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FIRST ORDER INTERPOLATION INEQUALITIES WITH
WEIGHTS
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Dedicated to the memory of Aldo Andreotti

In Lemma 7.1 of [2] we proved certain interpolation inequalities. These
are analogous to the standard interpolation inequalities between func-
tions and their first derivatives in various LP norms on IR n (see [3], [8]),
but with each term weighted by a power of |x|. Instances of these

inequalities have been studied previously [1,6,7], but the general case
seems to have not yet been treated; we present it here, in the belief that
such inequalities may prove useful in other contexts. Lin [5] has gener-
alized these results to include derivatives of any order.

For simplicity, we state our theorem for u E C~0((Rn), the space of
smooth functions with compact support. Its extension to a more general
class of functions is standard. In what follows p, q, r; a, 03B2, a; and a are
fixed real numbers (called parameters) satisfying

where

THEOREM: There exists a positive constant C such that the following
inequality holds for all u E Cô ( Rn )
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if and only if the following relations hold:

( this is dimensional balance ),

and

Furthermore, on any compact set in parameter space in which (1.1), (1.2),
(1.5) and 0  a - a  1 hold, the constant C is bounded.

We emphasize the curious fact that one needs the condition 03B1 - 03C3  1
only in case a &#x3E; 0 and 1 /p + ( a - 1 )/n = 1 /r + y/n .

The proof is rather long, but elementary. We first verify necessity;
then we verify the case n = 1, a = a - 1, using among other tools a
weighted Hardy-type inequality proved by Bradley [1]. The case n &#x3E; 1,
0  a - a  1 is treated next; then finally the case a - a &#x3E; 1, 1 /p + ( a -
l)/n =1= 1 /r + y ln. Since when a = 0 there is nothing to prove, we shall
always assume a &#x3E; 0.

Throughout, C denotes a constant, depending on the parameters,
whose value may change from line to line. Although we will not estimate
the constants explicitly, it will be clear from the arguments that the last
assertion of the theorem holds.

1. Necessity

Note first that the inequalities (1.1) are necessary in order for the norms
in (1.4) to be finite. If (1.4) holds for u ( x ) then it holds also for u(03BBx),
À &#x3E; 0. Inserting this in (1.4) we obtain (1.5). This is merely dimensional
analysis; if we think of u as dimensionless then the dimension of ||x|03B3u|Lr
is y + n/r, that of ||x|03B1|Du||Lp is a - 1 + n/p, etc.

Next, for some fixed function v E C~0(|x|  1), v e 0, let u(x) = v ( x -
xo ) with |x0| = R large. Inserting this in (1.4) we see that

so that
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Hence a  a. Next we prove (1.7). Suppose

We insert in (1.4) the function

This function is not in COO but it is clear that (1.4) must also hold for it.
Straightforward calculation shows that, if p, 0 are polar coordinates,
03B8 ~ Sn-1,

Consequently (1.4) implies

But according to (1.3) and (1.5)

Hence a - 1 - 03C3  0, i.e. (1.7) holds. Necessity is proved.

Il. Preliminaries

We present some inequalities which will be useful in what follows.
Several of these are spécial cases of (1.4).
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in case either

The constant C in (2.1) stays bounded as p, r, and 8 range over any compact
subset of {1  p  r, 03B4r ~ -1}.

One easily deduces these facts from the weighted Hardy-type inequali-
ties in [1]. For r = p this is Theorem 330 in [4]. 0

(B) Assume (1.1)-(1.3) and (1.5) hold; for any p &#x3E; 0, let

then

with C independent of p. If IR U = 0 then the latter term in (2.3) may be
omitted. 

It suffices to consider p = 1, since the general case follows by scaling.
Writing RI = R, we consider first the case that

Using a standard interpolation inequality ([3], [8]), and writing û =

(meas R)-1Ru,
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Since 03B1 - 03C3  0, r  m; applying Hôlder’s inequality to (2.5) we find

If, on the other hand, (2.4) fails, then a/p + (1 - a)/q  a/n . It follows
that

and if (2.7) holds then

where

and in particular b  a. By Sobolev’s inequality and (2.7),

combining (2.8) and (2.9) yields (2.6) once again. Rescaling and multiply-
ing by pyr, we conclude that if R03C1u = 0 then

If U =1= 0, we note that
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Therefore, using (2.6),

This proves (2.3) in case p = 1, and the general case follows once again by
scaling. 1:1

(C) Suppose (1.1)-(1.3) and (1.5) hold, and a = a - 1; and suppose
further that

Then (1.4) holds, with constant C uniform so long as yr + n stays bounded
away from zero.

Since a = a - 1 implies Ilr = a/p + (1 - a)/q, the condition (2.12) is
, equivalent to

We prove (1.4) in this context using radial integration by parts:

where

with k chosen so that

One checks that
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using this in (2.14) yields

from which (1.4) follows.

for u E C~0(Rn) provided that

and

This is an easy consequence of Hôlder’s inequality.
For notational convenience we set

so that our goal is to show

Throughout the paper, 03B6(x) will represent a fixed Cô function on Rn
with the properties

III. Suf f iciency when n = 1, a = a - 1

When possible, we shall use (IIA) to verify the case a = 1 and (IID) to
interpolate between a = 0 and a = 1. Substantial complications arise,
however, because (IIA) does not apply when 1/p + 03B1 - 1 = 0 (this corre-
sponds to the case 8 + 1/r = 0 in (2.1)). Note that a = a - 1 implies
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By (IID),

while by (IIA),

Combining (3.2) and (3.3) yields (1.4). D

The remainder of this section addresses the case 03B3 + 1/r ~ 1/p + 03B1 - 1.
In that event one may rescale u so that A = B = 1 ; we henceforth assume
such a normalization, so that our goal becomes to show

(B) The case 1 /p + a - 1 &#x3E; 0 and bounded away from zero

The argument used for part A applies here, too. Note however that as
1 /p + 03B1 - 1 ~ 0, the constant in (3.3) tends to 00 . E

The case 1/p + 03B1 - 1 ~ 0 will be handled in (C)-(E); part (F) will
treat the case 1/p + 03B1 - 1  0 and bounded away from zero.
We choose a real number v, depending on the parameters, such that

0  v  1 2 and

(C) The case -v3  1/p + 03B1 - a  v and 1/p  1 - v

Note that a and (1 + q - q/p)-1 are bounded away from 1 in this case:

Let 03BC = ( 1 + 2v2)-1, and set a0 = a/03BC, so that a  a0  1 - 4v4. By
(IID),



267

where E and t are determined by

Moreover we see that

is bounded away from zero. Since v  1 2, (3.6) implies 03BC(1 + q - q/p ) &#x3E; 1 ;
hence by (IIC)

substitution of (3.8) into (3.7) yields (1.4).

We set 8 = y + 1/r - 1, and note that under the above hypotheses

and

We assert that

Indeed, if Rk = {2k  |x|  2k+1} for any integer k, then (IIB) yields
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We add (3.12) for k E Z, using the inequalities

valid for xk, Yk, c, d  0. Since ar/p + ((1 - a)r)/q = 1 and r  1 by
(3.1), these inequalities apply and yield (3.11).

Thus we need only show that |x|03B4|u|  C. With as in (2.19) we write

and estimate the two terms separately. Since 8 is bounded away from

-1, we may use radial integration by parts in the first term:

If p = 1 then

since 8 + 1 &#x3E; « by (3.4). If p &#x3E; 1 then

where p’ = p/(p - 1). Since 8 + 1 - a &#x3E; 0, the integral converges; hence
(3.16) holds also for p &#x3E; 1. Thus
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We argue similarly for the second term in (3.15), but without integrat-
ing by parts:

assuming q &#x3E; 1, and setting q’ = q/(q - 1). The last integral converges,
by (3.10), so

If q = 1 we see from (3.10) that 8  03B2, so

which yields (3.18) also for q = 1. We have shown

with constant C uniform for fixed v. By (3.11), the desired result (1.4)
follows. 0

We argue much as in part (C). Let E and t satisfy

with p = 2 , we recall from (3.7) (with p = 2 ) that

Since E + 1/t  1 2(2v - v3)  1 2 v, we have from cases (C) and (D) that

Combining (3.19) and (3.20) yields (1.4).
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(F) The case

Let (x) = u(x) - u(0)03B6(x), with 03B6 as in (2.19). Arguing as in parts (A)
and (B), we obtain

Thus to prove (1.4) we need only show that |u(0)|  C.
Now

so that

If p &#x3E; 1, then

and the integral on the right converges, because -03B1p’  -1 + v3p’;
hence

If p = 1, we still conclude (3.22), since in that case a  0. Thus we have
shown

The proof of (1.4) for n = 1, a = a - 1 is now complete.
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IV. Sufficiency when n  1, a  03C3  a - 1

Note that in this case

(A) Radial functions

We consider u (x) == f (lx 1), where f is smooth on [0, ~) and vanishes for
|x| large. For integers k, let Rk = {2k  Ixl  2k+1}; by (IIB) we have

with 8 = y + n/r - n. Let s be defined by

so that 1/r  1/s  1. By Hôlder’s inequality,

with

We add (4.2) for all k, using (4.4) and the inequalities (3.13), to obtain

Now,
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while

and

Since

we conclude from Section III that

(Strictly speaking, one must first extend f to a function on ( - oo, oo), and
then apply the results of Section III. Alternatively, one may simply note
that all the proofs in Section III remain valid for functions on [0, oo).)
Combining (4.6)-(4.10) yields ||x|03B3u|Lr  CAaBI - a. Il

(B) Non-radial functions

For any u ~ C0 (R)n), let U: (0, ~) ~ Rn denote its spherical mean
function

and let u* be the associated radial function on IR n

We have

so that

also, of course, u - u* has mean zero on each sphere |x| = p.
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Let Rk = {2k  |x|  2k+1} for integers k ; by (IIB) we have

for each k. We add the inequalities (4.14), using (3.13) and (4.1), to

conclude

whence using (4.13) and (IVA),

(V) Sufficiency in case 1 / p + (03B1 - 1)/n ~ 1 / r + y/n andu  a - 1

Notice that in this case a  1 necessarily. We may assume A = B = 1,
since this normalization may be achieved by scaling. Since (1.4) has been
proved for 0’ = a and for a = a - 1, we know that

provided that 8, s, E, and t are related by

for some choices of b and d, 0  b, d  1, and provided that

Under certain conditions upon b and d we shall see that (5.1) implies a
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bound for ||x|03B3u|Lr. For as in (2.19), we estimate

and

by Hôlder’s inequality, provided that

The integrals on the right in (5.4) and (5.5) converge if

One computes that

so that (5.7) holds whenever

and (5.3) holds too if |d - a| and |b - a| are sufficiently small. One
computes furthermore that
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since a &#x3E; 0 and 03C3  03B1 - 1,

therefore if |b - a| 1 and 1 a - d) are small enough (5.6) will hold as well.
For such choices of b and d, we use (5.1), (5.4), and (5.5) to conclude
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