present
section. For the proof of our version of Damerell’s theorem we shall rely
heavily on [G-S].

Let k be an imaginary quadratic field with odd class number and let E
be a Q-curve in the sense of [G] with complex multiplication by o k; for
this section it is not necessary to take E to be the special Q-curve used in
paragraph 3. However, we are still assuming that our chosen embedding
1 maps the modular invariant of E to j(ok) ~ C. Then there exists
03A9 ~ C* such that E ~ C/03A9ok, the isomorphism being given by the
Weierstrass p-function. The lattice L = go k determines a Weierstrass
model for E:

along with a differential w = dx/y on E. For each 0’ E G = G(H/k) let
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E (1 be the curve

and let wa be the differential dx/y on E a. Then the pair (E03C3, 03C903C3)
determines a complex lattice L,,. Also, for any non-zero ideal a of k we
shall write E a and La for Eao and La respectively, where 03C3a is the Artin
symbol of a with respect to the extension H/k. By the general theory of
complex multiplication LQ is homothetic to a -1. Hence there exists

03A9a ~ C , determined up to a unit in k, such that L,, = Qa a -1. In fact, as
is shown in [G-S], paragraph 4, 03A9a can be determined without ambiguity
once we have chosen 03A9. Letting e be the identity element of G we then
have L = Le = Lok and 03A9 = 03A9ok.

Since E is a Q-curve, [G], paragraph 15 and [G-S], Theorem 4.1 allow
us to deduce the existence of a Hecke character (p of k such that

XE = ~oNH/k.
Now let 03C8 be a Galois-equivariant Hecke character of type A o of k

with infinity-type ap, where p is the non-trivial element of G(k/Q). Also
assume that 03C8 takes values in k and that a is a positive multiple of h, the
class number of k. Then 03C8 can be written

where ~ is as above and X is an at most quadratic character of k if k ~
Q( 1 ) or Q(-3); if k = Q(-1) then X has at most order 4 and if
k = Q(-3) then x has at most order 6. Note that e equals 03C8E which is
Galois-equivariant since X E is. Thus, since h divides a, so is ~a. 03C8 is

Galois-equivariant by assumption and we conclude that X is

Galois-equivariant as well.
Let dk be the discriminant of k and let a o = a/h .

THEOREM 4.1 ("The Refined Damerell’s Theorem "): Let b be an integer
such that 1  b  a, let c = a - b and let 03C8 be as above. Then

where a ranges over a set of ideal class representatives of k and U
transforms via X, i . e., if q E G(C/k) then q U = x (,q) U.

PROOF: First assume 0  a/2  b  a. Let g ~ 0 k be an integral ideal of k
which is divisible by the conductors of w and x. Let 9t = { a} be a set of
representatives for the ideal classes of k and assume that all the repre-
sentatives are prime to g.

Let A be the function defined on p. 198 of [G-S]. Then for any ideal c
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of k 039B(c) = 03A9c03A9-1 ~ H*. As in paragraph 5 of the same paper, for

03C4 ~ G(H(Eg)/k) (an abelian group by [G] paragraph 15 and [G-S]
Theorem 4.1), let L(03C8, T, s ) be the partial L-function, given by

for Re s &#x3E; 1 + a/2, the sum being taken over all integral ideals b of k
which are prime to g and whose Artin symbbls ab with respect to the
extension H( Eg )/k are equal to T.

Lg(03C8, s ) differs from L(03C8, s) by a finite product of Euler factors. Since
b &#x3E; a/2, (03C8(p)Np-b)ok = pa-b p-b cannot equal ok, so this product is a
non-zero rational number at s = b. Hence from the view-point of ration-
ality statements it makes no difference whether we consider L(03C8, s) or

Lg(03C8, s), as long as b &#x3E; a/2.
Let PeS2k* ~ C* be such that 03C103A9-1 o = g-1h, where is an integral

ideal of k, prime to g. Then by Corollary 5.7 of [G-S] we have

where S is such that 03C3b runs over G(H(Eg)/H) without repetition when
b runs over B, and Cb,a( C, b) is, up to some factors, Weil’s double

Eisenstein series - see [G-S] and [W3], Chapter VI. Since L(03C8, adJ’ b) =
x( c f) )L($a, 03C3ch, b ) we may rewrite the left-hand side as

Imitating Corollary 4.11 of [G-S] we may show that 03A6a(c)039B(c)-a only
depends on the ideal class of c and that 03C3 ~ 03A6(03C3) = ~a(c)039B(c)-a, where
c is any ideal whose Artin symbol with respect to the extension H/k is Q,
is a cocycle on G. Since h 1 a, e takes values in k *, so we have

03A6(03C3) ~ H*. By Hilbert’s Theorem 90 there exists y ~ H* such that

y03C3-1 = 03A6(03C3) for all 03C3 ~ G. Also, since X takes values in k it may be
viewed as a cocycle on G(H(Eg)/k) with values in H(Eg)*, so again by
Hilbert’s Theorem 90 there exists U ~ H(Eg)* such that U03C4-1 = X(03C4) for



293

all TE G(H(Eg)/k), i.e. U transforms via X. Hence we see that

where a, is the Artin symbol of c with respect to the extension H(Eg)/k.
Observing that 03C8(h)03A9a03C1-a is in k * and hence can be absorbed into U, we
get from (4.1)

where c ranges over a set of ideals prime to g representing G(H(Eg)/k).
By the Galois properties of the Eisenstein series Eb,a(c, b) ([G-S] Theo-
rem 6.1) the right hand side is in k, so after multiplying U by an element
of k (0 if L(03C8, b) = 0) we obtain

For a, 03B2 ~ C write a - f3 to mean that there exists r ~ k* such that
a = r03B2. Then (203C0i)-1 ~ |dk| /03C0 and we are reduced to proving the

LEMMA 4.2: y ~ 03A0a~u 039B(a)a0.

PROOF : Let 0’ E G and let b be an ideal of k which is prime to g and such
that 03C3 = 03C3b. We have, by Proposition 4.10 (iv) in [G-S],



294

On the other hand, writing a b = (03B1a)a’ where aa E k and a’ E 9t, we
have, again using Proposition 4.10 (iv) in [G-S],

since 039BA((03B1a)) = ~((03B1a)) (by the definition of A) and a’ runs over 9f
exactly once when a does. By [G-S], Lemma 4.9 ~((03B1a)) ~ k * so

Hence

This concludes the proof of Damerell’s theorem when a/2  b  a.
For the remaining range, i.e. 1  b  a/2, we use the functional equation
of the L-function.

For a moment let k be any imaginary quadratic field and drop the
assumption that 03C8 is Galois-equivariant. Define 03C8* by 03C8*(a) = 03C8(a).
Then we have:

THEOREM 4.3: Let 03C8 be a Hecke character of k of infinity-type ap. Let

where f is now the exact conductor of 03C8. Then

where W03C8 is a non-zero constant. If 4, is Galois-equivariant, then W03C8 = + 1.

PROOF: The functional equation is immediate from [H] pp. 272-73 and
282 if one recalls that Hecke prefers to consider only characters of
absolute value 1; to place ourselves in that situation, all we have to do is
replace 03C8 by 03C8 N-a/2 and s by s - a/2. Then note that L(03C8*, s) = L(03C8, s ),
and we have the functional equation as stated. Applying the functional
equation to 03C8* and comparing, we see immediately that W03C8W03C8* = 1.
Hence if 4, is Galois-equivariant, so 03C8 = 03C8*, we have W03C8 = ± 1.
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Now let k be an imaginary quadratic field with odd class number, and
assume 4, to be Galois-equivariant again. Setting s = b so that a + 1 - s =
c + 1, we obtain

W03C8 = +1 and since both b and c + 1 are positive integers so are 0393(b) and
0393(c + 1). Hence

Now c + 1  a - (c + 1) = b - 1, so we can apply the previously proved
case to L(03C8, c + 1) and obtain

where U transforms via X.
Hence what remains to be shown is that Nfc-b+1 is rational. If

c - b + 1 is even the rationality of Nfc-b+1 is clear, so let us assume
that c - b + 1 is odd. Then c - b and hence a = b + c is even, and since h

is odd a0 is also even.

_ 

Low let us assume, in addition, that k ~ Q(-1) and Q(-3). Then
03C8a0E has trivial conductor, for it is none other than the character which
sends an ideal a to (iao where ( a) = a h; this is well-defined since the only
units in k are +1. Hence f = f XI the conductor of x. However, Nfx is
rational by the following lemma:

LEMMA 4.4: If f is the conductor of a quadratic Galois-equivariant Dirichlet
character of an imaginary quadratic field k then N f is a square.

PROOF: Let F be the extension of k corresponding to the given character
X by class field theory. We may assume X to be non-trivial so that F is a
proper quadratic extension of k. Since X is Galois-equivariant we see, as
in the proof of Theorem 3.5 a), that F is Galois over Q with non-cyclic
Galois group. The lemma now follows from [B], Lemma 4.2.
Now let k = Q(-1). Let 03C8 be a Galois-equivariant character such

that 03C8((03B1)) = ~(03B1)03B1a, where E is a primitive character of (ok/f) . We
wish to show that if a is even, f is the extension of an ideal in Z, i.e. of



296

the form f o for some f ~ Z. We first observe that necessarily ~(-1) = 1,
since a is even. We may decompose f into its p-primary components f Pl
and write E as the product of primitive characters % of (o/fp) . Since 03C8
is Galois-equivariant it follows that f = f and fp = fp for all p. For p ~ 2,
this already implies that f is the extension of an ideal in Z. We also
have, for all p, ~p(03B1) = ~p(03B1); this implies that ~p vanishes on the

subgroup N of (o/fp)’ consisting of elements of the form aâ, where -
denotes reduction mod p. If p ~ 2, -1 is in N, so ~p(-1) = 1. Since
~(-1) = 1 it follows that ~2(-1) = 1. So now we know that E 2 is a

Galois-equivariant character of (o/03C0v)  which vanishes on +1, where
03C0 = (1 + i ). Equivalently, E 2 vanishes on the subgroup ± N. On the other
hand, it is easily seen that the order of (o/03C0v)  / ± N is 2 /2 if v is even
and 2(v-1)/2 if v is odd. So the conductor of E 2 is an even power of qr, and
since (03C02) = (2), this completes the proof.
Now let k = Q(-3). The proof proceeds as in the case when k =

Q(-1). The only differences are that now 77 = 3 , and the order of
(o/03C0v) /± N is 3vl2 if v is even, 3(v-1)/2 if v is odd, and (03C02) = (3).

This concludes the proof of Damerell’s Theorem.

§5. Proof of the T-hypothesis

Let k = Q(-p) be an imaginary quadratic field of odd class number
and let E be as in paragraph 3 - in particular if p &#x3E; 3 then E is the

Q-curveA(p) defined in [G].
Let R = Z[G(k/Q)]. For any Hecke character 03C8 of type A o, denote the

infinity-type of 03C8 by I(03C8).

LEMMA 5.1: Let T ~ R be the subgroup of infinity-types of Jacobi-sum
Hecke characters of k, let T’ be the subgroup generated by I(41E) and I(N)
and let T " be generated by I(03C8E) and I(N). Then if k ~ Q(-2)

T=T’=T".

PROOF: We first observe that N is a Jacobi-sum character. (We have
N = (X-pNQ) o Nk/Q, since X-p is the quadratic character of Q corre-
sponding to k; by Corollary 2.3, X-pNQ is a Jacobi-sum character of Q.)

Since 03C8E = Nh03C8-1E it is clear that T’ - T ", and by Lemma 3.4, T’ c T.
I(N) = e + 03C1 and I(03C8E) = he, so clearly R : T’] = h. But by [Si] Theo-
rems 2.1 and 5.3, [ R : T] ] is also equal to h so we may conclude that
T = T’.
Now let 03C8 be a Jacobi-sum character of k. Then, if k ~ Q(-2), by

Lemma 5.1 03C8 can be written as 03C8 = X03C8a0EN-b, where X is a Dirichlet
character and ao and b are integers. If k = Q(-2), by Lemma 3.2 we
have the same result with the additional information that ao is even.
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Since 03C8, 03C8E and N are all Jacobi-sum characters (by assumption and by
Lemma 3.4), so is X.

Thus to compute 039303A3(03C8) it suffices to compute 039303A3(03C8E), f(1(X) and
039303C3(N). In order to express L(03C8, s) as a product of values of the
r-function we first apply our version of Damerell’s theorem (Theorem
4.1) and then use a refinement of the Chowla-Selberg formula, due to
Gross (see Theorem (21.2.2) in [G]), to express the product of periods as
a product of values of the r-function.

THEOREM 5.2 (the Chowla-Selberg formula):
(i) If p &#x3E; 3 then

where K is the quadratic character corresponding to k and d = 1 4 (p - 1 -
2h).

(ii) If p is 1, 2 or 3 (or more generally if h = 1) then we have

where m = |dk|, w = the number of roots of unity in k, and K is the quadratic
character corresponding to k.

PROOF : 

(i) follows from the proof of Theorem 21.2.2 of [G]. In the proof a
special choice of the representatives a is made use of, but clearly
choosing different a ’s will only alter the periods by an element of k* and
so will not change the formula.

(ii) is [W3], p. 92.

THEOREM 5.3 ( The 0393-hypothesis): Let 03C8 = X03C8a0EN-b be a Jacobi-sum
character as above and let I(03C8) ~ C(03A3). Then 039303A3(03C8)L(03C8, 0) lies in Q.

NOTE : By Corollary 3.7 we are justified in writing just 039303A3(03C8) rather than
039303A3(03C8, 0).

PROOF OF THEOREM: In the introduction, a condition is given for when
I(03C8) ~ C({e}). In our case I(03C8) = ( a - b)03C1 - be, and a short computa-
tion shows that both a) and b ) of the condition simplify to b  1 and
a - b  0, or equivalently 1  b  a. Since L(03C8, 0) = L(X03C8a0E, b) this is
exactly the range covered by Damerell’s Theorem, from which we obtain
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(note that by Theorem 1.lb) v) 03C8 is Galois-equivariant)

where c = a - b  0 and U transforms via X. (Note that in our case

|dk| ~ p.).
assume first that k ~ Q(-1), Q(-2), or Q(-3). i ~ p ~

(p)-1, so from Theorem 5.2 i ) we obtain

On the other hand since 03C8E = 03C8-1e Nh = 03C8-1JNd+h (by Lemma 3.4),

by Definitions 1.5-1.7

(Recall that 03A3 = {e}.)
N = (X-pNQ) o Nk/Q, so 039303A3(N) = 039303A3’(X-pNQ), 03A3’ being the set con-

sisting of the one embedding of Q into C. X-pN(p-1)/2 = J([1]p, Q) and
N2Q = (X-3NQ)2 = J(2[1]3, Q), so X-pNQ = J([l]p - ((p - 3)/2)fll3, Q).
Hence by Theorem 2.4

Hence
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U transforms via x and by the generalized Deligne’s Theorem (Theorem
3.6) 039303A3(X) transforms via x . It follows that U 039303A3(X) ~ k, hence that
L(03C8, 0)039303A3(03C8) ~ k. However, both L(03C8, 0) and 039303A3(03C8) are real, so

L(03C8, 0)039303A3(03C8) is in fact rational, and we have proved our theorem when
E = (e) and k =1= Q(H), Q(-2), or Q(-3).
Now assume that k = Q(-1), Q(-2), or Q(-3). In these three

cases, the class number of k is equal to 1, so G = {e}; we may put
Qe = S2, and Damerell’s theorem becomes

where U transforms via X.
For each of the fields Q(-1), Q(-2), and Q(-3), we now

compute both L(03C8, 0) and 039303A3(03C8), using the results of paragraph 3.
We begin with k = Q(-1). We have seen in Lemma 3.4 that

03C8E = X2,k 03C8J where X2,k is the quadratic character of k corresponding to
k(2), and 03C8J = J([1]4 + [2]4 - [3]4). So 0393(03C8E) = 0393(X2,k)0393(03C8J). Bllt

0393(X2,k) = 2 and

so

Since 03C8E03C8E = N, and since 0393(N) ~ w, we have 0393(03C8E) ~
(203C0)1/20393(1 4)-10393(3 4). Since 03C8 = X03C8aEN-b.

where V transforms via X by Deligne’s Theorem.
On the other hand, by Damerell’s theorem, L(03C8, 0) - 03C0b-a03A9aU, where

U transforms via X. By Proposition 3.11 03A9 = 03C9E = 2-1, and by Theorem
5.2 ii)

(note that since w and the 0393(n/m) are all positive we are justified in
taking 24th roots), so
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where U transforms via X. Thus L(03C8, 0)039303A3(03C8) is in k, and hence in Q
since it is real. 
Now let k = Q(H). We have seen in Lemma 3.4 that 03C8sE = 03C8JN,

where 03C8J = J([1]8 - [5]8). So

Hence

Since, by Theorem 3.5, 03C8 = X03C82aEN-b, we have

where V transforms via x.
On the other hand, by Damerell’s theorem,

where U transforms via X. By Proposition 3.11, Q2 - 221/2, and by
Theorem 5.2 ii)

so,

where U transforms via X, so we conclude as above.
Finally, let k = Q( 3 ). We have seen in Lemma 3.4 that 03C8E = 03C8J,

Where 03C8J = J([2]6 + [3]6 - [516)’ So

Hence

and since 4, = X03C8aEN-b,
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Using the Gauss multiplication formula and the functional equation
for the r-function, we find that 0393(5 6) ~ 03C03/20393(1 3)-2 · 3 · 2-2/3, so

where V transforms via x.
By Damerell’s theorem, L(03C8, 0) ~ 03C0b-a (3)b-a03A9aU, where U trans-

forms via X. By Proposition 3.11, 03A9 ~  · 31/4 · 2-1/3, and by Theorem
5.2 (ii)

so

where U transforms via X. Since 0393(1 3)0393(2 3) = 03C0/sin(03C0/3) = 203C0/3 this

reduces to

and we conclude as above.

If Y- = {03C1} then (by a short computation) b  0 and b - a  1. Note
that if these inequalities are satisfied then the infinity-type of

belongs to C({e}), so Damerell’s Theorem applies and we find that

But L(03C8, 0) = L(03C8, 0) = L(03C8, 0) and by Lemma 1.8 0393{e} (03C8) = 0393{03C1} (03C8),
so we conclude again

Thus we have proved the r-hypothesis for all imaginary quadratic
fields of odd class number.
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