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§1. Introduction

Let f: Vn ~ Wn+r be a proper map between manifolds of dimension n
and n + r respectively, with r  1. We will consider simultaneously the
Coo case and the complex analytic or algebraic case (that we will refer to
as the real or complex case), indicating when necessary the peculiarities
of each case. Define the following subsets of V:

which we provide no name.

We shall work with maps satisfying certain conditions, that we call
excellent maps; in many cases the set of excellent maps is dense in the set
of all proper maps.

Our goal is to construct explicit desingularisations of the closures of
M3(f), M0,1(f) and M1,0(f) in V (see §4). By desingularisation of a
singular variety 2 we mean a proper map  ~ 03A3 where 2 is non-singular
and the map is an isomorphism from an open dense subset of 2 onto the
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regular part of E. Actually we will have inclusions of codimension one
submanifolds:

and a projection qr: 3(f) ~ V which desingularises M3(f); also

03C0|0,1(f) and 03C0|1,0(f) desingularise M0,1(f) and M1,0(f) respectively
and 03C0|1,1(f) coincides with the desingularisation of 03A31,1(f) found in
[10]. In the real case 3(f) will be a manifold with boundary 0,1(f).

The reason for studying these desingularisations is both to have local
and global informations on the triple points and stationary points of f.
Locally, we can see which singular points are in the closure of M3(f),
M0,1(f) and M1,0(f) and how (see also Cor. 4.4). Globally, in the

complex case one can relate the cohomology classes (with integer coeffi-
cients) m3(f) ~ H2r(V), m0,1(f) and m1,0(f)~H2r+1(V) that are

Poincare dual respectively to M3 ( f ), M0,1(f) and M1,0(f) in V to the
Chern classes of V and W and multiple points of lower order (see §5; in
the real case, M3 ( f ) can be thought of as a chain whose boundary is
M0,1(f) and therefore m3(f) doesn’t exist and m0,1(f) = 0).

The formulas for m3(f) and m0,1(f) are not new. In the algebraic
case, working with a very general f : V - W, S. Kleiman ([3]; see also
there for more references) obtains the formula for 2m3(f) (that he
denotes by m3) in the Chow ring of V using the iteration method. He also
announces there the formula for our m3(f) (that he denotes by v3). In
[9], using the iteration method J. Roberts obtains the formula for

m0,1(f), and the same method would give m1,0(f).
We will pursue and improve the methods of [11], where the double

points of a map were considered. In order to extend our method to
4-tuple points, we would need a desingularisation of N3(f), which we
aren’t able to provide yet. A desingularisation of M1,1(f) would be part
of a desingularisation of M4(f).
We will adopt the following notations and conventions. A manifold

will always be smooth. By a map we mean either a Coo map between Coo
manifolds or a holomorphic map between complex analytic manifolds.
By isomorphism we mean an equivalence in the category of C°° or

holomorphic maps. If X is a manifold and Z a submanifold, BZ(X) will
denote the blow-up of X along Z and y the line bundle associated with
the blown-up Z. By TX we denote the tangent bundle to X and by
N(Z, X) = (TX|Z)/TZ the normal bundle of Z in X; D(Z, X ) E H*(X)
will denote the Poincare dual of Z in X, where H*( ) denotes the

cohomology with integer coefficients in the complex case, the integers
mod two in the real case. If f : X - Y, Nf=f*TY - TX will be the virtual
normal bundle of f and df : TX - f *TY the derivative of f. We let X(k)
denote the k-fold product of X, 0394X(k) = {(x1,...,xk ) E X(k)|~i ~ j with
xl = xJ} and 03B4X(k) = {(x,...,x) ~ X(k)}. By Jk(X, Y ) we denote the
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bundle of k-jets of maps from X to Y and by jk(f) the k-th jet extension
off: X- Y.

If 1 = (E - X) is a smooth vector bundle (either real or complex) of
rank n, Ex will be its fiber over x E X and e(03BE) ~ Hn(X) its Euler class;
if q = (F ~ X) is another such bundle, HOM(1, q ) will denote the vector
bundle with fibers Hom(E,,, Fx ), i.e. the vector space of linear maps from
Ex to Fx. P(03BE) = (P(E) ~ X) will be the projective bundle associated to
e. We shall write cl(03BE) for the i-th Chern class if e is a complex vector
bundle, the i-th Stiefel-Whitney class if e is a real vector bundle. We will
sometimes use the same notation for a bundle and his various pull-backs.

If a: e - q is a vector bundle morphism, we shall say that it is generic
if the corresponding section a: X ~ HOM(03BE, ~) is transversal to the
subbundle 03A3i(03BE, ~) = ~x{A ~ Hom(Ex, Fx)|dim(ker(A)) = i}, for all i.

Letting 03BE1 denote the canonical vector bundle of rank one on P(03BE), we
recall that if a: 03BE - q is generic then the section of HOM(03BE1, q) naturally
associated to a is transversal to the zero section (see [11], Prop. 2.2). The
projection on X of 1(a)= {(x, d)|d ~ P(Ex), a|d = 0} is a desingulari-
sation of 03A31(a) = ~l103A3l(a), where 03A3l(a) = a-1(03A3l(03BE, -q» (see e.g. [10],
Prop. I-1.1 or [8], Prop. 1.1).

§2. A basic blow-up

Let 03BE=(E ~ X) be a smooth vector bundle and s : X ~ E a section.

Letting (0) denote the zero section of e, we set Z = s-1(0). If x E X and
Ux is an open neighborhood of x on which 1 is trivial, using the
trivialisation we can write s|Ux as a map s’ : Ux ~ Ex . The derivative ds’x:
TXx ~ Ex usually depends on the trivialisation of 03BE|Ux, but if s ( x ) = 0 it
doesn’t (this is a special case of [1], Lemma 7.4); this yields a section ds:
Z - HOM(TX,03BE) called Porteous’ intrinsic derivative. If Z is smooth,
from ds we deduce a section ds: Z - HOM(N(Z, X), e).

The aim of this paragraph is the following proposition, which gener-
alises cor. 2.3 of [11].

2.1. PROPOSITION: Let s: X ~ E be a section of the bundle e = (E - X) of
rank n. Assume that s-1(0) = Z = Zl U Z2 with 21 = (Zl - Z2), Z2 =

(Z2 - Zl) and that:
(i) Z2 is smooth;
(ii) Zl - Z2 is smooth and s is transversal to (0) on Zl - Z2;
(iii) d s: Z2 ~ HOM(N(N2, X),03BE) is generic.

Let  = BZ2(X), a:  ~ X the natural projection, y the rank one bundle
over X associated to 22 = 03C3-1(Z2) and t = e(y) = D(2, ). We have :

(i) let Zl = closure of 03C3-1(Z1 - Z2 ) in X; 03C3|1 is a desingularisation of
21;

(ii) the section (s | X - Z2). ( a 1 X - 2): X - 22 - E extends to a section
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:  ~ HOM(03B3, 03BE) transversal to the zero section and S-I(O) = 1 ;
(iii) .21 is transversal to Z2 . More precisely, |2 is transversal to the zero

section of HOM(03B3, 03BE), Zl ~ Z2 = 03A31(ds) and.21 ~ 2 = -1(ds):
(iv) let s’: X - E be a Coo section (in both the real and complex case)

approximating s which is transversal to (0) everywhere. Setting Z’ = s’ -1 (0)
and denoting by i: 2 ~ X the inclusion, we have:

PROOF: We may work locally and hence assume that X is open and
convex in H X H’, Z2 = X n ( H X {0}) and s : X ~ Eo, where H, H’ and
Eo are finite dimensional vector spaces. Writing elements of X as pairs
(x, v) with x E H and v E H’ we have BZ2(X) = {(x,v,d) ~ X
P(H’)|v~d}. Define:

where the integral takes place in Hom( H X H’, Eo ). It is elementary to
verify that (x, v, d)(0,v)=s(x, v)-s(x, 0)= s(x, v ). From this (i) and
(ii) follow easily.

Since ( x, 0, d ) = ds(x, 0)|0 d, assumption (iii) implies that |Z2 is
transversal to the zero section of HOM(03B3, 03BE) and assertion (iii) follows.

Since 1=-1(0), D(1,)=e(03B3*~03BE)=03C3*(e(03BE))+03A3h=1,...,n(-1)h
·th·cn-h(03BE). Since e(½)=D(Z’,X) and i!(1)=t, the stated formula
follows.

In §5 we will use a slightly generalised version of 2.1. Namely, we will
replace X by a closed neighborhood 03A9 of Z, U Z2 in X, that we choose to
be a C~ manifold with boundary 8Q in both the real and complex case.
2.1. remains valid, provided we define suitably e(03BE)~Hn(03A9, DO) (see
[11], proof of 2.6).

§3. Some preliminary constructions

Let V be a manifold and set V  V = B0394(2)(V V) (this space was called
the fat square of V in [11] J and denoted by F2(V)). The blown-up
diagonal will be denoted by (2). The antidiagonal inclusion TVx c TVx
~ TVx sending v E TVx to (v, - v) induces an isomorphism of TV with
N(0394(2), V X V); using this we can write V X V = (V X V - A(2» U PTV.
Hence elements of vx V can be written (xl, X2)’ x1~ x2 or (x, d),
where xi, x2 and x are in V and d is a line in TVx.
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The group S2 of permutations of two objects acts obviously on V X V
and this action extends to an action of VV, leaving (2) pointwise
fixed. The quotient V X V/S2 is smooth and contains (2) as submani-
fold (in the real case V V/S2 is a manifold with boundary (2)). We
can write:

where [x1, x 2 ] denotes the unordered pair.
Consider the product Vx (V  V)/S2; it contains the subset:

and also 03B4’(3) = {(x, x, d ) E V  0394(2)}.

3.1. PROPOSITION:

(i) LY(3) is a submanifold ( of codimension n) of V  (VX V/S2);
(ii) 03B4’(3) is a submanifold (of codimension 1) of Y(3);
(iii) the map go: LY(3) - V X (2)~ V X V - à (2) defined by

extends to an isomorphism g: 0394’(3) ~ V X V sending 8’(3) isomorphically
onto (2).

PROOF: It is quite clear that 0’(3) - V X à (2) is smooth. We replace now
V by an open convex subset U of the linear space E. First we give local
descriptions of the various spaces involved, using the canonical bundle y
overPE. Let 02= {(x, d, v)~U PE E|v~d, x+v and x-v~U},
an open neighborhood of the zero section of the pull-back y’ of y on
U X PE, and define 03B82:O2 ~ U X U by:

Any element of the tensor product d - d can be written as v - v, where
v is determined up to a + or - sign. Let 02 = {(x, d, v - v ) E U X PE X
(d 0 d)|x ± v ~U}, an open neighborhood of the zero section of y’ o y’,
and define 03B82:O2~U U/S2 by:
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Finally, let O3= {(x, d, w, vov)~ U PE E (d o d)|x+v, x-v
and x + w ~ U}, an open neighborhood of the zero section of E E9 y’ 0 y’,
and define 03B83: O3 ~ U  (U  U/S2) by:

02, 02 and 03B83 are isomorphisms. We have:

Assertions (i) and (ii) follows at once. As for (iii), we have:

which is clearly an isomorphism.

Here is the picture in a fiber of E ~ y’ o y’ over some (x, d ) E U X PE:

We set F3(V)=B0394’(3)(V (VV/S2)), call Q : F3(V) ~ V  (V 
VIS2) the blow-up map and D’(3) = 03C3-1(0394’(3)), S’(3) = 03C3-1(03B4’(3)). We let
03C0: F3(V) ~ V be the composite of 0’ with the projection on the factor V.
On V  V we have the line bundle y2 associated with Li(2). Its

restriction to à(2) coincides with the canonical bundle over PTV, a
sub-bundle of the pull-back of TV on PTV.

3.2. PROPOSITION: We have vector bundle isomorphisms:
(i) N(0394’(3), F3(V))~g*(03B32)~03C0*TV~g*(03B32o03B32)
(ii) N(0394’(3), F3(V))|03B4’(3) = 03C0*TV/g*03B32 ~ g*(03B32o 03B32)|03B4’(3) and

N(0394’(3), F3(V))|0394’(3) - 03B4’(3) ~ 03C0*TV|0394’(3) - 8’(3)
(iii) N( 8’(3), Y(3» = g * Y218 (3)

This proposition follows immediately from the local description of 0’(3)
and 03B4’(3) given in the proof of 3.1. From assertion (ii) we deduce that
8’(3) is isomorphic to P( ’TT*TV Ig*Y2 E9 g*(y2 ° -Y2»18’(3).
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Let now f : Vn ~ wn+r be a map which is transversal for double

points, namely (cf. [11], cor. 2.3):
(i) f(k): V(k) ~ W(k) is transversal to 03B4(k)W outside 0394(k)V, k  3.
(ii) d f : TV - f*TW is generic.

The action of S2 on V  V leaves 2(f) = closure of {(x1, x2)|1 ~
x2, f(x1) = f(x2)} invariant. It was proved in [11], theorem 2.5, that

2(f) is smooth and transversal to (2); therefore the quotient 2(f) =
2(f)/S2 is a submanifold of vx VIS2 (with boundary 2(f) ~ (2)
= 1(f) in the real case).

Set 0394’(f,3)=0394’(3)~(V 2(f)) and 8’(f, 3) = 8’(3) n (V X Ñ2(f)).
Since the projection 0394’(3)~VV/S2 is a submersion, 0394’(f,3) and
8’( f , 3) are submanifolds of V X 2(f). Setting V  Ñ2(f) = B0394’(f,3)(V
N2 ( f )), we have natural identifications 2(f)=03C3-1(V 2(f)),
l1(f, 3) = (VXÑ2(f))nl1(3), 8’(f, 3) = (V  Ñ2(f))n8’(3), all the in-
tersections being transversal. The expressions of the various normal
bundles given in 3.2 remain valid if A’(3) and 8’(3) are replaced by
0394’(f, 3) and 8’( f , 3), provided that the various bundles are suitably
restricted. The map g: 0’(3) = V  V restricts to an isomorphism g:
0394’(f,3)2(f).

Let’s recall on a diagram the various spaces that we have defined:

We have denoted by 03B33 the line bundle associated to ’(f, 3).

§4. Desingularisation of M3( f ), Mo,i( f ) and M1,0(f)

Let f : Va W be proper.

4.1. DEFINITION: We say that f is excellent if:
(i) f(k): V(k) ~ W(k) is transversal to 03B4W(k) outside 0394V(k) for

k4.
(ii) d f : TV-f *(TW) is generic.
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(iii) f(2)|03A3l(f) V: 03A3l(f)  V - W  W is transversal to 03B4W(2) out-
side Llv(2) for all i1.

_

(iv) j2(f) is transversal to 03A31,1(f). More precisely, consider the case
of an f : U ~ F, E and F vector spaces and U open in E. Let 1(f) =
1(df) = {(x,d) ~ U  PE|dfx|d = 0 } and y the canonical bundle over
PE; the morphism 03A82: 1(f) ~ HOM(E/03B3 E9 y o y, F ) defined to be the
map induced by d f on E/y and by the restriction of d2f on y 0 y should
be generic (cf. [10], I§2).

It is readily verified that condition iv) above, though not *2, is
invariant by coordinate change. It says essentially that j2(f) must be
transversal to an appropriate stratification of 03A31,1.

It follows from the usual transversality theorems that the set of

excellent maps is dense in the set of all proper maps in the COO case, in

the complex analytic if V is Stein and W = Cn+r and in the case of a
projective variety and a linear projection f : V - Pcn-r (see [6] for the
latter).

Recall Mk(f), M0,1(f), M1,0(f) and M1,1(f) from §1 and define:
£130 ( f) = 1(xi, IX2, x3]) ~ F3(V)|f(x1)=f(x2) = f(x3), XII x2 and x3 all
different and not in 1(f and f-1(f(x1)) = XI x2, X3
3(f) = closure of 03(f) in F3(V),
M03(f) = 03C0(30(f)) = {x ~ V|f-1f(x)={x, x’, x"}, x, x’, x" all differ-
ent and not in 03A3(f)},
1,0(f) 3(f)~’(f,3)
M0,1(f) = (1,0(f)), where T is the extension to ’(f, 3) of the action
on 2(f) of the non-trivial element of S2,
1,1(f)=3(f)~’(f,3).
We will drop the mention ( f ) when not needed.

4.2. THEOREM: Let f : Vu W be excellent. We have:
(i) M3 is a submanifold of F3(V) transversal to l:::(f, 3) and 8’(f, 3).
(ii) 03 is open dense in M3 and wlM30 is an isomorphism on M3o.
(iii) wlM3 is proper 

_

(iv) 03C0(3)=(Uk3Mk)~M0,1~M1,0~M1,1~03A31,1 -

(v) wlMo,1 and wlMI,o are desingularisations of Mo,l and M1,0 respec-
tively and 03C0|1,1 coincides with the desingularisation of 1,1(f) found in
[10].

The decomposition of M3 given in iv) could be further elaborated by
stratifying the map 03C0|3.

Consider first a map f : U - F, where U is convex, open in E and E
and F are finite dimensional vector spaces. Define S3(f) : U  2(f)~F
by S3(f)x1[x2,x3]) = f( xi ) - !(f(x2) + f(x3)) if X2 =1= X3 and S3(f)(xl,x2,d) 
= f(x1) - f(x2).

4.3. PROPOSITION: If f : U ~ F is excellent, S3(f) is transversal to 0 E F on
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U x Ñ2(f) - /Y(f, 3) and its derivative induces a generic morphism d S3 :
/Y(f, 3) - HOM(N, F), where N = N(0394’(f , 3), U  2(f)). Moreover,

dS3|03B4’(f, 3) is also generic.

PROOF: That S3(f) is transversal to 0 ~ F on U 2(f)-0394’(f,3)
follows from Assumption 4.1 (i) on f at points (xi, [x2, x3]) with Xl’ X2,
X3 all different; it follows from 4.2 (iii) and Lemma 1.3 of [11] at points
(x1, x2, d ).

If xl = X2 =A x3, f(x2) = f(x3), we can lse the isomorphism 03B83: O3 ~ U
 (U  U/S2) of the proof of 3.1. Assume that (Xl’ [Xl’ x3]) =

03B83(x,d,v,vov). Sending w E E to (x,d,v+w,vov) injects E as a
normal space to 03B8-13(0394’(f, 3)) in 03B8-13(U 2(f)). Restricting S3(f) to
this normal space gives the map E~w ~ f ( x + w + v ) - f ( x - v ), whose
derivative is the derivative of f. It follows from condition 4.1 iii) that this
is a generic morphism. This shows that dS3(f)|0394(f, 3)-03B4’(f, 3) is a

generic morphism.
If d E PE and dfxld = 0, take E’ to be a supplementary subspace of d

in E and map E’ ~ d o d ~ E ~ d o d by the natural inclusion. This

injects E’ E9 d 0 d as a normal space to 03B8-13(0394’(f, 3)) in 03B8-13(U  2(f)),
the restriction of S3(f)· 03B83 to which sends (w, v o v) to f ( x + w ) + 1 2 ( f ( x
+ v ) + f ( x - v )). The derivative of this last map at 0 ~ E’ ~ d o d is seen
to be equal to (d/jE’, - 1 2 d2 fx|d o d ) : E’ ~ d o d ~ F, which by condi-
tion 4.1 iv) is a generic morphism. This shows that dS3(f)|03B4’(f, 3) is a
generic morphism.

The following corollary should have some interest by itself.

4.4. COROLLARY: Let f : V - W be proper and assume it satisfies condition
4.1 ( iv ). Then f is excellent in a neighborhood of 03A31,1(f).

PROOF: We can work locally, with a map f : U ~ F as in the proof of 4.3.
As shown there, the fact that dS3|03B4’(f, 3) is generic follows from 4.3 (iv).
Therefore the section 3(f): U  2(f) ~ HOM(03B33, F) constructed in
the proof of 2.1 is transversal to the zero section on 1 ’( f, 3) and therefore
also on a neighborhood of ’(f, 3). The corollary follows easily.

PROOF OF 4.2: The fact that f is proper implies easily that the same holds
for 03C0|3. Let’s now work locally with f : U - F as in the proof of 4.3.
Define:



220

and

It follows from condition 4.1 i) that M4 and M3’ are of codimension at
least one in M3 . It follows from 4.3 that S3(f) satisfies the conditions of
2.1; therefore 3(f): U X 2(f) ~ HOM( y3, F ) is transversal to the zero
section, as well as 3(f)|’(f, 3). Moreover, 3(f)|’(f, 3) is also trans-
versal to the zero section. Now 3(f)-1(0) = M3 U 1,0 U Mo,l U 1,1 and
therefore 03 = M3 - (M’4 U M3’ ) is dense in 3(f)-1(0). Recalling that
M3 has been defined as the closure of M3o, it follows that M3 = 3(f)-1 (0).
All remaining assertions are easily checked.

§5. The cohomology classes dual to M3( f ), M0,1(f) and M1,0( f )

Here we show how to find the expressions for m3, mo,l and ml,o. We
shall work in the complex case (but see Remark 5.3).

Let m2 = D( M2 ( f ), V) and n2 = D( f ( M2 ( f )), W). We will write ci
for ci(Nf). According to [11], th. 2.6 or [4], m2 =f*f!(1)- cr .

5.1. PROPOSITION: Let f : Vn ~ Wn+r be an excellent map between com-
plex manifolds. We have:

We complete the picture by recalling that (see [11] or [8] or [9]):

To make it possible to have a global version of the section S3(f) we
will need a Coo spray eW: TW ~ W. Recall that by definition (see [5],
chap. 4, §3.4) for every y E W there is an open neighborhood Uy of zero
in TWy such that ey = eW|Uy is a Coo diffeomorphism onto an open
neighborhood of y in W ; in addition, we assume that Uy is convex and
that U yUy is open in TW. We let Q c V  2(f) be a closed neighbor-
hood of u(M3) U 0394’(f, 3) such that if (XII [x2, X3]) or (XII X2, d) are in
0, then f(x2) and f(x3) are in ef(x1)(Uf(x1)). We choose 03A9 to be a C’
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manifold with boundary a S2 and let Õ = 03C3-1(03A9). Let T W’ be the pull-back
of T W on Q and define the section S3(f): Q - T W’ by:

and

This S3(f) coincides locally with the one defined for prop. 4.3.
Let P1: 03A9 ~ V and P2: 03A9 ~ 2(f) be the restrictions to g of the

projections of V X Ñ2(f) on the first and second factor respectively. Let
f : 2(f) ~ W be the map induced by f (see [7], prop. 2.5 ; f is a

desingularisation of f ( M2 )) and f ’: V - W be a Coo map approximating
f which is transversal to f. Let M3 be the pull-back of f by f ’; we have a
diagram:

where M3 plays the role of Z’ in prop. 2.1. We choose f ’ near enough to f
. so that there is a homotopy f,, 0  t  1, fo = f, f1 = f ’ such that:

(ft f)(~03A9)~0394w(2)= ~ 0t1.
We recall on a diagram various maps and spaces that will be needed

for the proof of 5.1:
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where i is the natural inclusion, p = a . i and p, and P2 are deduced from
the projection of V x V on the first and second factor respectively. We
will write qr for 03C0|03A9 and set t2 = e(03B32), t3 = e(03B33). The diagram becomes
commutative if f ’ is replaced by f.

5.2. LEMMA: We have:

PROOF: Let c( ) = 1 + cl + .. denote the total Chern class. We have:

Therefore:

for j = 1, 2. The desired formula follows now from ([7], Prop. 4.6; due to
a misprint, in (ii) c, has been replaced by c1).

PROOF OF 5.1: It follows from 4.2 that 03C0!(D(3, H)) = m 3,
7T!(D(M1,0, fi)) = ml,O and 03C0!(D(0,1, Û» = mO,I’ where the dual classes
are taken in H*(, ~). In what follows we will write T W for various
pull-backs of TW.

(i) m 3 : since by Prop. 4.3 S3(f) : 03A9 ~ TW satisfies the hypothesis of
Prop. 2.1 we have:

D(3,)=03C3*(D(M’3,03A9))

(ia) 03C0!(03C3*(D(M’3, 2» = (P1)!03C3!(03C3*(D(M’3, 0») = (P1)1(D(M’3, g)).
Since in the Pullback diagram (*) f ’ and f are transversal, we have
(P2|M’3)*·(P1|M’3)! = f’* · f! and therefore (P1)!(D(M’3,03A9))=
(P1|M’3)!(1)=f’*(f!((1))=f*(n2).
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(ib) 03C0!·i!(03A3h(-1)h·ãh3·cn+r-1(TW)))=(p1)!·g!·p! (the same). Let
N = (g-1)*(N(0394’(f, 3), Q)); according to 3.2 (i) we have an isomorphism
of virtual bundles: N ~ p*1(TV) + ’12 0 Y2 - 72- Using that p!((-1)h· th2)
= Ch - n + 1 ( - N ) (see e.g. [10], 11-4 i), the previous expression equals:

Applying Lemma 5.2 ( i ) and ( ia ) we obtain the desired formula.
(ii) ml,O: since 1,0 = (3(f)|’(f, 3))-1(0) we have: D(M1,0, l:1(f, 3))

= i * ( e (03B3*3 ~ TW). Proceeding as in (ib) above, this equals
(p1)!(cr+1(p*1(Nf)+03B32-03B32°03B32)). Applying 5.2 (i) gives the desired
formula.

(iii) mO,I: since Mo,l = T( M1,0), it follows from (ii) above that mO,1 =

(p1)!(cr+1(p*2(Nf) + Y2 - Y2 ° Y2 )). We now apply 5.2 (ii).

5.3. REMARK: The calculations for ml,o and mo,l remain valid in the real
case. They yield: m1,0 = f*f!(1) · cr+1 and mO,1 = f*f!(cr+1) = 0. We al-
ready saw why m0,1 is zero. In fact, we even have f!(cr+1) = 0. Indeed,
cr+1 = D(03A31(f), V) and hence f1(cr+1) = D(f(03A31), W ); but f (2’) is the
boundary of f ( M2 ), considered as a chain (see also [2], Th. 5.1).
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