
COMPOSITIO MATHEMATICA

JAN-HENDRIK EVERTSE
On sums of S-units and linear recurrences
Compositio Mathematica, tome 53, no 2 (1984), p. 225-244
<http://www.numdam.org/item?id=CM_1984__53_2_225_0>

© Foundation Compositio Mathematica, 1984, tous droits réservés.

L’accès aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CM_1984__53_2_225_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


225

ON SUMS OF S-UNITS AND LINEAR RECURRENCES

Jan-Hendrik Evertse

Compositio Mathematica 53 (1984) 225-244.
© 1984 Martinus Nijhoff Publishers, Dordrecht. Printed in The Netherlands.

§1. Introduction

In 1961 Chowla [1] proved that in any algebraic number field K there are
only finitely many pairs of units (1’ E2 such that El - E2 = 1. Schlickewei
[15] and Dubois and Rhin [2] proved independently of each other that
the equation XI + X2 + ... + xn = 0 has only finitely many solutions in
rational integers XII X2, ..., xn which are pairwise coprime and each
composed of fixed primes. Recently, Shorey [20] showed that if {uk}~k=0
is a simple linear non-degenerate binary recurrence sequence of rational
integers, then the greatest prime factor of ur/us tends to infinity if

r ~ ~, r &#x3E; s, us ~ 0. It is our intention to generalize these results by a
uniform approach based on Schlickewei’s p-adic version of the method of
Thue-Siegel-Roth-Schmidt. Part of our results has been obtained inde-
pendently by van der Poorten and Schlickewei [14].

Throughout this paper, K will denote an algebraic number field of
degree D with ring of integers OK. By a prime on K we mean an
equivalence class of non-trivial valuations on K. We distinguish between
infinite primes which contain archimedean valuations and finite primes
which contain non-archimedean valuations. We denote the set of all
infinite primes on K by S~. There is a well-known correspondence
between finite primes and prime ideals. The letter p is used for primes on
Q, the letter v for primes on K. The infinite prime on Q is denoted by po
and 1.lpo is the ordinary absolute value. If q is a prime number in 0, the
corresponding finite prime is also denoted by q and 1.1 |q denotes the q-adic
valuation defined in the usual way. The completions of 0, K at the
primes p, v respectively, are denoted by Qp, Kv respectively. Thus
Qp0 = R. For every prime v on K lying above a prime p on 0 we choose a
valuation ~.~v such that

By this choice, the so-called product-formula holds,
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where Fi means that the product is taken over all primes v on K.
v

Let n be an integer with n ~ 1. Points in the vector space Kn+1 are

denoted by x = (xo, xl, ..., xn ). let 03C31, Q2, ..., 1 CFD be the embeddings of
K in C. Put

If we identify pairwise linearly dependent non-zero points in Kn+1, we
obtain the n-dimensional projective space Pn(K). Points in Pn(K),
so-called projective points, are denoted by X = (xo : XI ... : xn), where
the homogeneous coordinates are in K and determined up to a multi-
plicative constant in K. Put

By (1) this height is well-defined since it is independent of the multiplica-
tive factor. The functions ~x~ and H(X) are closely related. Schmidt [17]
showed that positive constants cl, C2 exist, depending only on K, such
that for each point XE P n( K) the homogeneous coordinates Xo, Xl’ ...,
xn can be chosen such that if x = (xo, xi, ..., xn ),

and

In case K = Qu we may take cl = C2 = 1 since

Obviously ~x~ ~ 1 for all x E On+1K and H(X) ~ 1 for all XE pn(K). It
is easy to check that for each A ~ 1 there are at most finitely many
x E 0;+1 1 with 11 x1 ~ A. Hence by (4) for each B ~ 1 there are at most
finitely many X ~ Pn(K) with H(X) ~ B.

Let S be a finite set of primes on K, enclosing S~. An S-unit is by
definition and element a of K with ~03B1~v = 1 if v E S and an S-integer an
element a of K with ~03B1~v ~ 1 if v E S. Let c, d be constants with c &#x3E; 0,
d ~ 0. A projective point X ~ Pn(K) is called (c, d, S)-admissible if its
homogeneous coordinates xo, xl, ..., xn can be chosen such that
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and

Clearly, the homogeneous coordinates of (1, 0, S)-admissible projective
points can be chosen to be all S-units.

THEOREM 1: Let c, d be constants with c &#x3E; 0, 0 s d  1, let S be a finite set
of primes on K enclosing Soo and let n be a positive integer. Then there are
only finitely many (c, d, S)-admissible projective points X =

( xo : xl : ... : xn) ~ Pn(K) satisfying

but

for each proper, non-empty subset {i0, il, ..., is} of (0, 1, ..., n}.

Mahler showed that for n = 2 (7) has at most finitely many (1, 0,
S)-admissible solutions in Pn(K). As far as 1 know, Lang [4] was the
first who published a proof of this result. For related results we refer to
Chowla [1], Nagell [8], [9], [10], Gyôry [3], Schneider [19]. A somewhat
weaker result than Theorem 1 has been stated by van der Poorten and
Schlickewei [14]. For K = Q we have the following corollary of Theorem
1.

COROLLARY 1. Let c, d be constants with c &#x3E; 0, 0 ~ d  1, let So be a finite
set of prime numbers and let n be a positive integer. Then there are only
finitely many tuples x = (xo, Xl’ ..., xn) of rational integers such that

for each proper, non-empty subset {i0, i1, ... , is} of (0, 1, ..., n};
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The corollary follows by (5) and the fact that there are exactly two tuples
(xo, ..., xn ) of rational integers with gcd 1 which can be chosen as

homogeneous coordinates of a given projective point in Pn(Q). Schlicke-
wei [15] and Dubois and Rhin [2] showed that the number of tuples
x = (x0, x1, ..., xn) ~ Z n + 1 satisfying (9), (12) and max(|xl|p, lx, 1,) = 1
for i, j E (0, 1, ... , n ) and i =1= j and p E So is finite, where again c, d are
constants with c&#x3E;0, 0~d1.
We shall derive Theorem 1 from

THEOREM 2: Let n be a non-negative integer and S a finite set of primes on
K, enclosing Soo. Then for every E &#x3E; 0 a constant C exists, depending only
on E, S, K, n such that for each non-empty subset T of S and every vector
x = (x0, x1, ..., xn)~On+1K with

for each non-empty subset (io, ..., is} of (0, 1, ..., n):

A straightforward application of theorem 2 yields

COROLLARY 2: Let n, S be as in theorem 2. Then for everye &#x3E; 0 a constant

Ci exists, depending only on E, S, K, n, such that for each non-empty subset
T of S and every vector X = ( xo, xl, ..., xn) E pK+ with xoxl ...xn(x0 +
... + xn) * 0:

We shall apply theorem 1 to linear recurrence sequences {uk}~k=0. We
assume that no integer ko exists such that uk = 0 for k ~ ko. Let n be the
smallest integer for which constants vl, v2, ..., vn exists such that
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Then Un =1= 0. It is well-known that polynomials f, and pairwise distinct
numbers a, exist, depending only on VI’ v2, ..., vn, Uo, UI’ ..., un-1, such
that

Without loss of generality we may assume that the polynomials f, do not
vanish identically. The numbers a, are called the characteristic roots of
{uk}~k=0. We call the sequence degenerate if at least one of the quotients
of two distinct characteristic roots is a root of unity and non-degenerate
otherwise.

Van der Poorten [13] has applied his version of theorem 1 to deduce
several remarkable facts on non-degenerate recurrence sequences {uk}~k=0
of algebraic numbers. Under very general conditions he proved that (i)
for every E &#x3E; 0 there exists a K such that

(ii) the maximum of the norms of the prime ideals p with ord (uk) ~ 0
tends to infinity if k - oo and (iii) the total multiplicity of {uk}~k=0 is
finite. Here the total multiplicity is defined as the number of pairs ( r, s )
of non-negative rational integers with ur = us and r * s. Shorey [20] gave
in the case of a binary recurrence sequence of rational integers a lower
bound for the greatest prime factor of ur/us subject to the conditions
r &#x3E; s, us ~ 0, which tends to infinity if r does. In Theorem 3 we shall
generalize (ii) to prime ideals  with ord(ur/us) ~ 0 in the same way as
Shorey did, but without an explicit lower bound. Result (iii) is a direct
consequence of theorem 3.

For a E K, a * 0 we define PK(03B1) to be the maximum of the norms of
the prime ideals fi with ord(03B1) ~ 0 if a is not a unit and PK(03B1) = 1 if a is
a unit. Further we put Px (0) = 0.

THEOREM 3: Let {uk}~k=0 be a linear non-degenerate recurrence sequence
in K with at least two characteristic roots. Then

The example Uk = kak with a E 7L, a &#x3E; 2, where Ual is a power of a for
every positive integer l, shows that the assertion of Theorem 3 does not
hold if there is only one characteristic root.
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The following two results of van der Poorten [13] are consequences of
Theorem 3.

COROLLARY 3: Let {uk}~k=0 be as in theorem 3. Then

This follows from Theorem 3 by keeping some s with Us =1= 0 fixed. This is
an improvement and generalization of a result of Pôlya ([12], Satz 2’, p.
17) which in fact states that if {un}~n=0 is a sequence satisfying the
conditions of theorem 3 and if all Un belong to 0, then

limsupn~~(PQ(un))=~.

COROLLARY 4: Let {uk}~k=0 be a linear non-degenerate recurrence se-
quence of algebraic numbers. Suppose that there do not exist a constant a
and a root of unity p such that Uk = a pk for all k. Then there are only
finitely many pairs of non-negative integers ( r, s ) with r =1= s and Ur = us.

If uk = f(k)03C1k for k = 0, 1, ..., where f is a non-constant polynomial
with complex coefficients and p is a root of unity, then there can be only
finitely many pairs ( r, s ) with r ~ s and ur = us. This follows from the
fact that {|uk|}~k=0 = {|f(k)|}~k=0 is a strictly increasing sequence from a
certain term on. If uk = f(k)03B1k for k = 0, 1, ..., where f is a polynomial
with algebraic coefficients and a not a root of unity, then we consider
instead of {uk}~k=0 the non-degenerate recurrent sequence {vk}~k=0 with
vk = uk + 1k for k = 0, 1, .... So we may assume that {uk}~k=0 has at
least two distinct characteristic roots. Using that in fact all coefficients VI
in (15) are algebraic, all Uk belong to some algebraic number field and
now Corollary 4 follows immediately from Theorem 3.
We remark that van der Poorten [13] has claimed that Corollary 4 is

also valid if some of the terms Uk are transcendental over Q.

§2. Proof of Theorem 2

As in §1, let K be an algebraic number field of degree D and let OK be its
ring of integers. We mention a theorem, due to Schlickewei [16], which
will be used in the proof of theorem 2. As in §1, po denotes the infinite
prime on Q. Let pi , P2’ ..., pt be distinct prime numbers (or finite primes
on Q). For each i ~ {0, 1, ..., t} the valuation 1.lpl can be extended to the
algebraic closure 0 P, of Q P, in a unique way and this extension is also
denoted by 1.lpI’ Furthermore there are D isomorphic embeddings 03C3(l)1,
03C3(l)2, ..., 03C3(l)O of K in Qpl. Put K(i,j)=03C3(i)J(K), 03B1(i,j)=03C3(l)J(03B1) for 03B1 ~ K
and x(i,j)=(x(i,j)0, ..., x(i,j)n) for x = (x0, ..., xn) ~ Kn+1.
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THEOREM 4: Let n be a non-negative integer. For every j with 1 sj s D and
every i with 0 sis t, let L(i,j)0, ..., L(i,j)n be n + 1 linearly independent
linear forms in n + 1 variables with coefficients in Qpl which are algebraic
over Q. Then for alle &#x3E; 0 there are finitely many proper subspaces Tl, T2,
..., Tn of K"", depending only on n, po, ..., pt, c, K and the forms L(i,j)k,
containing all solutions x E On+1K, X =1= 0 of the inequality

We shall now prove Theorem 2. Let S be a finite set of primes on K,
enclosing S~. We assume that S has the property that if it contains one
prime lying above some prime p on Q, then it contains all’the other

primes on K lying above p. Obviously, this is no restriction. Let po, pi ,
..., pt be the primes on 0 above which the primes in S ly. We shall
proceed by induction on n. For n = 0, theorem 2 is trivial. Suppose that
theorem 2 has been proved for all integers n with 0  n  m (where
m ~ 1). Our aim is to prove Theorem 2 for n = m. Let e &#x3E; 0 and T a

non-empty subset of S. We shall show that the points x = (xo, xl, ...,
xn ) E On+1K which satisfy both

for each non-empty subset

where for each v E S, (iov, ii,, ..., imv) is a given permutation of (0, 1,
..., m ), and

do also satisfy (14) for a certain constant C, specified in Theorem 2. This
is clearly sufficient to prove Theorem 2.

For each prime v E S, lying above the prime p, on 0 (where i ~ {0, 1,
..., t )), we have that the valuation given by Iuj(’) (a) 1 p for « E K belongs
to v for exactly [Kv: Qp] embeddings 03C3(l)J. Thus, if l(v) is the set of these
embeddings,
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Let Ybe the set of pairs of integers ( i, j ) with 0 ~ i ~ t, 1 ~ j ~ D, such
that 03C3(l)J ~ l(v) for some v E T. We now define the following linear forms
in the variables xo, ..., xm, where v is determined by 03C3(l)l ~ l(v):

These linear forms have coefficients in Q and for fixed i, j, the forms
{L(i,j)k}mk=0 are linearly independent. Furthermore, for all x~On+1K
satisfying (18), (19), (20) we have by (21),

Hence by Theorem 4, the xE 0;+1 1 satisfying (18), (19), (20) already
belong to finitely many proper subspaces of Kn+1. For each subspace it
is possible to express some of the variables x, in the other variables x,.
Hence there exist finitely many tuples (03B2J0, 8j,, ..., 03B2ju) of numbers in K,
where 0 ~ u ~ m such that each solution x ~ On+1K of (18), (19), (20)
satisfies at least one of the relations

We may assume that no subsums of the right-hand side are equal to zero
by cancelling some of the terms 03B2JlxJl if possible. We now show that all
points x E On+1K 1 satisfying (18), (19), (20), (22) also satisfy (14) with a
constant C depending only on E, m, K, S, the permutations in (19) and
the tuple (03B2J0, ..., 03B2Ju). Since we have only finitely many permutations of
(0, 1, ..., m ) and a finite set of tuples (03B2J0, ..., Plu) which depends only
on m, K, S, E and the permutations in (19), this suffices. Let 1 = {j0,j1,
..., ju}, 2={0, 1, ..., m}-1, let Tl be the subset of T such that
i0v ~ 1 and T2 the subset of T such that i0v ~ 2. The constants c3, c4,
.... will depend only on e, K, S, m, the permutations in (19) and the
tuple (03B2J0, ..., 03B2Ju). Let 03B4 be a number in K such that 03B403B2J0, ..., 03B403B2Ju are
algebraic integers and put z, = 03B103B2JlxJl for 1 = 0, 1, ..., U, z = ( zo, Zl’ ...,
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zu). By (22) and the induction hypothesis we have

If T1 = T then (23) implies inequality (14) since 03A0k~203A0v~S~xk~v ~ 1. If
T1 ~ T, then, by (22) and the induction hypothesis,

Together with (23) this implies that



234

where empty products must be taken equal to 1. This completes the proof
of Theorem 2. 0

§3. Proof of Theorem 1

As before, K is an algebraic number field of degree D, S a finite set of
primes on K enclosing S~ and c, d positive constants with c &#x3E; 0,
0 ~ d  1. Constants cg, clo, ... will depend only on K, s, n, c, d. Let

X= (x0: xl : ... : xn)~Pn(K) be a projective point satisfying (6), (7),
(8). By an argument of Schmidt [17], (p. 63), there are positive constants
c9, c10, ci and a 03BB ~ K with À =1= 0 such that

(where N( a ) denotes the absolute norm of the ideal a) i.e.

and if al, (J2’ ..., 03C3D are the embeddings of K in C,

Put Yi = Xx;, y = À x. Then, by (25), (26),

Moreover, since the x, are S-integers and the y, algebraic integers, by (25),

hence
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By (6) this implies that

Now we have, by (28), (7), (24), (8), (27), (29) and Theorem 2 with
~ = 1 2D(1-d),

This implies that

Since d  1 this proves Theorem 1.

§4. Proof of Theorem 3

In the proof of Theorem 3 we shall use two lemmas which are stated and
proved below. In the sequel, K denotes an algebraic number field.

LEMMA 1: Suppose K has degree D, let f(X) E K[X] ] be a polynomial of
degree m and T a non-empty set of primes on K. Then there exists a positive
constant C19’ depending only on K, f such that for all r E 7L with r =1= 0,
f(r) =1= 0,



236

PROOF: It follows easily from (1) that

Furthermore there exist positive constants c2o, C21 and a finite set of
finite primes To, all depending only on K, f such that for all r E Z with
r~0, f(r)~0,

This implies Lemma 1 immediately. 1:1

LEMMA 2: Let f(X), g(X)~K[X] be polynomials of degrees m, n

respectively such that no rational integer h with h =1= 0 exists for which one of
the polynomials f(X + h), g(X) divides the other. Let S be a finite set of
primes on K and,8, y constants with

Then there are only finitely many pairs of rational integers ( r, s) such that

and

PROOF: For each pair of polynomials f(X), g(X) ~ K[X], let (f, g ) be
the set of rational integers h with h =1= 0 which are the difference of a zero
of f and a zero of g. It suffices to show that if f, g are both non-constant
polynomials, then at most finitely many pairs (r, s) ~ Z2 exist which
satisfy (32), (33) and r - s~ (f, g). For assume we have shown this.
Let f, g be polynomials in K[X] such that no rational integer h with
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h =1= 0 exists for which one of the polynomials f(X+ h ), g(X) divides the
other. Let £(f, g) be non-empty. Take h E£(f, g) and consider the
pairs (r, S) ~ Z2 with r - s = h for which f(r)/g(s) is an S-unit. The

polynomials f(X), g(X-h) have a nonconstant greatest common divisor
k(X) in K[X] . Put f0(X) = f(X)/k(X), g0(X)=g(X)/k(X+h). Then
neither f0(X), nor g0(X) is constant and for the pairs (r, s ) under
consideration we have that f0(r)/g0(s) = f(r)/g(s) is an S-unit and
r - s ~ (f0, g0). By our assumption and by the fact that A(f, g) is
finite, this proves Lemma 2 in general.

Let  be .the set of pairs ( r, s ) E Z2 satisfying (32), (33) and r - s ~
(f, g), where f , g are non-constant polynomials in K[X]. It is our aim
to show that Vis finite. We assume that f(X), g(X) ~ OK[X], that all the
zeros of f and g are S-units in K and that S D S~, which are no
restrictions. Put D = [K: 0 ]. Suppose K~C and let 03C31, 03C32, ...., 0,, be the

embeddings of K in C. The constants C22, C23 will be positive and depend
only on K, f, g.
We assume that YCis infinite for some pair of constants 03B2, y satisfying

(31). Let

where the al are distinct, the bj are distinct, the e, and the f are positive
integers with 03A3pl=1el = m, 03A3lj=1fJ = n. First of all we have for ( r, s ) E J/,
if N(a) denotes the absolute norm of the ideal a, on noting that

r - s ~(f, g).

hence

Since f(r)/g(s) is an S-unit this implies by (1), and f(X), g(X) ~ OK[X]
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that

By permuting the al, bj if necessary we may therefore assume that an
infinite subset 1 of YCexist such that for ( r, s ) E 1:

and by (34), since r - s e g),

Since
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Put d = ( m + n + 1) 03B3/ (1 - 03B3). Then, by (31), 0 s d  1. Formulas (36),
(32) and (37) yield that for (r, s ) E 1:

Together with (35), the fact that 03B60, 03B61, 03B62 are non-zero S-integers and
Theorem 1, this yields that there at most finitely many such projective
points Z. Therefore, there must be an infinite subset 2 of 1 such that
Z(r,s) = Zo for ( r, s ) E Y2, where Zo is a fixed projective point in p 2(K);
Choose two pairs ( rl, sl ), ( r2, s2 ) in fi with Ir21 &#x3E; Ir, 1. By (32), (31) this is
possible. Now we have by (32),

By (31), this implies that |03B6(r2,s2)1|, whence |r2|, can be bounded above in
terms of ri, sl, f, g, k, 03B2, y. Together with (32) this contradicts the fact
that fi is infinite. Therefore our assumption that YCis infinite was false
and together with the remarks made at the beginning of the proof, this
proves Lemma 2. 0

PROOF OF THEOREM 3: Let K be an algebraic number field and let

{uk}~k=0 be a non-degenerate linear recurrence sequence with Uk E K,
having at least two characteristic roots. We have

where m ~ 2, f is a non-zero polynomial for i = 1, 2, ..., m and the a, are
distinct algebraic numbers such that a¡1 a) is not a root of unity for i =1= j.
We assume that fl(X) ~ K[X], and al E K for i = 1, 2, ..., m which is no
restriction in the proof of theorem 3. Further c2g, C29, ... will denote

positive constants depending only on K, al, a2l ..., am, fl, ..., fm.
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We assume that theorem 3 is not valid, i.e. there exists a finite set of
primes S on K, enclosing Soc;, and an infinite set )Vof pairs of integers ( r,
s ) with r &#x3E; s ~ 0 and u,:gÉ 0, such that ur/us is an S-unit or u, = 0 for ( r,
s) ~ . We assume that the a, and the coefficients of the f, are all
S-units which is no restriction. In view of (38) we have

where e,@ , is an S-unit, fl = 1 if ur ~ 0, /3 = 0 and 03B6r, s = 1 if ur = 0. Put

03BEl = 03B6r, sfl(r)03B1rl for i = 1, 2, ..., m, 03BEl=-03B2fi-m(s)03B1si-m for i = m + 1,
..., 2 m . Then 03BE1 + 03BE2 + ... + 03BE2m = 0. For each pair ( r, s ) e  there is a
collection 9 of pairwise disjoint non-empty subsets of (1, 2, ..., 2m},
having (1, 2, ..., 2m} as their union, such that

Since there are only finitely many collections of subsets as described
above, we can find such a collection 9 such that (40) holds for all pairs
( r, s ) belonging to an infinite subset 1 of ir. We assume that there are
no pairs (r, s ) in irl with fl(r) = 0 for some i E (1, 2, ..., m} which is
no restriction.

First of all, we shall prove that each set Yin Y can contain at most one
element from (1, 2, ..., m}. Let us assume the contrary i.e. that there is
an 5°in 9 containing integers i, j with 1 ~ i  j ~ m. Let 039E = 039E(r, s) denote
the projective point with the 03BEk(k ~ ) as homogeneous coordinates. Put

Since ailaj is not a root of unity, we have C28 &#x3E; 1. By (1) and Lemma 1
we have for r ~ C29,
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But on the other side we have, since all a, are S-units,

Since all the 1, are S-integers, this implies by Theorem 1, and (40) that
there are only finitely many of such projective points 039E(r,s). But then
there are infinitely pairs (r, s ) in 1 which correspond to the same
projective point 039E(r,s). Take two of these pairs, (r1, SI)’ ( r2, s2 ) say, with
r2 &#x3E; 2r1. Then

hence

Choose a prime v such that ~03B1i/03B1j~v = : c34 &#x3E; 1. Then ~03B1l/03B1j~r2-r1v ~ cr2/234,
whereas by Lemma 1,

However, for r2 sufficiently large this contradicts (41). This shows indeed
that each set 5°in éP can contain at most one element from {1, 2, ..., m}.
Of course, there are sets  containing an element from (1,2, ..., m} and
since we assumed that fi (r) * 0 for i ~{1, 2, ..., m} and (r, s ) E 1,
these sets must contain also an element i from {m + 1, ..., 2m}, for
which 1; fl 0. Hence 03B2 = 1 and 9 consists of m pairwise disjoint subsets of
{1,2, ... , 2m}, each containing exactly one element from {1,2, ..., m}
and one from f m + 1, ..., 2m}. This can be written as
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where 03B6r, s is an S-unit and a a fixed permutation of (1, 2, ..., m }.
In the final part of the proof we shall show that 1 is finite. This is

contradictory to what we have seen before and will complete the proof of
theorem 3. We distinguish two cases.

Case 1. a is the identity.
Then we have for i, j E {1, 2, ..., m}, by (42),

If all polynomials fl(X) with i E (1, 2, ..., m} are constant this implies
that ai/a. is a root of unity for all pairs ( i, j ) with i, j ~ {1, 2, ..., m}
and we have excluded this case. Therefore we can choose a polynomial
fl(X) such that fl(X) is non-constant. Then for every non-zero rational
integer h, none of the polynomials fl(X+h), fi(X) divides the other.
Furthermore, by (42), fl(r)/fi(s) is an S-unit for (r, s) ~ 1. Take
j E {1, 2, ..., m} withj =1= i. By (43) and lemma 1, we have, on choosing a
prime v such that ~03B1l/03B1j~v &#x3E; 1,

hence

By Lemma 2 we infer that 1f/1 is finite indeed.

Case 2. a is not the identity.
Choose an integer i such that i ~ 03C3(i) and ( r, s ) E 1. Put 03B8k = 03B103C3k(l)/
03B103C3k+1(l), 03B8k=f03C3k+1(l) (s)/f03C3k(i) (r). By (42) we have

A simple inductive argument shows that
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Let v be the order of Q. Then 0, = 00, qv = q0. This implies that

All exponents appearing in the above equality are divisble by r - s and
we have

Now choose a prime v such that 1 ~03B80~v = : e140 . Then by (44) and
Lemma 1,

This implies that r is bounded and hence that also in this case 1 is
finite. D
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