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Introduction

Let Km for m not congruent to 2 modulo 4 denote the m’th cyclotomic
field, i.e. Km = Q( e(2?T/)/ m). Let K+m denote the maximal real subfield of
K,,,, and h ; and h m the respective class numbers. Finally, let ?be a prime
number. We will be concerned with the question of when ~|h+m. This is of
interest since hm is not easily calculated. It is especially interesting to
determine when 2|h+m as this is related to certain questions concerning the
actions of groups on spheres. For more information on this see Section 2c
of S. Lang’s article [9].

In this paper we prove, among other things, the following two theo-
rems.

THEOREM A: If m is divisible by five or more primes then 2 1 h

THEOREM B: If t is an odd prime and if m is divisible by four or more
primes congruent to 1 modulo ~ then ~2|h+m.

We, in fact, prove much more detailed and precise results, but these
are more cumbersome to state. In particular, we are able to partially deal
with the cases where fewer primes of the requisite type divide m.

Unfortunately our methods yield nothing when m is prime.
When m is divisible by many primes, stronger results than those given

here have been obtained by D. Kubert [8] for the case ~= 2, and by G.
Cornell [1] in general. Kubert uses the theory of cyclotomic units and the
Stickelberger ideal, Cornell the theory of relative genus fields. The
methods used here are based on a cohomological approach which goes
back to early work of A. Frôhlich [2,3] and a paper of Y. Furuta [4]. A
more recent paper by M. Razar [11] contains related material. These
methods, in addition to being relatively elementary, have the advantage

* Partially supported by a grant from the Vaughn Foundation.
** Partially supported by a grant from the National Science Foundation.
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of yielding stronger results that those of Kubert and Cornell when m is
divisible by "few" primes.
We wish to thank the referee for pointing out an error in earlier

versions of this paper and for suggesting a number of improvements. In
particular Lemma 1 of Section 2 and Proposition 7 of the appendix are
due to the referee.

Section 1 : Preliminaries

Let L/K be a finite extension of algebraic number fields and JL the idele
group of L. We define two groups A(LIK) = K* nNL/KJLINL/KL*
and B(L/K)=EK~NL/KJK/EK~NL/KL*. Here EK denotes, as usual,
the unit group of K. Both these groups occur in the study of obstructions
to the Hasse norm theorem. For example, see Garbanati [5], Gerth [6],
and Razar [11]. When L/K is Galois, Furuta shows A(L/K)/B(L/K) is
isomorphic to the Galois group of the central class field over the genus
field (with respect to the extension L/K ). The following proposition
shows directly how this quotient group is related to the structure of the
class group CL of L.

PROPOSITION 1: CL has a subquotient isomorphic to A(L/K)/B(L/K).

PROOF: Let UL E JL and UK c Jx be the respective groups of unit ideles.
Consider the diagram

where the vertical arrows are given by norm maps. The snake lemma
yields an exact sequence

where N = NL/K and N CL is the subgroup of the class group annihilated
by the norm. If follows that N CL maps onto UKK* ~ NJL/N(ULL*).
Since NUL c UK, it follows that CL has a subquotient isomorphic to
K*NUL ~ NJL/N(L*UL). It is now an easy exercise to show this latter

group is isomorphic to A(L/K)/B(L/K). For details see page 151 of
[4].
When L/K is not Galois the group A(L/K) seems difficult to

understand. However, when L/K is Galois, we have the following
important result due to John Tate. A proof can be found on page 198 of
Cassels-Frôhlich, Algebraic Number Theory (Thompson Book Company,
Washington, D.C., 1967).
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THEOREM : If LIK is Galois with group G, then A(L/K) is isomorphic to
H-3(G, 7L) modulo the subgroup generated by the images of all the

H - 3 ( G v, 7L) under corestriction. Here v runs through all the primes finite
and infinite of K, and G " is the decomposition group of some fixed prime of
L above v.

We can now state and prove one of our principal results.

PROPOSITION 2: Let LIQ be an abelian ?-extension of the rationals with
Galois group G. Assume the inertia group of 2 is cyclic. If G is the direct
sum of t cyclic groups and s finite primes of Q ramify in L then the trank of
CL, reCL, satisfies

where e = 1 if -1 is a local norm everywhere but not a global norm, and is
zero otherwise. Note e = 0 if tis odd.

PROOF: By Proposition 1 it suffices to consider A(L/K)/B(L/K). It is
easy to see that e is thé ~-rank of B(L/K). Thus we concentrate on
A ( L/K ).

Write G ~ CI E9 C2 E9 ... ~ Ct, where the C, are cyclic. By a well known
" universal coefficient" theorem (see, for example, Yamazaki [12]) we
have, with QI7L acted on trivially,

For each i, H2(Cl, Q/Z) is zero, and for each i j, Hom( CI ~ CJ, Q/Z)
is cyclic. Thus, r~H2(G,Q/Z) = t ( t - 1)/2.

By duality, H-3(G,Z)~H3(G, 7L ). This together with the exact se-
quence (0) - Z~Q~Q/Z~Z (0) shows H - 3 ( G, Z) = H2(G,Q/Z).

Finally, we need to consider H-3(Gv, Z) ~ H2(Gv, Q/Z). If v is

unramified or infinite G’ is cyclic and so H2(Gv, Q/Z) is trivial. If v is
ramified and finite the inertia group T’ is cyclic. For v above 2 this
follows by hypothesis whereas for v dividing an odd prime it follows
from the fact that L is an abelian extension of Q. Since GU/Tv is also
cyclic the e-rank of GU is at most 2 and so rtH2(Gu, Q/Z) is at most 1.
From Tate’s theorem we conclude that r~A(L/K)  [t(t- 1)/2] - s. This
completes the proof.
We remark that variants of Proposition 2 are easy to obtain by this

method. For example, if each Cl were cyclic of order ta we could obtain a
result about the "t"-rank". If in special circumstances we could insure
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the G v are cyclic, the correction factors due to ramification would vanish.
At the expense of having larger correction factors we could prove a
similar result over other base fields. We explore some of those variants in
Section 3.

The referee pointed out that when f is odd the lower bound in

Proposition 2 can be improved to t(t - 3)/2. We will not need this for
our applications but since it is a significant improvement of our result we
will present the argument in the appendix.

Section 2: The main theorems

We begin by assuming ~ is an odd prime.

THEOREM 1: Suppose that either l’ 2 + m and m is divisible by t primes
congruent to 1 modulo t, or t21m and m is divisible by t - 1 primes
congruent to 1 modulo t. Let Cm denote the class group of K’. Then
r~C+m  t( t - 3)/2. In particular, if t  4, r~C+m  2, and ~2|h+m.

PROOF: Let L be the maximal e-extension of Q in K+m. It is easy to see
that the trank of G(L/Q) is t. Moreover, exactly t primes in 0 ramify in
L. By Proposition 2 we conclude r~CL  [ t( t - 1)/2] - t = t( t - 3)/2.
Finally, since K+m/L has degree prime of ~, the natural map from the
~-primary subgroup of CL to Cm is an injection, and we’re done.

Theorem B of the introduction is, of course, a weak version of

Theorem 1. We now take up the case ~= 2. The ideas are the same as

when fis odd, but as usual the details are a bit more complicated.
Let L be the maximal 2-extension of 0 in Km and L + = L ~ K+m, the

maximal 2-extension of Q in Km . Define e+ to be 1 if -1~Q is a local
norm everywhere from L+ but not a global norm, and to be 0 otherwise
(see Proposition 2).

LEMMA 1: e+ = 0.

PROOF; If m is a prime power G(L + /0) is cyclic and the result follows
from Hasse’s norm theorem.

Suppose m is not a prime power and let p be an odd prime dividing m.
We claim -1 is not a local norm at p from L+ . Suppose the contrary.
Then - 1 is a local norm at p from Km since [ K’ : L+] is odd. Since

[ Km : Km ] is unramified at all finite primes (in particular at p ) it follows
that -1 is a local norm at p from Km and thus also from Kp C Km.
Suppose u ~ Qp(03B6p) with Nu = -1 (here N is the norm from Qp(03B6p)
to 0 p)’ u is a local unit so there is a rational integer m such that
u = m (1 - 03B6p). Hence Nu = mp-1 ~ 1(1 - 03B6p). It follows that -1 ~ 1(1 -
03B6p) a contradiction.
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We remark that when m is not a prime power and 21m then -1 is also
not a local norm at 2. The argument is the same except one uses the fact

that 03B64 ~ Km to derive a contradiction.

LEMMA 2 : If 4/~(m) every prime ramified in Km is ramified in L + .

PROOF: When m = pa is a prime power the result is immediate since p is
totally ramified in Km’

Assume m is not a prime power. Then Knz/Km is unramified at all
finite primes. Also [K+m : L+] is odd. Since every prime ramified in Km
has even ramification index, it follows that every prime ramified in Km is
ramified in L+.

THEOREM 2: Let t denote the number of odd primes dividing m.
(i) Suppose m is odd and divisible only by primes congruent to 1 modulo

4. Then r2C+m  t(t - 3) / 2.
(ii) Suppose m is odd and divisible by at least one prime congruent to 3

modulo 4. Then r2C+m  (t2 - 5t + 2) / 2.
(iii) Suppose m = 4m0 with m0 odd. Then r2C+m  [t( - 3) / 2] - 1.
(iv) Suppose m = 2am0 with m o odd and a  3. Then r2C+m  [t(t - 1 ) /

2]-3.

PROOF: Recall that L+ is the maximal 2-extension of 0 in K+m. It suffices
to find lower bounds for the 2-rank of the class group of L+. For this we
use Proposition 2 of Section 1 and Lemmas 1 and 2 above.

In case i) we have r2G(L+/Q) = t and t primes ramify. Thus r2CL+ 
[t(t-1)/2]-t=t(t-3)/2.

In case (ii) letplm with p = 3(4). Then L is the composition of L + with
Q(-p). It follows that r2G(L+/Q) = t - 1. Also t primes ramify. Thus

In case (iii) L is the compositum of L+ with Q(-1). It follows that
r2G(L+/q)=t. In this case t + 1 primes ramify. Thus r2CL+[t(t-
1)/2]-(t+1)_[(t(t-3)/2]-l.

Case (iv) is slightly more complicated. Clearly r2G(L/Q)=t+2.
Since L is the compositum of L+ with Q(-1) we have r2G(L+/Q)
= t + 1. Moreover t + 1 primes ramify in L+. However, Proposition 2 is
not directly applicable since the ramification group of 2 in L+ may have
rank 2. This will happen if m0 is divisible by a prime p = 3(4) since then
L=L+(-1)=L+(-p) which implies L/L+ is unramified at all

finite primes. Let G’ be the decomposition group of 2 in L +. Then,
r2Gv  3 and it follows that H2(Gv, Q/Z) has 2-rank less than or equal
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to 3. The method of proof of Proposition 2 shows r2CL+  [(t + 1)t/2]-t
-3=[t(t-1)/2]-3.

COROLLARY: If m is odd and divisible exactly by four primes all congruent
to 1 modulo 4 then r2C+m  2.

PROOF: This follows from case (i) of the theorem.
It is interesting to compare the results of Theorem 2 with those of

Cornell given in [1]. Let’s assume m is odd. Then we have shown

r2C+m  (t2 - 5t + 2)/2 which is positive for t  5. In [1] Cornell shows
r2C+m  2t-5 - 2 which is positive for t  7. Moreover, the lower bound
given here is better for t  9. For larger t our bound becomes rapidly
inferior. The results of Kubert [8] concern the 2-divisibility of h+m and are
valid for t  7. In this range he shows 2a|h+m where a = 2t - 2 - [ t ( t -
1)/2]-2.

Section 3: The case of two or three primes

As mentioned previously, we can prove some results by the methods of
Proposition 2 even when m is only divisible by two or three primes.
Instead of working with the maximal tex tension of 0 in Km it is

sometimes more convenient to work with smaller fields. The following
lemma is very useful.

LEMMA: Let F 10 be an abelian number field with group G. Suppose
G = Tl T2 ... 1; is the direct product of all the finite inertia groups 1;. Then F
has no proper unramified extension fields which are abelian over Qu .

PROOF : Suppose E/F is unramified and E 10 is abelian. Let T’1, T’2 , ... , T’
be the finite inertia groups for EIO. Since 0 has no extensions ramified
only at infinity, G(E/Q) = T’1T’2 ... T’t. Since E/F is unramified 11;’1 = |Tl|
for each i . It follows that |G(E/Q|  |G(F/Q)| and so E = F.

COROLLARY: Suppose Q c F ~ K+m and that F satisfies the hypothesis of
the lemma. Then, the norm maps C+m onto CF.

PROOF: Let H be the Hilbert class field of F. Then H ~ Km is an abelian
extension of Q unramified over F. Thus H ~ K+m = F and so

G(K+m H/k+m) ~ G(H/F). The result follows.

Suppose fis an odd prime and p1, P2 and P3 are primes congruent to 1
modulo f. Let F1 be the unique subfield of Kpl which is of degree ~ over
Q, and F= F1F2F3. Then, Fc K+p1p2p3, G(F/Q) ~ (Z/~Z)3 and G(F/Q)
= T1T2T3 where 1; is the inertia group of PI in F. Finally, let Gl denote the
decomposition group of PI in F.
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PROPOSITION 3: Assume PI = 1(~) for i = 1, 2, 3. In the following two
situations we have ~|h+p1p2p3.

(a) The congruences x~ ~ p1(p3) and x~ ~ p2(p3) are solvable.
(b) The congruences x~~p3(p1) and x~~p3(p2) are solvable.

PROOF : In case (a) the hypotheses imply that Pl and P2 split in F3’ Thus
G1, G2 ç G(FIF3). It follows that the image of both H-3(GI, 7L) and
H-3(G2, 7L) in H-3(G(F/Q), 7L) lie in the image of H-3(G(F/F3), 7L).
This latter group is isomorphic to Z/~Z. Thus, the ~-rank of 03A33i=1
cor H-3(Gl, 7L) is at most 2, whereas, the trank of H-3(G(F/Q), 7L) is
3. The result now follows from the corollary to the Lemma.

In case (b) the hypothesis imply that P3 splits in FI and F2. Since P3
ramifies totally in F3 we see 63 = T3 which is cyclic. Thus H-3(G3, 7L) is
trivial and the result follows as in case a).

PROPOSITION 4: Let fbe an odd prime and p1, p2 = 1(~) primes. Suppose
x~~p1(p2) and x~ ~ p2(p1) are both solvable. Then ~|h+p1p2.

PROOF: Let FI and F2 be the fields described above and F = F1F2 . Then
F c K+p1p2 and using the corollary to the Lemma it suffices to show ~~CF|.

The hypothesis implies p1 splits in F2 and P2 splits in F1. It follows that
G; = 1; for i = 1, 2 and so H-3(Gl, 7L) = (0) for i =1, 2. Since G(F/Q) ~
(Z/~Z)2, we have H-3(G(F/Q), Z) ~ Z/~Z and the result follows.

It should be remarked that there are infinitely many pairs of primes p1
and P2 satisfying the hypotheses of Proposition 4. To see this choose
Pl ~ 1(~) and let P2 be a prime which splits completely in the field

Q(03B6~,03B6p1, p1). ThenP2 = 1(~),p2 ~ 1(p1) and x~~p1(p2) is solvable in
7L. So is x~~p2(p1) since P2 = 1(p1). Thus pi 1 and P2 are a pair of the
required type.
We conclude with two results about the situation when ~= 2.

PROPOSITION 5: Suppose pl, p2 and p3 are primes congruent to 1 modulo 4.
Suppose X2 ~ p1(p3) and X2 ~ p2(p3) are both solvable. Then 2|h+p1p2p3.

PROOF : Let F = Q(pl) for i = l, 2, 3 and F = F1F2F3. Then F c K;lP2P3 3
and G(F/Q) ~ (Z/2Z)3. The hypothesis implies that Pl and P2 split in F3
and so G1, G2 ~ G (F/F3). By quadratic reciprocity, x2 ~ p3(p1) and
x 2 ~ p3(p2) are both solvable so that P3 splits in both FI and F2 . Thus
G3 = T3 and is cyclic. From thèse remarks and the proof of Proposition 3,
we see 03A33i=1 cor H-3(GI, 7L) c H-3(G(G/Q), 7L) is of 2-rank at most 1,
whereas, r2H-3(G(F/Q), Z) = 3. Thus r2A(F/Q)  2 whereas

r2B(F/Q)  1. It follows from Proposition 1 that 21hF, and by the
corollary to the Lemma, 2|h+p1p2p3.
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PROPOSITION 6: Suppose p1 and p2 are primes congruent to 1 modulo 8,
and that X4 ~ p1(p2) and X4 ~ p2(p1) are both solvable. Then 2|h+p1p2.

PROOF: Let F denote the real cyclic extension of Q contained in Kpr such
that [Fl : Q] = 4 for i = 1, 2. Let F = FI F2. Then F ~ K;lP2 and G(F/Q)
~ (Z/4Z)2. The hypothesis implies p1 splits in F2 and P2 splits in F1.
Thus Gi = 1; for i = 1, 2 and are thus cyclic. Consequently,
H-3(G(F/Q), Z) ~ Z/4Z whereas H-3(Gi, 7L) = (0) for i = 1, 2. From

this we deduce IA(LIK)I = 4 whereas |B(L/K)|  2. By Proposition 1,
21hF, and invoking the corollary to the Lemma once again, 2|h+p1p2.

We note the same ideas can be used to show the following. Let
Pl ~ 1(4), P2 = 3(4), and suppose X2 ~ p1(p2) and x2 = p2(p1) are both
solvable. Then 2|hp1p2. This is made possible by the fact that -1 is not a
local norm at infinity from the field Q(p1, -p2). For example, 2
divides h39 and h95. On the other hand h+39 = h+95 = 1.

Appendix

We would like to thank the referee for the following proposition and its
proof.

PROPOSITION 7 : Let ~ be an odd prime and L/Q an abelian textension
with r~G(L/Q) = t. Then r~CL  ( t( t - 3))/2.

Before giving the proof we state and prove a group-theoretical lemma
which will be needed.

LEMMA: Let l’ be an odd prime, r a finite ~-group with commutator

subgroup contained in its center. Then at = e = bt implies (ab)1 = e.

PROOF : Set c = a-1b-1ab. Then, by induction on i we find aib = balcl.

Setting i = ~ we find c~ = e. Using induction one again we find albl =
(ab)lci(i-1)/2. Setting i = fin this relation yields the result.

PROOF oF PROPOSITION 7: Assume to begin with that G(L/Q) is an

elementary abelian ~-group. Let Lg and Le denote the genus and central
class field of L/Q. By a result of Furuta [4] we know G(Lc/Lg) ~
A(L/Q)/B(L/Q). By Proposition 2 it follows that r~G(Lc/Lg)  [t(t-
1)/2] - s. Using the genus formula of Leopoldt [10] we find rtG(LgIL)
= s - t ). If we can show G(Lc/L) is an elementary abelian tgroup then
r~G(Lc/L)[t(t-1)/2]-s+s-t=t(t-3)/2 which gives the result
in this case. Let 0393=G(Lc/Q). The commutator subgroup of r is

contained in its center. Moreover r is generated by its inertia subgroups
and these are cyclic of order f. It follows from the Lemma that every
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element of r has order f and so G( Lei L) cris an elementary abelian
~-group as required.

Suppose now that G(L/Q) is an abelian tgroup and let L’ be the
maximal elementary abelian ~-extension of Q contained in L. Let H’ be
the Hilbert class field of L’. Applying the above argument to L’ one sees
that it suffices to check what L n H’ = L’. Now, L n H’ is an abelian
extension of Q which is unramified over L’. Thus, it is contained in the
genus field of L’ and it follows that G(L~H’/Q) is an elementary
abelian e-group. By the maximality of L’ we have L ~ H’ = L’ and the
proof is complete.
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