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The study of analytic function germs (C", 0) - (C, 0) under Yae (right) and
of (contact) equivalence relations is a central point in singularity theory
and the information we have in this direction is far-reaching (see for
instance the papers of Arnold [1], Siersma [13], Wall [14]).

In particular, it is well known that the *-simple and the Y-simple
functions are the same and their classification runs as follows (modulo
addition of a nondegenerate quadratic form in some other variables):

In this paper we start a similar study for analytic function germs
defined on an isolated hypersurface singularity X.

Some of the results (for instance those about finite determinacy in par.
1) are the exact analogues of the corresponding results when X is smooth.
But there are also definitely new phenomena. We show that on an

isolated hypersurface singularity X there are 9l-simple functions iff X is
an Ak-singularity for some k  1.

The class of singularities X on which there are -simple functions is
larger, but nevertheless very restricted. To describe it precisely we use a
Lie algebra of derivations associated to X, whose basic properties were
established by Scheja and Wiebe [12].
On the other hand, on a fixed hypersurface X there are usually much

more 4,-simple functions than 9l-simple ones.
The paper contains the classification of all -simple functions as well

as the classification of -simple functions defined on an Ak-curve singu-
larity.

Using the Milnor fibration introduced by Hamm [7] we define in the
last section a Milnor number li (f ) for any finitely determined function f
on an isolated hypersurface singularity X and note that this number is a
topological invariant.
When dim X &#x3E; 1 the computation of this number shows that the
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-classification of -9-simple functions coincides with their topological
classification. The same result is true when dim X = 1, but the proof this
time depends on the existence of Puiseux parametrizations of the plane
curve X.

In the end of this introduction we note the following interesting facts.
Goriunov has undertaken a study of a similar situation, namely the

study of diagrams

where Y is an analytic space germ and p is a projection [5]. His

equivalence relation is slightly different from ours, but surprisingly his
list of simple diagrams coincides essentially with our list of .9ae-simple
functions (if one omits the case Y smooth).

Moreover, our list of *-simple functions in the case dim X &#x3E; 1 has a
striking (formal) resemblance to Arnold list of simple function singulari-
ties on a manifold with boundary, associated to the simple Lie groups Bk,
Ck and F4 [2].

The author will try in a subsequent paper to explain some reasons for
these coincidences.

It is his great pleasure to thank Professor V.I. Arnold for a very
stimulating discussion.

§1. First définitions and f inite determinacy

Let A be the local C-algebra of germs of analytic functions defined in
a neighbourhood of 0 ~ Cn+1 (n  1) and let m c A be its maximal ideal.

If f E m and X : f = 0 is an isolated hypersurface singularity, we
denote by AX = A/(f) the local ring of X and by m x c A x the maximal
ideal.

DEFINITION 1.1: Two functions f, g E mX are called -equivalent (resp.
Msequivalent) if there is an automorphism u of the local algebra A x such
that u(f) = g [resp. ( u( f )) = (g), where ( a ) means the ideal generated by
a in AX].

In order to study these equivalence relations it is useful to introduce in
this new situation the language of group actions, jet spaces, finite

determinacy and so on from standard singularity theory (the books of
Gibson [4] and Martinet [9] are an excellent reference for this part).

Let L be the group of germs of analytic isomorphisms h : (Cn+1, 0) ~
(Cn+1, 0), T the group of invertible lower triangular 2 X 2 matrices M
over A and S c T the subgroup of such matrices M = (mij) with m 22 = 1.
We define two groups
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and two actions

where * = ,; B = mA2 and we think here of F E B as a column

vector ( fi ).
The connection between the above equivalence relations and these

actions is the following

LEMMA 1.2: Suppose X : f = 0 is a hypersurface singularity and gl, g2 ~ m X-
Then gi - g2 iff F1 = (f, g1) and F2 = ( f , g2 ) are in the same G*-orbit,
where * -q,

PROOF: Obvious, using the fact that any automorphism of AX is induced
by some h E L with (f°h)=(f). Note moreover that here and in what
follows we identify a function g ~ AX with some representative of it in
A. 0

In analogy with the .%tangent space of a map germ we define the
following tangent spaces for a map germ F = ( fl, f2 ) E B.

where J(F) is the A-submodule in B generated by

By passing to jets, each action p * induces actions

and we have the following relation between tangent spaces:

*

DEFINITION 1.3: The function f E m x is called k- * -determined if f - f +
f ’, for any f ’ E mk+1X. The function f is called finitely * -determined if f is
k- * -determined for some k. ( * = 8l, Y) -
We have the following result, in perfect analogy with the smooth case.
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PROPOSITION 1.4: Let X be an isolated hypersurface singularity and f E m x.
Then the following are equivalent.

i. f is finitely -determined.
ii. f is finitely .%determined.
iii. fJll-codim f  00

iVe .%codim f  00

v. f has an isolated singular point at 0 E X ( i. e. f is nonsingular at every
point of X - 0, where X is a small enough representative of X).

PROOF: It is clear that i ~« iii, ü ~ iv and i =* ii. To show that iv ~ v

suppose X is given by g = 0.
If v does not hold, then there is a curve germ c : (C, 0) - (C n + 1, 0)

such that:

for some Laurent series À and any j. It follows that f o c = 0 and, if

ae1 + be2 ~ TF, where F = (g, f), then b o c = 03BB( a  c ). In particular
a = 0 implies b - c = 0 and this contradicts iv. This argument shows also
that v is equivalent to: Xo = ( f = g = 0} is a complete intersection with
an isolated singular point at 0.

To prove v - iii we have just to note that

Moreover, by v, (0394lJ, g) is a m-primary ideal in A and this ends the
proof. 0

As to the order of * -determinacy we have the following obvious
analogue of (1.7) and (1.8) in [13]:

PROPOSITION 1.5: Suppose X : g = 0 is an isolated hypersurface singularity,
f ~ mX and F = ( g, f ) ~ B. Then (* = ,): T*F ~ mre2 ~ f is r- * -de-
termined ~ T * F ~ mr+ 1e2. D

Explicit examples will be given in par. 3.
Now we turn to the definition of simple functions.
Let X : g = 0 be an isolated hypersurface singularity, f ~ mX and T a
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neighbourhood of 0 ~ Cp. A deformation of f is an analytic function
germ F : X  T - C such that F0 = f and F E m x for any t ~ T, where
F (x) = F(x, t).

DEFINITION 1.6: The function f E m x is * -simple if
i. f has an isolated singular point at 0 E X.

ii. For any deformation F of the funtion f, the family of functions
(Ft)t~T intersects only finitely many * -equivalence classes (for small
enough T).
We can reformulate this definition as follows. Note that we h4ve a

natural projection

where F = (g, f) as above.
If K kg is the contact orbit of jkg, then p-11(Kkg ) is a union of

G k *-orbits.

DEFINITION 1.6’: The function f E m , is * -simple if
i. f is finitely * -determined

ii. For all k » 0, jkF has a neighbourhood in p-11(Kkg) which inter-
sects only a finite number of G k *-orbits. (* = , ).

§2. The hypersurf aces X on which there are simple functions

In this section we describe the isolated hypersurface singularities X on
which there are * -simple functions.

To do this we need some facts about the Lie algebra Der A x of
C-derivations of the local algebra AX.

Assume for the moment that X : f = 0 is an isolated hypersurface
singularity of multiplicity e(X) = ord (f)  3.

Let D x be the image of Der A x in the Lie algebra Der (AX/m2X).
There is one case when it is very easy to compute this Lie algebra Dx.

LEMMA 2.1: If f is a weighted homogeneous polynomial, then dim DX = 1
and as a generator can be taken the Euler derivation.

PROOF : The Lie algebra Der AX consists of all derivations

such that there is an element 03B2 ~ A satisfying
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Moreover, if f is weighted homogeneous we have the Euler relation

This combined with (2.2) gives

Since {~f ~x}l=1,n+1 is a regular sequence in A it follows that (2.3) is an
A-linear combination of trivial relations (see [11], pg. 135)

Hencejlal = rlxl/3(O) since e = ord f  3. 1:1

We shall say that X is a weighted homogeneous singularity if it can be
defined (in some coordinate system) by a weighted homogeneous poly-
nomial.

If this is not the case, then we learn from [12] that the Lie algebra DX
is nilpotent.

Note that there is an obvious action px of Dx on the vector space
VX = m xlmi and that the nilpotency condition implies that

for any vector v E VX.

DEFINITION 2.4: We say that the action px of the nilpotent Lie algebra
Dx on Vx is nearly transitive if there is a vector v E Vx such that

Now we come back to the problem in hand. Let X : g = 0 be an
isolated hypersurface singularity. Using the Splitting Lemma we can
assume that

If c  2 we denote by X the hypersurface singularity defined by g = 0
in Cc. Recall that c is called the corank of X.

With these notations we can state our results.
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PROPOSITION 2.5: There are -simple functions on X iff X is an Ak-singu-
larity for some k  1.

There are .%simple functions on X iff one of the following disjoint
situations occurs:

i. X is an Ak-singularity for some k  1.
ii. corank X = 2 and X is a weighted homogeneous singularity such that

wt(XI)* wt(X2)’
iii. X is not weighted homogeneous and the action 03C1X is nearly transitive.

PROOF: For k » 0 consider the contact orbit Y = K kg and let Z denote
p-11(Y). Theil on X there is a * -simple function iff Z contains an open
Gk*-orbit.

Such an open orbit should correspond to a function f E m x with a
generic linear part. Let F = ( g, f ) and note that the Gk *-orbit of jkF is
open in Z for any k » 0 iff

TKg = mJ(g) + (g) is the contact tangent space [9].
This is equivalent to T * F D me2 and such an inclusion depends on

how many derivations D exists, satisfying (2.2) with f replaced by g and
not all of a, in m2.

Assume that jlf = alxl + ... +an+1xn+1 for some ai ~ C*. If we take
a = 2 x f or some j &#x3E; c and a . _ - 9g we etai = 2xJ for somej &#x3E; c and aj 

= - ~g ~x1 we get

In order to get linear forms in the first c coordinates we should consider a
relation similar to (2.2), in which f is replaced by g and all the functions
ai, 03B2 depend only on Xi’ where i, j = 1, ..., c. Then the derivation D
induces a derivation in AX and hence an element D and DX.

If v = j1f ~ VX where f = f (x1, ..., xc, 0), then D - v is precisely the
new linear form we get from D in T * F + m 2e2.

There are two cases to discuss.

Case 1. X is weighted homogeneous.
Then we can take g to be weighted homogeneous and hence dim DX = 1
by (2.1).’

It follows that on X there are 9l-simple functions iff c  1.
When we pass to -simple functions, we have a new element in TF,

namely f - e2.
If c = 2 and dim v, DXv&#x3E; = 2, were (...) means the vector space

spanned by ..., then on X there are Y-simple functions. This happens
precisely when wt(Xl) =1= Wt(X2), since Dy is generated by the Euler
derivation.
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For c &#x3E; 2 there are no %simple functions on X.

Case 2. X is not weighted homogeneous.
Then DX is a nilpotent Lie algebra and hence dim DX · v  c - 1 for any
v E Vy.

It follows that there are no *-simple functions on X.
There are -simple functions on X iff there is a vector v E VX such

that dim v, DXv&#x3E; = c and this happens precisely when the action p g is
nearly transitive. 0

It is natural to ask whether the case iii. above really occurs. The
condition on pg is very restrictive. For instance, using the above nota-
tions, we have the following result.

LEMMA 2.6: If c = 2, 3 and Px is a (nilpotent), nearly transitive action, then
in suitable linear coordinates G = jeg is independent of xc, where e = ord g.

PROOF: For c = 2, using suitable coordinates Dx is spanned by D =

xla/ôx2 and DG = 0 implies G is independent of X2’ If c = 3, we can
assume that DX is spanned by some derivations D = ax, (alax 2) + ( bxl +
CX2)alaX3. We can write the homogeneous polynomial G in the form

and let aj be the first nonzero coefficient.
Then DG = 0 implies the following. Either a = 0 and then D = 0 or

a ~ 0 and

For j =1= e this relation determines the triple ( a, b, c) up to a multiplica-
tive constant and hence dim DX  1, which is a contradiction. It follows
j = e. 0

EXAMPLES 2.7: When c = 2 the first examples of singularities X : g = 0 as
in (2.5.iii) are provided by three of Arnold’s exceptional unimodal
singularities [1]

and E14: x3 + axy6 + y8 for a ~ 0.
Explicit computations show that g can be neither W12 nor W13, in

spite of the fact that these two exceptional singularities satisfy the
conclusion of (2.6).
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When c = 3 it is easy to show that j 3g should be 0, xi or x21x2 and then
the results in Wall’s paper on %unimodals [14] prove that there is no
such g with -modality  1.

REMARK 2.8: It follows from the proof of (2.5) and the wellknown

Mather’s Lemma ([10], (3.1)) that on an isolated hypersurface singularity
X there are * -simple functions iff there is an open set U c Vx such that
all the functions f E m x with j1f E U are * -equivalent.

It is natural to call such functions (local) generic projections.

§3. Some classif ication lists

In this section we derive the list of all A-simple functions and of
%simple functions defined on an Ak-plane curve singularity.

The normal forms given in the following tables are obtained using the
method of complete transversals in some jet space Jk(n + 1, 2) (for
details see [3] where the similar case of contact classification is treated).

PROPOSITION 3.1: The classification of -simple functions f on an Ak-hyper-
surface singularity X with dim X &#x3E; 1 is given by the following table.

TABLE 1

Here q is a nondegenerate quadratic form in the rest of variables,
d(f) is the order of 9l-determinacy and 03BC(f) is the Milnor number of f
to be explained in the next section.

The symbols B, C, F are used because of the formal (for the moment!)
resemblance of the above normal forms with the normal forms of simple
functions defined on manifolds with boundary in the sense of Arnold
(see [2], par. 1).

PROOF: The case A1 being completely similar to the computations in [3],
we give some details only when X = Ak for k  2. Let g = 0 be an
equation for X and suppose first thatjlf =1= 0.

If F = (g, f), using the action of GJ we can pUt j2F in one of the
following three forms:
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The case i corresponds to generic projections and we get the series Bp,
p  3.

In case ii using a complete transversal we obtain

for some p  2. When k = 2 it follows that we can omit the last term and
we get F4.

For k &#x3E; 2 it is easy to see that the family

produces an infinity of orbits, since x21e2 ~ TF03BB for any. Hence in this
case we do not obtain simple functions.

In the same way in case iii we do not get simple germs at all.
Now we shall prove that if j1f = 0 then f cannot be simple. Indeed, for

any such f let r = j2f be the corresponding quadratic form and assume
g=xk+11+q(k1).

It is clear that E = j2(TF~me2) is spanned by the vectorsj2àij (see
the proof of (1.4)), 2x1~r ~x1 + ( k + 1)  xi~r ~xi and j2g. Hence dim E 
(n+12) + 2 where n = dim X.

The space Q of all quadratic forms in (n + 1)-variables has dimension

(n+22) and hence dim Q &#x3E; dim E for n &#x3E; 1. This means that for any f as

above we can find a quadratic form ro such that the family ft = f + tro
intersects infinitely many orbits.

Indeed, it is enough that r0e2 ~ j2(TFt~me2) for any t, where F =
(g, ft ). And this is possible by the above argument. D

Next we treat the case dim X = 1.

PROPOSITION 3.2: The classification of e-simple functions f on an Ak-curve
singularity X is given by the following table. Moreover, any finitely de-
termined function f on the node (AI) or on the cusp (A2) is -simple.

TABLE 2
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The proof of this result is similar (and simpler) to the proof of (3.1)
and we omit the details.
On a given hypersurface X there are, in general, much more Y-simple

functions than 9l-simple ones. To illustrate this fact, we give the following
result.

PROPOSITION 3.3: The classification of -simple functions f on an Ak-curve
singularity X : x k + 1 + y 2 = 0 is given by the following table.

TABLE 3

Here d(f) is the order of -determinacy of f. Moreover any finitely
determined function f defined on X is -simple iff X is irreducible or X is
a node A1. (Note that the case X = A1 follows from (3.2)). The proof of
this result is very similar to the proofs in [3] par. 2 and hence we give no
more details here.

§4. Topological classification

We start with the following

DEFINITION 4.1: Let X be an isolated hypersurface singularity and
f, g E mX. We say that f and g are -top equivalent if there is a germ of
homeomorphism h making the following diagram commutative.

It is easy to detect the é9-top equivalence class of a function f E m x
when dim X =1.

Indeed, let Xl, ..., Xn be the irreducible components of X and con-
sider the following intersection multiplicities

Then we have the following result.



256

PROPOSITION 4.2: When dim X = 1, two functions f, g E m x are -top
equivalent iff up to a permutation

PROOF: Note that m1(f) = oo iff f|Xl = 0. Next, if ml( ) = p we have a
commutative diagram of punctured germs:

where a is a homeomorphism induced by a suitable Puiseux parametriza-
tion of Xi and b(x) = xp. D

COROLLARY 4.3: When dim X = 1

PROOF: Suppose that f, g E m x and u is an automorphism of AX such
that (u(f)) = (g). Note that u lifts to an automorphism û of A and if
f, = 0 is an equation for the branch X, of X, then (fl) = 0 is also an
equation for a branch (say XJ) of X.
We have the following obvious equalities

u

The situation is much more complicated when dim X &#x3E; 1. Let f ~ mX
be a function with an isolated singular point at 0 E X.

For E &#x3E; 0 small and 8 &#x3E; 0 sufficiently small with respect to E we

consider the following spaces

Then the restriction of f induces a locally trivial smooth fibration

f ’ : X’ - D’. Its fibres are smooth paralelizable manifolds which are
homotopy equivalent to a bouquet of (n - l)-spheres where n = dim X
[7]. The number of spheres in this bouquet is callod the Milnor number
p( f ) of the function f.
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LEMMA 4.4: The Milnor number 03BC(f) is a  and -q-top invariant.

PROOF: It follows from the work of Greuel that Jl(f) depends only on
the complete intersection Xo with an isolated singularity at the origin [6].
This is enough for showing Jsinvariance.

The proof of é9-top invariance is the same as the corresponding proof
in the case of Milnor numbers of isolated hypersurface singularities in
C "’ and we send for details to [8]. D

Using the .%invariance, we have computed the values of 03BC(f) in Table
1 without difficulty. Indeed, in each of these cases Xo is an Ak-hyper-
surface singularity and it is wellknown that Jl ( A k) = k.

As a consequence of this computation and of (4.2) we obtain the
following result.

COROLLARY 4.5: The !JI-top classification of -9-simple functions defined on
an isolated hypersurface singularity coincides with the !JI-classification.

It is perhaps interesting to note that the similar result about the 9l-top
classification of Jt:’simple functions defined on an isolated hypersurface
singulatity X is false in general even when dim X = 1 (use (3.3), (4.2) and
the following Remark).

REMARK 4.6: When dim X = 1 one clearly has 03BC(f) = dim Q(F)-1,
where Q(F)=A/(f,g). If the components f, g of F are weighted
homogeneous of degrees dl, d2 with respect to the weights wl, w2, then
dim Q(F) = d1d2/w1w2.

This equality holds also for quasiweighted homogeneous map germs F,
i.e. F = Fo + FI where Fo is a nondegenerate weighted homogeneous germ
and F, contains only terms of higher orders.

This fact gives us the values for 03BC(f) in Table 2 and Table 3.
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Note added in proof

Most of the results in this paper can be extended to the case of function

germs defined on isolated singularities of complete intersections. An
application of such an extension can be found in our paper "Are the
isolated singularities of complete intersections determined by their singu-
lar subspaces?" [Math. Ann. 267 (1984) 461-472]. 


