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ON p-ADIC L-FUNCTIONS AND THE RIEMANN-HURWITZ
GENUS FORMULA

Warren M. Sinnott !

Introduction

Let p be a prime number, and let @, be the Z -extension of Q. For any
number field F, the compositum F,, = FQ_ is called the basic Z ,-exten-
sion of F. Let F be a CM-field, with maximal real subfield F*, and for
each integer n > 0, let F,, be the unique extension of F in F,_ of degree p"
over F. Let h}¥ denote the relative class number of F,/F}. The growth of
ord ,(h}) as n — oo is described by a basic result of Iwasawa (cf. [8]):

ordl,(hj,‘) = p¥*p" + AN*n + v*,

for certain integers p* > 0, A* > 0, and »*, and for n sufficiently large.

In [11], Y. Kida proved a striking analogue of the classical Riemann-
Hurwitz genus formula from the theory of compact Riemann surfaces, by
describing the behavior of A* in p-extensions under the assumption
w* =0. A special case of Kida’s result is the following (for the most
general formulation, see Theorem 4.1, below).

Let E be a CM-field which is a p-extension of F (i.e. if E’ denotes the
Galois closure of E over F, Gal(E’/F) is a p-group). Suppose that p > 2,
and that F contains the p-th roots of unity. Finally suppose that u% = 0.
Then

AN —2=[E_: F ]J(2M—2)+ ) (e(w/v) — 1),

where w runs over (non-archimedean) places on E,_ which do not lie
above p and are split for the extension E_/E). For each such w, v
denotes its restriction to F,, and e(w/v) denotes the ramification index
of w over v.

Kida’s proof uses classical techniques from algebraic number theory,
namely genus theory for the fields F,. Iwasawa [10] found a second proof,
using Galois cohomology. Actually, Iwasawa proves more, determining,
when E__/F, is Galois, the representation of Gal(E_ /F, ) on the minus
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4 Warren M. Sinnott [2]

part of the Iwasawa module of E,, tensored with @ ,. Iwasawa’s result is
thus an analogue for number fields of a theorem of Chevalley and Weil
[3]. Kida’s formula follows from Iwasawa’s result by taking degrees.

In this paper, we give a third proof of Kida’s formula, using the theory
of p-adic L-functions. As this paper was being written, we discovered the
earlier work of G. Gras [6,7], who used the Kubota-Leopoldt functions to
prove Kida’s formula when E and F are abelian over Q. Thus the present
paper may be viewed as an extension of Gras’s approach to arbitrary
CM-fields.

A brief statement of the results we need from the theory of p-adic
L-functions is included in §2; given these results, the rest of the paper is
relatively self-contained. In §3, we discuss the relation, due to Iwasawa,
between the invariants u* and A* and p-adic L-functions. Finally, in §4,
we show how to derive Kida’s theorem from the results in §2 and §3.

§1. Preliminaries and notation

Let p be a prime number, which will remain fixed throughout. The units
Z; of the p-adic integers Z , can be written as an internal direct product
2;=v,-(1+2p2,),
where V/, is the group of roots of unity in Z ,, i.e. [V,|=p — 1 if p>2, and
|V,| = 2. The projections onto the first and second factors are denoted by
w and ( ), respectively.
Let G be a profinite abelian group; the completed group ring of G

over Z, will be denoted by A;, and may be defined by A
= limZ ,[G/U], where U runs over the open subgroups of G. Following

Mazur, the elements of A; may be viewed as Z p-valued measures on G.
If a is an element of A, and if f: G — R is a continuous map of G into a
profinite Z ,-module R, the integral of f with respect to « is defined by

[fda=lm T f(g)a(g).
G gmod U

If R is a profinite Z ,-algebra, and x: G — R" a continuous homomor-
phism, x indices a continuous homomorphism A, — R which we again
denote by x. We have the integration formula

foda=x(a)-

The notion of a pseudo-measure, introduced by Serre [13], will be
useful in what follows. An element a of the total ring of fractions of A
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satisfying (1 — g)a € A for all g€ G is called a pseudo-measure. Let R
be a profinite Z ,-algebra, and suppose that R is an integral domain. If x
is a non-trivial homomorphism of G into R*, we may define

foxda=fcxdﬁ/(1 —x(h)), (1.1)

where h € G is chosen so that x(#) # 1, and 8 = (1 — 4)a. The right hand
side lies in the quotient field of R, and is independent of 4.

Let o be the ring of integers in a finite extension of Q,, and let
f(T)=a,+a,T+a,T*+ ... be a non-zero power series with coeffi-
cients in 0. We define

p(f)=min{ord,a,:i> 0}
A(f)=min{i>0:ord,a,=pu(f)}.

Clearly we have p(fg)=p(f)+p(g) MSE)=A(f)+A(g), if f, g are
non-zero elements of o[[T']]; we may use these relations to define u and A

on the non-zero elements of the quotient field of o[[T']].
Finally, if F C E are fields, and if v is a place on E, then v|F denotes
the restriction of v to F.

§2. p-adic L-functions

Let K be a totally real number field, and let S be a finite set of
(non-archimedean) places on K, containing the set S, of places dividing
p. The maximal abelian extension of K (in a fixed algebraic closure K')
unramified outside S and oo will be denoted by K¢, and we put
Gs = Gal(Ks/K). Since S 2 S, K contains the group p - of all p-power
roots of unity. The action of Gg on p,~ induces a character

N:Gs— Z3,
via the formula

=N for 6€Gs, (Ep,..

The symbol N is used for the following reason. If a is an ideal of K prime
to S, let o, denote the image of a in G5 under the Artin map. Then we
have

No, = Na,

where Na denotes as usual the absolute norm of a. Using the decomposi-
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tion x = w(x){(x) (x € Z ), we obtain from N two important characters
of Gg:

6(o)=w(No), «k(o)=(No).

The fixed field of the kernel of 6 is K(p,,); the fixed field of the kernel
of k is denoted by K; it is the basic Z ,-extension of K.

Let S,. denote the set of embeddings of K into R. If v is such an
embedding, we let o, denote the element of G corresponding to complex
conjugation under any embedding K — C extending v. Clearly

No, = -1, veES,.
If x is any homomorphism of G into a field we call x even if x(o,)=1
for all ve S, and odd if x(6,)= —1 for all v€ S_. Thus N and 6 are
odd, but « is even.

For any character x of Gy of finite order, with values in C;, we let
L¥(x, s) denote the p-adic L-function attached to x. L¥(x, s) is defined
by means of the values of classical complex L-functions at negative
integers, as follows. Let ¢ be any character of G of finite order, with
values in C, and let k = Q(¢) denote the subfield of C, generated by
the values of . Let p: k= C be any embedding, so that po ¢ is a
C-valued character of Gg. By a theorem of Siegel, the complex L-function
value Lg(po ¢, 1—n) (n=1,2,3...) lies in p(k), and p~'Lg(p° ¢,
1 —n) is independent of the choice of p. In view of this we denote
p 'Lg(poy,1—n) simply by Lg(¢,1—n). Then L¥(x,s) is the
(unique) continuous function of s € Z , — {1}, with values in C , satisfy-
ing

r

Lt (x,1-n)=Ls(x87". 1-n), (2.1)

forn=1, 2, 3,.... It follows from the functional equation of the complex
L-functions that L¥(x, s) is not identically O only when x is even.

The existence of p-adic L-functions was proved by Deligne and Ribet
[4] and P. Cassou-Nogués [1], and their results also imply (Serre [13]) the
existence of a pseudo-measure ag on Gg such that

L§(x,s)=Lxxl_‘daS, (2.2)

for any character x as above and any s€ Z , (with s # 1 if x =1).
We shall need the following consequence of (2.2). Since Gal(K /K )
=Z,, we may choose an element y in the Sylow pro-p-subgroup of Gg

whose restriction to K is a topological generator of Gal(K,_ /K ). Let I'
be the subgroup of G generated topologically by y. ThenI' = Z , and G

r’



[5] Riemann-Hurwitz formula 7
is the internal direct product of the subgroups 4 = Gal(K,/K, ) and T
Now let ¢ be the homomorphism of G into Z ,[[T]]" that is trivial on 4
and m aps y to k(y)(1 + T) . Let x be a character of G; of finite order,
with values in the ring of integers o of a finite extension of Q. Then x¢

is a continuous function on G with values in o[[T]], so we may integrate
x ¢ with respect to the pseudo-measure ag; we put

Ly(x, T)= /G xédas. (2.3)

Ls(x. T) lies in the quotient field of o[[T']], and, from (2.2), we have
L¥(x.s)=Ls(x. () = 1).
Let ¢ be a character of G trivial on 4 and of finite order. Then ¢ is

determined by y/(y), which is a p-power root of unity. It follows
immediately from (2.3) that

Li(x¢. T)=Ls(x. ¥ () "'(1+T)~1). (2.4)
Let S’ be a finite set of places on K containing S; if x is a character of

G, x may be viewed as a character of G, via the natural restriction map
Gs' = Gg. Then

i) =13000) T (1307 ()80 ).

pes’'~S

as follows easily from (2.1) and the existence of an Euler product for the
complex L-functions. It follows that

Z‘S’(X' T)=Z‘S(X~ T) ]s_l SEv(T)» (2~5)

where E, (T') is the element of o[[T]] satisfying
E,(k(y)'=1)=1=x8""(o,){Np)~*
Explicitly, define t = 1(0,) € Z , by
0,=y 'mod 4.

Since « is trivial on A, this implies

k(o,) = (Np) =x(y)",
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and therefore
E(T)=1-x0""(0,)1+T)"", t=1t(0,). (2.6)

_ We can use (2.5) and (2.6) to see how the p and A invariants of
Lg(x, T) change when S is replaced by S’. For brevity, let

ps(x)=n(Ls(x, T)),

As(x)=A(Ls(x. T)),

when x is even (so that L¢(x, T)# 0). Then we have the following
lemma.

LEMMA 2.1: Let x be an even character of G, of finite order, and let S’ be a
finite set of places of K containing S. Then

ps(x)=ps(x)

and

As(x)=As(x)+28(p),

where the summation is taken over places p in S’ ~ S such that xﬂ_'(op)
has p-power order and g(p ) denotes the number of places of K lying above
p.

PROOF: It is well known (and is proved again below) that g(p) is finite
for any non-archimedean place p on K. Let p € §’ ~ S, and write

~t(o,)=p“u a>0, uel,.
Then
E(T)=1-x8""(o,)(1+T"")" mod po[[T]]
=1-x0""(o,)—x0 '(0,)uT” mod(p, T”"”)o[[T]].
It follows that

‘u(Ep(T))=0,

A(Ep(T)) = p“ if x6~'(o,) is a p-power root of unity

=0 otherwise.
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Now, the decomposition group D, of p for the extension K_/K is
generated (topologically) by

= 10,) =P
o lx, =¥ =y """ mod 4.

It follows that the index of D, in Gal(K /K ) is p“. Thus g(p) is finite
and equal to p“, as desired. This completes the proof.

The main result of this section is the following proposition, which
gives some information on p¢(x) and Ag(x) when x is varied.

PROPOSITION 2.1: Let x be an even character of G of finite order, and  an
even character of Gg of p-power order. First suppose that p > 2. Then

ps(x)=0 ifandonlyif  ps(xy)=0,
in which case
As(x)=As(x¥).
If p=2, pg(x) and us(xy) are at least equal to d = [ K : Q). However
ps(x)=d ifandonlyif  ps(xy)=d,
in which case we have again
As(x)=As(x¥).
PrROOF: Let o be the ring of integers in a finite extension of Q,
containing the values of both x and ¢, and let 7 be a local parameter in
0.

First suppose p > 2. Let 8= (1 — y)ag. Then B is a measure on Gg, so
we have the congruence

x¥#dB = [ x¢dpmod mo[[T]].
Gh G\

Hence, by (1.2) and (2.3),

(1= x¥o(y)) Ls(x¥. T)=(1-x9(v)) Ls(x. T) mod w0 [[T]].
(2.7)

Now x(v), ¢(v) are p-power roots of unity (since I' =Z ), and x(y)=
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1 mod p. Hence

1-xye(y)=1-xé(y)=1-(1+T) ' mod 7o [[T]]

so these power series have p-invariant 0 and A-invariant 1. Hence (2.7)
shows that

ps(x¥)=0 ifandonlyif  pg(x)=0,

and, if this is the case,

As(x¥)=As(x),

as desired.

When p =2, the argument is almost the same, but we need some
additional results, due to Deligne and Ribet, on the 2-divisibility of
2-adic L-functions. Let H be the subgroup of G generated by the “real
Frobenii” o,, v€S,. H is a finite group of exponent 2. Then the
following fact is proved in [4] (see also Ribet [12]): the direct image B of
the measure 8= (1 — y)ag under the map G — Gg/H is divisible by 2¢
(i.e. 27“B takes values in Z,). Since x and ¢ are both even characters of

G, we have that
279(1-x¢(v)) Ls(x, T) =f x$d(27B)
Gy/H

lies in o[[T']]. Since p(1 — x¢(y))=0, this shows pg(x) > d. Similarly,
since ¢ is even, ug(xy) > d. The rest of the argument proceeds as above,
with G replaced by G;/H and 8= (1 —y)ag by 27“B. This concludes
the proof.

Let x and S be as above. If S is as small as possible, i.e. if S consists
precisely of the places dividing p and the places for which x is ramified,
we omit the subscript S from our notations: thus L*(x, s), p(x), A(x),
etc.. With this notation, we summarize the results of this section in the
following theorem.

THEOREM 2.1: Let x and § be even characters of Gal(K“"/K) of finite
order, and suppose that the order of { is a power of p. Then u(x)>
dord,(2), p(xy)>dord,(2), and

p(x)=dord,(2) ifandonlyif  p(xy)=dord,(2).

Now suppose that p(x) = p(xy)=d ord ,(2), and that the order of X is
prime to p. Let L be the extension of K corresponding to x0~"' (resp. x if
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p=2),andput L =LK _. Then

A(x¥)=A(x)+N,

where N is the number of places v on K satisfying the conditions
(1) v does not lie above p, and v|K is ramified for 3.
(i1) v splits completely in L.

PrOOF: The statement about the p-invariants is immediate from Lemma
2.1 and Proposition 2.1.

Let S (resp. T') be the set of places of K that either divide p or are
ramified for x (resp. x¢). Since x and ¢ have relatively prime orders, T
contains S. By Proposition 2.1 and Lemma 2.1,

AMxd)=Ar(x¢)=Ar(x)=A(x)+M,

where M = ¥ g(p), the summation taken over those places pin T ~ S for
which x0~ ‘(op) has p-power order. Since x is here assumed to have order
prime to p, and 8 has order prime to p if p > 2 (and order 2 =p if p = 2),
this condition on p may be restated as xﬂ’l(ap)= 1 (resp. x(o,) =1 if
p = 2), i.e. p splits completely in L. This last is, for any extension v of p to
K, equivalent to the assertion that v splits completely in L_, and g(p) is
by definition the number of extensions of p to K. So M is the number
of places v on K which split completely in L_ and satisfy v| K€ T ~ S.
Such v satisfy (i) and (ii); conversely if a place v on K satisfies (i) and
(ii), then v splits completely in L, and v|K lies in T (v|K ramified for ¢
implies v|K ramified for xy, since x and y have relatively prime orders)
but not in S (for v|K splits completely in L). This completes the proof.

§3. The analytic class number formula

Let F be any number field, {(F, s) its zeta function. The functional
equation for {(F, s) and the formula for the residue of {(F,s) at s=1
together imply that

lim¢(F,s)/s"* "' = —hR/w. (3.1)

s—0

Here, as usual, r; denotes the number of real embeddings, r, the number
of complex embeddings, /4 the class number, R the regulator, and w the
number of roots of unity of F.

Now let F be a CM-field, with maximal real subfield F*. Let € be the
quadratic character of F* corresponding to the extension F/F*. Then
we have a factorization

S(F,s)=¢(F*,s)L(e,s).
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Applying (3.1) also to the field F*, we find that
L(e, 0)=2h* /wQ.

Here d is the degree of F* over Q, h* is the relative class number of
F/F*, wis as above the number of roots of unity in F, and Q denotes
the index [E: WE™], where E (resp. E*) is unit group of F (resp. F*'),
and W is the group of roots of unity in F. Hence

h* = wQ2 L, 0); (3.2)

this formula is called the analytic class number formula for i*.

Let p be a prime number, Q, the Z -extension of Q, and let
F_ = FQ_. For each integer n > 0, there is a unique extension F, of F in
F,_ of degree p" over F. Each F, is again a CM-field, and we may use (3.2)
to obain information on the behavior of the relative class number A* of
F,/F; as n varies.

We will use a subscript n to refer to objects attached to F,. From (3.2),
we have

h: = WHQHz—‘I”L(e/I’ O) = w’lQllz-‘II,nL(€¢’ O);
¥

the product on the right is taken over all characters y of Gal(F," /F™"),
and the L-functions on the right are attached to F*. Clearly d, = dp” for
n > 0; the behavior of W, and Q, is also predictable, at least for n large:

LEMMA 3.1: There is an integer n, > 0 such that

(n—ny)é
9

(a) W, =W, p forn=ny, where § =0or1.

(b) anQn‘,’ forn>n0'
COROLLARY: For n > n,,

= b, p T2 L (e, 0) (33)

the product taken over all characters  of Gal(F,* /F *) that are non-triv-
ial on Gal(F,* / F,").

PRrROOF: The corollary is immediate from the lemma and (3.2). To see part
(a) of the lemma, suppose first that the number of roots of unity in F,_ is
finite. It is then clear that w, is independent of n for n large, say n > n,,
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i.e. (a) holds with 8§ = 0. Now suppose that the number of roots of unity
in F_ is infinite. The group of roots of unity of order prime to p in F, is
finite in any case, and so lies in F, for some n,> 0. Hence w,/w, is a
power of p for n > n,. It is easy to check by Galois theory that we must
have F, = Fno(ppn_nowno) for n > n, and this implies (a) with § = 1.

To prove (b), we need the following description of Q. Let j denote the
nontrivial automorphism of F/F™; j corresponds under any embedding
F < C to complex conjugation. Hence, by a theorem of Kronecker, ' =/
is a root of unity for any unit 5 € E. From this it follows that E/WE™ =
E'"'/W?C W/W?. Hence Q is either 1 or 2, and Q =2 if and only if
E'"/=W. It is immediate from this description that the following two
implications are valid, for any m > n > 0:

(1) Suppose that the inclusion W, = W, is surjective on the 2-power
roots of unity. Then Q, = 2 implies Q,, = 2.

(2) Suppose that the norm map from W,
Q,,=2 implies Q, = 2.

Now, if the number of 2-power roots of unity in F_ is finite, (1) may
be used, provided that n is sufficiently large; on the other hand, if the
number of 2-power roots of unity in F,_ is infinite, then p =2, and it is
well known that the norm maps W, onto W, for m>n>0, so (2)
applies. In either case, we see easily that Q, is independent of n for n
sufficiently large. This completes the proof.

to W

n

is surjective. Then

REMARK: The above proof shows that 8 =1 occurs precisely if F,_
contains all the p-power roots of unity. An equivalent formulation in
terms of characters is as follows. F,, contains the p-power roots of unity
if it contains p, (resp. p, if p=2). If p is odd, F*(p,) is then an
extension of F* in F, of degree prime to p, hence F=F*(p,), and so
€f =1. Thus § =1 if and only if €6 =1 (when p is odd).

If p =2, let Y denote the non-trivial character of Fi' /F*, F|" being of
course the first layer of the Z -extension F)}/F*. If F, contains the
2-power roots of unity, the F*(u,) is an imaginary quadratic extension
of F* in F_; hence 6 =€ or ey. So, when p =2, § =1 is equivalent to
ed=1ory.

We use (3.3) to relate the p* and A* invariants of the Z -extension
F_/F to the p and A invariants of certain p-adic L-functions. In fact,
Iwasawa [9] showed that, when F is a cyclotomic field, one could give a
proof of the existence of p* and A* from (3.3), using the Kubota-Leopoldt
functions; and Coates [2] pointed out that the standard properties of
p-adic L-functions would make the proof work in general (see also [5]).

PROPOSITION 3.1: There are integers p* > 0, X* > 0 and v* such that

ordp(h,",‘)=y*p”+}\*n+u*,
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for n sufficiently large. In fact

W = s (e0) — d ord, 2

N =XAg(ed)+8,

where 8 is defined in Lemma 3.1, and S is the set of places of F* that
ramify in F_.

PROOF: Let n, be sufficiently large, so that the conclusions of Lemma 3.1
hold; we may suppose also that F} /F,' is totally ramified at all places
dividing p. If  is a character of finite order of Gal( F} /F™), with values
in C;, non-trivial on Gal(F} /F,"), then S (as defined in Proposition 3.1)
is precisely the set of places for which ey is ramified. Hence, by (2.1), we
have,

L(ed,0)= Lt (g8, 0)= Lo(e, 4 (y) ' —1). (3.4)

The second equality comes from (2.4).
Now let n>n,, and combine (3.3) and (3.4). As ¢ varies over
characters of Gal(F," /F") that are nontrivial on Gal(E, /E}), ¢(y)™!

10

will vary over roots of unity { in C¥ satisfying {#" =1, {#"* # 1. Hence

h* =h,f0p("_"°’31;[’2'dis(e0,§‘—l), (3.5)

with ¢ satisfying {#" =1, {#"" # 1. Now if the order of ¢ is p”, and if m is
sufficiently large, it is easy to see that

ordpf,s(eﬁ,f— 1)=ps(ef)+Ag(ef) ord ,(§~ 1)
=ps(ed) +>‘s(€0)/( p" N (p- 1))
Hence, increasing n, if necessary, we have from (3.5)
ord k¥ = (ps(ed)—dord,(2)) p" +(As(e8) +8)n+C,

for n > n, and some integer C independent of n. This completes the
proof of the proposition.

§4. Kida’s formula
Let F be a CM-field with maximal real subfield F*, and let E be a

CM-field which is a p-extension of F (i.e. if E’ is the Galois closure of F
over F, then Gal(E’'/F) is a p-group). Wherever appropriate we use
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subscripts £ and F to distinguish between objects attached to E and
those attached to F. The aim of this section is to prove the following
theorem of Y. Kida [11]:

THEOREM 4.1: p¥%- = 0 if and only if p% = 0, and when this is the case,
A*L_ 85 = [Eoc : Foc](x)';:_ 8F)

+ T (e(w/) =1) =L (/) -1).

w

the summations taken over all places w’ on E_ (resp. w on E}) which do
not lie above p, and v’ = w’'|F,_ (resp. v = w|F}).

PrOOF: If FC E C D is a tower of CM-fields, with D/F a p-extension, it
is easy to check that if the theorem holds for any two of the extensions
E/F, D/E, D/F, it holds for the third. This allows us to reduce first to
the case E/F Galois and then to the case E/F cyclic of degree p. Hence
we suppose that E/F is cyclic of degree p in the following.

If E=F, (the first layer of the basic Z -extension F,/F), it is
immediately that

WE=ppf, Np=X:, 8:;=0

so the theorem is valid in this case.

Now suppose that E N F_ = F. The extension of E* corresponding to
the character €0, is contained in E(u,,), hence is abelian over F*
Hence we have a factorization

L*(550£'~s)=nL*(€F9F\P~S)s (4~1)
2

with ¢ running over the characters of Gal(E™* /F*). Since ENF,, = F,
we have an isomorphism Gal( E,_ /E) = Gal( F,, /F) under restriction, so
we may choose a topological generator y, of Gal(E_/E) such that
Yr= Ye|F,, is a topological generator of Gal( F,,/F). From this it is clear
that (4.1) implies

L(‘bﬂE»T)=nL(‘F0F‘P»T)' (4.2)
¥

Let d=[F" :Q)], so that [E™ : @] = pd. Taking p-invariants in (4.2) and
subtracting pd ord ,(2) from both sides, we obtain

p(egbs) —pd Ordp(z) =2 p(epbp9)—d Ordp(z)-
¥
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By Theorem 2.1, the left hand side and each term on the right is
nonnegative; moreover, the terms on the right are either all positive or all
0. Hence p(ez0;) = pd ord ,(2) if and only if pu(e8,)=d ord ,(2), or, by
Proposition 3.1, p¥ =0 if and only if p% = 0. Thus the first part of the
theorem is proved.

We suppose now that p% = p* = 0. Taking A-invariants in (4.2), we
find

A(‘50£)=ZA(5F0F¢)- (4.3)
v

At this point it is convenient to separate the cases p >2 and p =2.
Suppose p > 2. By Theorem 2.1, with K= F* and x = €0,

Aep0y)=A(epb:)+ N, if y=+1,

where N is the number of places v on F such that (i) v|F* does not
divide p but is ramified for ¢, and (ii) v splits in F_. Thus

A(eg8g)=pA(es0;)+(p—1)N.

However, any place v on F* satisfying (i) ramifies in £}, and so has a

unique extension w on E}, and e(w/v)=p. From this it is easy to see

that the formula of the theorem holds for E/F, using Proposition 3.1.
Now suppose p = 2. Applying Theorem 2.1 with x =1 we find

AMer0p)=N1)+N, AMeg0py)=A(1)+N’,

where N (resp. N’) is the number of places v on F! such that v|F* does
not divide 2 but is ramified for €05 (resp. € -0-¢). Here y denotes the
non-trivial character of E* /F*. The second condition is vacuous in this
case. Eliminating A(1) and continuing as above, we find

Aeg0:)=2A(e0)+N' —N.
In view of Proposition 3.1, we have only to show that

N'—N=Z;(e(w'/u’)—l)—Z(e(w/v)—l) (4.4)

w

where w’ (resp. w) runs over places of E_ (resp. E}) not dividing 2, and
v =w'|F,_, v=w|F}. This can be seen as follows. If v is a place on F}
not dividing 2, let N(v)=1 if v|F* is ramified for €., and put N(v)=0
otherwise; similarly let N’(v)=1 if v|F* is ramified for ey, N'(v)=0
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otherwise. Since 8 is ramified only for the primes above 2, we have

N=Y N(v), N'=YN'(v).

where v runs over the places on F} that do not divide 2. For any such v,
let L, be the fixed field of the inertia group of v for the extension
E._/F]. There are five possibilities for L,; a case by case examination
shows that

N'(U)—N(v)=Z(e(w'/v’)—1)—Z(e(w/v)—1),

W

the summations on the right taken over the places w’ on E__ (resp. places
w on E™) lying over v; we note that v always splits completely in L, (the
residue field of F} at v contains the maximal 2-extension of the prime
field). Summing over places v that do not lie above 2, we obtain (4.4).
This concludes the proof.
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