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Introduction

We consider the question of removable isolated singularities of Yang-Mills
fields in 3-dimensions. In R4, Uhlenbeck’s Theorem [7] states that

apparent point singularities in finite action solutions may be removed by
a gauge transformation. On the other hand, finite action does not seem to
be the right condition in other dimensions. If n  5, the theorem is false
[7], as shown by examples which are in Lp for 2  p  1 2 n, but not for
p  1 2 n. In 3 dimensions, Jaffe and Taubes [4] have shown the only finite
action solution in all of space is identically zero. It was conjectured by
Uhlenbeck that in dimension n, the relevant norm is the Ln/2 norm,
which is also the conformally invariant one.

In this paper, we shall prove that apparent point singularities in

solutions for which the Ln/2 norm is finite ( n = 3, 5, 6 or 7) may be
removed by a gauge transformation.

The physically interesting dimension is, of course, n = 3. The theorem
is also hardest to prove in this dimension and requires the use of

weighted L2 norms in which the curvature is estimated. A certain auxilary
eigenvalue problem is crucial in obtaining these estimates. For complete-
ness, we also prove the theorem in dimensions 5, 6 and 7. The proof
mysteriously breaks down if n  8 and the reason for this is indicated.

Since the basic geometric framework is well-documented in the litera-
ture (see, for example, [1], [3], [4], [6] and [7]) we describe it only briefly.

Let M be a Riemannian manifold of dimension n. Let q be a vector
bundle over M with structure group G, called the gauge group, and Ad q
the adjoint bundle with fiber (Ad 11)x ~ , the Lie algebra of G. We
denote exterior differentiation by d and its adjoint by 8. The Lie bracket
in (S is denoted by [ , ].
A covariant derivative D inq is given by D = d + r where r, called the

connection, is a Lie algebra valued one-form. D maps p-forms T into
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72, University of Bonn.
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p + 1-forms as follows:

The curvature g of the connection is a Lie algebra valued two-form
which satisfies

for all p-forms with values in 0. The Bianchi identities, D03A9 = 0, are
automatically satisfied by 03A9.

The Yang-Mills equations, which are the Euler-Lagrange equations of
the action functional, are:

where D* is the adjoint of D.
Therefore, given a bundle q over M with covariant derivative D

defined by a connection r, a Yang-Mills field 0 is a Lie algebra valued
two-form satisfying

Gauge transformations g are sections of Aut q which act on connec-
tions and curvature forms according to the transformations:
(a) 0393g = g-10393g + g-1dg
(b) 29 = g-10g. 

_ _

The pair (Ir, 0) is gauge equivalent to (0393, 03A9) if there is a gauge
transformation g such that r = 0393g and 0 = 09. Gauge equivalent pairs
belong to the same orbit under the gauge group and are physically
equivalent if g is smooth.
We consider first the problem of proving, that under some suitable

additional hypothesis, a weak Yang-Mills field is smooth. Smoothness

properties of the pair (r, 03A9) vary in different gauges and there are subtle
difficulties involved in finding a gauge in which the pair is smooth.
A two-form 03A9 ~ Lp(M) is called a weak-solution of the Yang-Mills

equations (ie, a weak Yang-Mills field) if 9 satisfies (0.1) and

for every smooth compactly supported one-form (p with values in .
If 03A9 is a weak solution belonging to Lp(M) with p  1 2 n, then ( r, 0)
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is gauge equivalent to ( r, 03A9) with 8 r = 0 and 0393 ~ Hp1(M). The gauge
transformation g relating the pairs belongs to Hp2(M). (See [8] for the
proof of these results.) Differentiating the equations satisfied by ( r, 03A9)
one finds that r is a weak solution of the second order elliptic system

If p &#x3E; 1 2n, standard results of Morrey ([5], Chapter 6) imply r (and
therefore, g) smooth. Moreover, since g E H2P with 2 p &#x3E; n, by Sobolev’s
lemma, g is continuous. Therefore, the bundle ~ on which the gauge
group acts is unaltered topologically by this "change of gauge".
If p = 1 2n, gauge transformations may be discontinuous. Although

( r, g) can be shown to be smooth (see [8]), the gauge transformation g
may have changed the bundle q in the process. Therefore, the hypothesis
that 03A9 ~ Ln/2(M) is not enough to insure that r defines a smooth
covariant derivative in the bundle with which we started.
We now restrict our attention to the unit ball B in R n, punctured at

the origin, and suppose q is a bundle over B - {0} with gauge group G
and covariant derivative D = d + r. We assume that the curvature S2 is

smooth except at the origin where it has a possible singularity. Our main
result is the following

THEOREM: Let 03A9 be a smooth curvature form of a Yang-Mills connection in
q over B - {0} for which B|03A9|n/2dx  00, with 3  n  7. Then the pair
(r, 03A9)_is_gauge equivalent by a continuous gauge transformation to a Coo
pair ( r, D) on B. The bundle ~ extends continuously to a bundle over B, in
which D is given by d + r, and g is the curvature form of the connection.

(Since this result holds for any ball punctured at a point, this theorem
and the result of Jaffe and Taubes mentioned in the first paragraph,
imply that a finite action solution in a bundle over R3-{finite number
of points} must necessarily be identically zero.)

Briefly, the proof is concerned with getting a good growth estimate on
the curvature near the origin. An elementary computation shows that if
Q G Ln/2 with n  3, then 03A9 is a weak solution in all of B, even in a

neighborhood of the puncture. As seen above, this is not enough to prove
the theorem. We will, in fact, show that for some 03B4 &#x3E; 0, |x|2-03B4|03A9(x)| is
bounded. This then implies that 03A9 ~ Lp for p &#x3E; n/2. As previously
discussed, the results of [8] and standard elliptic theory then apply.

In Section 1 we use scalar elliptic theory to obtain, in any dimension, a
preliminary growth estimate on the curvature. The second section is
devoted to improving this estimate. Here, a very delicate elliptic inequal-
ity of Uhlenbeck’s is recalled. This inequality appears to be limited to
dimensions greater than or equal to four. However, a modified version of
it which is sufficient for our purposes, can be proved in three dimensions,
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and this is done. In Section 3 all results are combined to prove the

theorem.
1 am indebted to Karen Uhlenbeck for suggesting this problem to me

and for many discussions. Conversations with Josef Dodziuk, Jerry
Kazdan, Ed Miller and Cliff Taubes were also invaluable to me.

1. A Sub-elliptic estimate f or the curvature

We consider weak solutions of the Yang-Mills equations in B - {0} for
which IIQIILn/2(B)  00.

LEMMA 1.1: Given any y &#x3E; 0, there exists a metric go, conformally equiva-
lent to the Euclidean metric, in which (B|03A9|n/2dx)2/n .Y.

PROOF: As in ([7], Lemma 4.4) this follows from the invariance of the
Ln/2 norm under scale transformations and from the continuity of the L p
norms.

In the remainder of this paper, we fix go so that y is sufficiently small
for our purposes. Since the size of y depends only on a finite number of
universal constants, this can always be done. We will point out as we go
along, the bounds needed for y in the proof.
We frequently prove estimates in "reference rings" which are regions

in R n bounded by concentric spheres about the origin and we denote
these by lg = x -1 p x 203C1}. The Sobolev constant in dimension n is
always denoted by Cn. Our first restriction on y is 03B3  03B31 = (2n -
4)/(n2Cn).

The main result of this section is:

THEOREM 1.1: If Y  03B31, the function |x|203C9(x) is bounded in B, and there
is a constant C such that for Ixl = r,

In order to prove Theorem 1.1, we next study Yang-Mills fields in a
bundle 11 over the unit reference ring V1 = {y|1 2 |y| 2}, and prove

PROPOSITION 1.1: If Q is smooth, and if ~03A9~Ln/2(V1)  03B31, then there is a
constant C such that

for y belonging to the unit sphere in VI, 1 y - 1.
The remainder of this section is devoted to the proof of Proposition

1.1. Before doing this we show
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PROPOSITION 1.1 IMPLIES THEOREM 1.1: The transformation y = xlr
maps V, onto V, carrying the sphere of radius r onto the unit sphere.
Smooth solutions of the Yang-Mills equations remain smooth solutions.
By the norm invariance, ~03A9~Ln/2(V1) = ~03A9~Ln/2(Vr)  y  -Y,. Therefore, 03A9(y)
satisfies the hypotheses of Proposition 1.1, and hence, the inequality
(1.2). Pulling back to Vr, 10(y)l = r2|03A9(x)| and we obtain the inequality
(1.1). This proves the theorem, assuming the proposition is true.

The proof of the proposition proceeds through several lemmas to

which we now turn our attention. In the following, B(03BE0, R) = (yly - eol 
 R} denote balls which are always assumed to be strictly contained in
V1.

LEMMA 1.2: The scalar function u = 101 satisfies the inequality

If y  y,, there is a constant K such that for every ball contained in VI,

PROOF oF LEMMA 1.2: The inequality (1.3) is discussed in detail in [1] and
briefly in [7]. Therefore, we use it without proof. Integrating by parts,

for every non-negative 03B6 ~ C~0(V1). For E &#x3E; 0, 203B2 - 1 &#x3E; 0, and 71 E Cô ,
the function 03B6 = ~2(u + ~)203B2-1 is a non-negative Cô function. Substitut-
ing in (1.3’),

Since 2/3 - 1 &#x3E; 0, the right hand side converges as E tends to zero and we
obtain
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Estimating h using Young’s inequality, we obtain

By Sobolev’s inequality,

Choosing 03B2 = n/4 and using the fact that y  -y,, we obtain with a new
constant K,

with |~~|  2/a completes the proof of Lemma 1.2.
REMARK: Lemma 1.2 and Sobolev’s inequality imply that on any com-
pact subdomain V1 contained in int V1,

where s = n/(n - 2) and k depends on the distance to the boundary. It
will suffice to use this inequality on a fixed subdomain V, in which case,
k can be chosen as a fixed constant.

From the remark and Hôlder’s inequality, we obtain a growth condi-
tion on small balls contained in VI,

To prove Proposition 1.1, we use a special case of the Morrey-Moser
iteration ([5], Theorem 5.3.1 ) which we state as

LEMMA 1.3 : Let D be an open domain in R n. Let U ~ H12(D) with U  0,
and suppose W = U À for some À, 1  03BB  2, satisfies
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for all non-negative t E COX( D), where A satisfies a growth condition of the
form (1.7) on small balls in D. ( In Morrey’s notation, the exponent of p in
(1.7) is Illn/2, with 03BC1 &#x3E; 0.) Then U is bounded on compact subdomains of
D, and for y E B( yo, p),

We want to apply this lemma to U = un/4. In all dimensions, u is a
solution of (1.8) with A = u, and therefore by (1.7), A satisfies the growth
condition we need. If n = 3, W = U4/3 = u satisfies (1.8) and we are
through. If n &#x3E; 3, an easy computation shows that U itself is a solution of
(1.8), again with A = u. Applying Lemma 1.3, we find

Now choose a finite number of balls centered on the unit sphere. We
obtain with a new constant C, for |y| = 1,

Since u = |03A9|, this proves Proposition 1.1, and therefore, the theorem.
The techniques in this section will now be used to obtain decay

estimâtes at infinity for Yang-Mills fields defined on exterior domains in
R". Whether these are best possible is not known. In R4, curvature
decays as |x|-4 [7].

THEOREM 1.2 : Let E = {x~x|  1} ~ Rn, and suppose ~03A9~Ln/2(E)  ~.
Then, for |x|  R,

PROOF: An inequality of the form (1.3) holds in small balls contained in
E. From Moser’s iteration,

for |y|  03B4 &#x3E; 1.
Let x = ( R/8 ) y. Using invariance, we obtain for |x| = R, R2|03A9(x)| 

K~03A9~Ln/2(E) which proves Theorem 1.2.

2. An elliptic estimate for the curvature

We again assume 03A9 is a Yang-Mills field in B - {0} with ~03A9~n/2  03B3  03B32,
where bounds on y2 are given later.
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THEOREM 2.1: (a) I f n = 3, B|x|03B1|03A9(x)|2dx  oc for any a &#x3E; 1. Moreover,
if a is sufficiently close to one,

where K is independent of a.
(b) If n  4, B|03A9(x)|2dx  oc and

where v is the first eigenvalue of the Laplacian on co-closed one-forms over
Sn-1

We first derive

COROLLARY 2.1: ( a ) I f n = 3,

where K is the constant of (2.1).
(b) If n  4,

PROOF oF COROLLARY 2.1: To prove (a), make a change of variables,
y = rx in (2.1). We obtain

Denoting the left hand side by f(r), this inequality becomes the differen-
tial inequality

Integrating from p = r to p = 1, gives (2.3). The proof of (2.4) is exactly
analogous, which proves the corollary.

To prove the theorem, we begin with some lemmas. Let U be the
reference domain, U = ( x]1  ]x]  T ) where 7 &#x3E; 1 is arbitrary. We con-
sider an eigenvalue problem for one-forms defined on U. Here, (vs refers
to the tangential component of the form w on the boundary.
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PROBLEM: Find w satisfying in U, the
(a) equations: 8m = 0 and 03B4d03C9 + 03BB03C9 = 0

(b) boundary conditions: 03B4s03C9s = 0 for |x| = 1 and 1 x = T
(c) homology condition on absolute cycles: |x|=03C1(*03C9)s = 0, 1  03C1  T.

LEMMA 2.1: Let n = 3. The eigenvalues of this problem are of the form
m ( m + 1) where m is a positive integer. The first eigenvalue is greater than
or equal to 2.

PROOF: Express the solution in spherical coordinates, w = 03C9rdr + 03C903B8d03B8 +
03C9~d~. Computing the coefficient of d r in the one-form 03B4d03C9 + Àm, and
using the fact that 8 w = 0, we find that

Expand the function w, in spherical harmonics,

where Ym are surface spherical harmonics of degree m, each of which is a
solution of (2.5) with À = m(m + 1). In order for wr to be a solution of
(2.5), we must have À = m ( m + 1) for some m, and wr = am(r)Ym(~, 0).
Since zero is not an eigenvalue (see [7], Corollary 2.9) the first eigenvalue
is at least two.
We next state results of Uhlenbeck [7] Theorems 2.5 and 2.8 which

demonstrate the existence of Hodge gauges in bundles 17 over the sphere
S"’ and the reference ring U = {x|1  |x|  r 1. In the following, P &#x3E; 0 is
the first eigenvalue of the Laplacian on co-closed one-forms over S"’, and
À is the first eigenvalue of the eigenvalue problem above. Upper bounds,
03B32(Sm) and 03B32(U), on the Ln/2 norm of S2 will be needed. Here, we
choose y2 = min(03B31, 03B32(Sm), 03B32(U)).

LEMMA 2.2 : ( Hodge gauges ) : Let 17 be a bundle over S"’ or U, with Q, the
curvature of a Yang-Mills field. There is a constant K depending on
dimension such that if ~03A9~Ln/2  y  ~2  K, then there exists a gauge for 17
in which 8 r = 0 and ~0393~~  k~03A9~~, where k is a constant. The gauge is
unique up to multiplication by a constant element of G. Moreover,
(i) If 17 is a bundle over S"’,
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(ii) If 11 is a bundle over U, then F satisfies the boundary conditions (b), the
homology conditions ( c), as well as

Now let Ul = {x+1/03C4l  |x|  1/03C403BB-1} and Sl = {x~x+ = 1/03C4’}. Thé nextlemma expresses the existence of " broken" Hodge gauges on B The nextlemma expresses the existence of "broken" Hodge gauges on B = U~l=1Ul.

LEMMA 2.3: There exist gauges for 1JIUl such that

PROOF oF LEMMA 2.3: All properties are proved in ([7] Theorem 4.6)
except (e2)’ The idea of the proof is to make the change of variables
y = T’x and pull back the field to U. Apply Lemma 2.2 on U, and then
verify that the conditions stated in Lemma 2.3 are satisfied in the original
ring U’. We now verify ( e2 ) which relates the weighted L2 norms of r’
and 0’:

This completes the proof of Lemma 2.3.
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We now turn our attention to the proof of Theorem 2.1. Note that the
preceding lemmas are valid for arbitrary T &#x3E; 1. In higher dimensions, it is
customary to choose T = 2 ([6], [7]). In three dimensions, we will need the
restriction that T  2. We also make an additional restriction on Y2:

namely, that the quantity

Since ç(0) = Vrl2, this can always be arranged.

PROOF oF THEOREM 2.1: The proof of (b) is in Uhlenbeck ([7], Prop. 4.7).
We restrict our attention to proving (a). First, we observe that the growth
condition established in Theorem 1.1 implies that the weighted L2-norm
of 03A9 is finite for any « &#x3E; 1. We now integrate by parts over each U’,

Since D*03A9 = 0, we find from ( e2 ),

From (d) and (e2)’
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Therefore, since 03BB  2,

From (2.6). if a is sufficiently close to one, the constant on the right
hand side is smaller than some a  1, and

Adding these inequalities on all the U’, we see that intermediate

boundary terms cancel, and the boundary terms on S tend to zero as i

tends to infinity. By gauge invariance, the pointwise norm |03A9(x)|2 =
Ig-1Qi(X)gI2 = IQ/(X)12. Therefore,

using (g). This proves theorem 2.1 with K = 1/((1 - 03C3)(v - 03B32)1/2) &#x3E; 0.

3. Proof of the removable singularities theorem

We now prove our main theorem stated in the introduction: an apparent
point singularity of a Yang-Mills field with finite Ln/2 - norm over
Rn(3  n  7) is removable.

It is well-known that, for forms, the first eigenvalue of the Laplacian
on Sn-1 is positive. (This has already been used in the proof of Theorem
2.1). In dimensions n &#x3E; 4, we need the additional result of Gallot-Meyer
[2]: the first eigenvalue of the Laplacian on co-closed p-forms over sm is
(p + 1)(m - p). Applied to one-forms on Sn-1, the first eigenvalue is

2(n - 2). For n = 5, 6, 7 we also require an additional restriction on the
bound y2 of the Ln/2 norm of 0; namely

(Note that this inequality cannot be satisfied if n  8.)
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PROPOSITION 3.1: Let 3  n  7. Then, for some 8 &#x3E; 0,

PROOF: Case a: Let n = 3. From Theorem 1.1, Hôlder’s inequality and
Corollary 2.1, for |x| = r,

for any a &#x3E; 1 and K independent of a. Choosing a sufficiently close to
one, proves case a.

Case b: Let n &#x3E; 4. Similarly, by the preceding sections, for Ixl = r,

By assumption (3.1), the exponent on the right is positive, which proves
case b.

COROLLARY 3.1: Íl E L p for in  p  nl(2 - 03B4) and is a weak solution of
the Yang-Mills equations in the full ball B.

The proof of Corollary 3.1 is elementary and we omit it. The main
theorem now follows from the following theorem of Uhlenbeck ([8],
Theorem 1.3) applied to solutions with isolated point singularities:

THEOREM: Let D be a covariant derivative in a bundle over B whose
curvature is a weak solution of the Yang-Mills equations on B. If the
curvature is in LP for p &#x3E; 1 2 n, then D is gauge equivalent by a continuous
gauge transformation to an analytic connection.
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A result analogous to our main theorem has been obtained for the
coupled Yang-Mills equations (cf. [4] and [6]) in dimension 3, and appears
in [9].

Added in proof

An elementary proof of the removable point singularity theorem in
dimension n  5 will appear in a forthcoming paper.
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