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Introduction

Let p be a prime number, and let Q~ be the 7L p-extension of Q. For any
number field F, the compositum Fx = FQ~ is called the basic 7L p-exten-
sion of F. Let F be a CM-field, with maximal real subfield F+ , and for
each integer n &#x3E; 0, let F" be the unique extension of F in Fx of degree p"
over F. Let h * denote the relative class number of Fn/F+n. The growth of
ordl, ( h * ) as n - oo is described by a basic result of Iwasawa (cf. [8]):

for certain integers p* &#x3E; 0, 03BB*  0, and v*, and for n sufficiently large.
In [11], Y. Kida proved a striking analogue of the classical Riemann-

Hurwitz genus formula from the theory of compact Riemann surfaces, by
describing the behavior of À* in p-extensions under the assumption
}l* = 0. A special case of Kida’s result is the following (for the most
general formulation, see Theorem 4.1, below).

Let E be a CM-field which is a p-extension of F (i.e. if E’ denotes the
Galois closure of E over F, Gal( E’/F ) is a p-group). Suppose that p &#x3E; 2,
and that F contains the p-th roots of unity. Finally suppose that p) = 0.
Then

where w runs over (non-archimedean) places on E~ which do not lie

above p and are split for the extension E~/E+~ . For each such w, v
denotes its restriction to F~, and e ( w/v ) denotes the ramification index
of w over v.

Kida’s proof uses classical techniques from algebraic number theory,
namely genus theory for the fields F". Iwasawa [10] found a second proof,
using Galois cohomology. Actually, Iwasawa proves more, determining,
when E~/F~ is Galois, the representation of Gal( E~/F~ ) on the minus
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part of the Iwasawa module of Ex, tensored with Qp. Iwasawa’s result is
thus an analogue for number fields of a theorem of Chevalley and Weil
[3]. Kida’s formula follows from Iwasawa’s result by taking degrees.

In this paper, we give a third proof of Kida’s formula, using the theory
of p-adic L-functions. As this paper was being written, we discovered the
earlier work of G. Gras [6,7], who used the Kubota-Leopoldt functions to
prove Kida’s formula when E and F are abelian over Q. Thus the present
paper may be viewed as an extension of Gras’s approach to arbitrary
CM-fields.
A brief statement of the results we need from the theory of p-adic

L-functions is included in §2; given these results, the rest of the paper is
relatively self-contained. In §3, we discuss the relation, due to Iwasawa,
between the invariants 03BC* and À* and p-adic L-functions. Finally, in §4,
we show how to derive Kida’s theorem from the results in §2 and §3.

§1. Preliminaries and notation

Let p be a prime number, which will remain fixed throughout. The units
7L; of the p-adic integers 7L p can be written as an internal direct product

where V p is the group of roots of unity in 7L p’ i.e. |Vp|=p- 1 if p &#x3E; 2, and
1 V21 = 2. The projections onto the first and second factors are denoted by
w and ~ ), respectively.

Let G be a profinite abelian group; the completed group ring of G
over 7L p will be denoted by 039BG, and may be defined by 039BG
= lim Zp[G/U], where U runs over the open subgroups of G. Following
Mazur, the elements of 039BG may be viewed as Zp-valued measures on G.
If a is an element of 039BG, and if f : G - R is a continuous map of G into a
profinite Zp-module R, the integral of f with respect to a is defined by

If R is a profinite Zp-algebra, and x : G~Rx a continuous homomor-
phism, X indices a continuous homomorphism 039BG~R which we again
denote by X. We have the integration formula

The notion of a pseudo-measure, introduced by Serre [13], will be
useful in what follows. An element a of the total ring of fractions of 039BG
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satisfying (1 - g ) a E 039BG for all g E G is called a pseudo-measure. Let R
be a profinite Zp-algebra, and suppose that R is an integral domain. If x
is a non-trivial homomorphism of G into R’, we may define

where h E G is chosen so that X ( h ) ~ 1, and /3 = (1 - h)03B1. The right hand
side lies in the quotient field of R, and is independent of h.

Let o be the ring of integers in a finite extension of Qp, and let

f(T)=a0+a1T+a2T2 + ... be a non-zero power series with coeffi-
cients in o. We define

Clearly we have 03BC(fg)=03BC(f)+03BC(g), 03BB(fg)=03BB(f)+03BB(g), if f, g are
non-zero elements of o [[ T ]] ; we may use these relations to define p and À
on the non-zero elements of the quotient field of o[[T]].

Finally, if F c E are fields, and if v is a place on E, then viF denotes
the restriction of v to F.

§2. p-adic L-functions

Let K be a totally real number field, and let S be a finite set of

(non-archimedean) places on K, containing the set Sp of places dividing
p. The maximal abelian extension of K (in a fixed algebraic closure K )
unramified outside S and oo will be denoted by Ks, and we put
Gs = Gal(Ks/K). Since S ~ ,Sp, Ks contains the group jup- of all p-power
roots of unity. The action of G, on 03BCp~ induces a character

via the formula

The symbol N is used for the following reason. If a is an ideal of K prime
to S, let os denote the image of a in Gs under the Artin map. Then we
have

where Na denotes as usual the absolute norm of a. Using the decomposi-
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tion x = 03C9(x)~x~ ( x E Zxp), we obtain from 1B1 two important characters
of Gs:

The fixed field of the kernel of 0 is K(03BC2p); the fixed field of the kernel
of rc is denoted by Kx; it is the basic 7L p -ex tension of K.

Let Sx denote the set of embeddings of K into R. If v is such an

embedding, we let a,, denote the element of GS corresponding to complex
conjugation under any embedding KS ~ C extending v. Clearly

If x is any homomorphism of Gs into a field we call X even if ~(03C3v) = 1
for all v G S~, and odd if ~(03C3v) = -1 for all v E Sx. Thus 1B1 and 0 are

odd, but K is even.
For any character X of Gs of finite order, with values in Cxp, we let

L*S(~, s ) denote the p-adic L-function attached to X. L*S(~, s ) is defined
by means of the values of classical complex L-functions at negative
integers, as follows. Let 03C8 be any character of GS of finite order, with
values in Cxp, and let k = Q(03C8) denote the subfield of Cp generated by
the values of 03C8. Let 03C1 : k ~ C be any embedding, so that 03C1  03C8 is a
C-valued character of Gs. By a theorem of Siegel, the complex L-function
value LS(03C1  0/, 1 - n ) (n = 1, 2, 3 ...) lies in p ( k ), and p-lLs(p 0 03C8,
1 - n) is independent of the choice of p. In view of this we denote

03C1-1LS(03C1  03C8, 1 - n) simply by LS(03C8, 1-n). Then L*S(~, s) is the

(unique) continuous function of s ~ Zp - {1}, with values in C,,, satisfy-
ing

for n = 1, 2, 3, .... It follows from the functional equation of the complex
L-functions that Ls(x, s) is not identically 0 only when X is even.

The existence of p-adic L-functions was proved by Deligne and Ribet
[4] and P. Cassou-Noguès [1], and their results also imply (Serre [13]) the
existence of a pseudo-measure as on Gs such that

for any character X as above and any s e 7L p (with s =1= 1 if X = 1).
We shall need the following consequence of (2.2). Since Gal( K~/K )

~ 7,,, we may choose an element y in the Sylow pro-p-subgroup of Gs
whose restriction to K~ is a topological generator of Gal( K~/K ). Let r
be the subgroup of Gs generated topologically by y. Then 0393 ~ Zp, and Gs
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is the internal direct product of the subgroups A = Gal( KS/K~ ) and F.
Now let ç be the homomorphism of GS into Zp[[T]]x that is trivial on A
and m aps y to 03BA(03B3)(1 + T ) -’ . Let X be a character of Gs of finite order,
with values in the ring of integers o of a finite extension of Qp. Then xç
is a continuous function on Gs with values in o[[T]], so we may integrate
~~ with respect to the pseudo-measure as; we put

Ls(x, T ) lies in the quotient field of o[[T]], and, from (2.2), we have

Let 03C8 be a character of Gs trivial on A and of finite order. Then 03C8 is
determined by 03C8(03B3), which is a p-power root of unity. It follows

immediately from (2.3) that

Let S’ be a finite set of places on K containing S; if X is a character of
Gs, X may be viewed as a character of Gs, via the natural restriction map
GS’ ~ Gs. Then

as follows easily from (2.1) and the existence of an Euler product for the
complex L-functions. It follows that

where Ep(T) is the element of o[[T]] satisfying

Explicitly, define t = t(03C3p) ~ Zp by

Since K is trivial on A, this implies
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and therefore

We can use (2.5) and (2.6) to see how the p and À invariants of

S(~, T ) change when S is replaced by S’. For brevity, let

when X is even (so that S(~, T) ~ 0). Then we have the following
lemma.

LEMMA 2.1: Let X be an even character of Gs, of finite order, and let S’ be a
finite set of places of K containing S. Then

and

where the summation is taken over places p in S’ - S such that XO 1( 03C3p)
has p-power order and g(p) denotes the number of places of Kx lying above
.

PROOF: It is well known (and is proved again below) that g(p) is finite
for any non-archimedean place p on K. Let t) E S’- S, and write

Then

It follows that
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Now, the decomposition group Dp of te for the extension Kx/K is

generated (topologically) by

It follows that the index of Dp in Gal( K~/K ) is p". Thus g(P) is finite
and equal to p", as desired. This completes the proof.

The main result of this section is the following proposition, which
gives some information on Ils(X) and Às(X) when X is varied.

PROPOSITION 2.1: Let X be an even character of Gs of finite order, and 03C8 an
even character of Gs of p-power order. First suppose that p &#x3E; 2. Then

in which case

in which case we have again

PROOF: Let o be the ring of integers in a finite extension of Qp
containing the values of both X and 03C8, and let rr be a local parameter in
o.

First suppose p &#x3E; 2. Let /3 = (1 - y) as. Then 03B2 is a measure on Gs, so
we have the congruence

Hence, by (1.2) and (2.3),

Now ~(03B3), 03C8(03B3) are p-power roots of unity (since r == 7L p)’ and 03BA(03B3) ~
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1 mod p. Hence

so these power series have IL-invariant 0 and À-invariant 1. Hence (2.7)
shows that

and, if this is the case,

as desired.
When p = 2, the argument is almost the same, but we need some

additional results, due to Deligne and Ribet, on the 2-divisibility of
2-adic L-functions. Let H be the subgroup of Gs generated by the " real
Frobenii" a,,, v ~ S~. H is a finite group of exponent 2. Then the
following fact is proved in [4] (see also Ribet [12]): the direct image 03B2 of
the measure 03B2 = (1 - y)«s under the map Gs - GS/H is divisible by 2 d
(i.e. 2-d03B2 takes values in Z2). Since X and 0 are both even characters of
Gs, we have that

lies in o[[T]]. Since 03BC(1-~~(03B3))=0, this shows 03BCS(~)d. Similarly,
since 03C8 is even, 03BCS(~03C8)  d. The rest of the argument proceeds as above,
with Gs replaced by Gs/H and 03B2 = (1 - 03B3)03B1S by 2-d03B2. This concludes
the proof.

Let X and S be as above. If S is as small as possible, i.e. if S consists
precisely of the places dividing p and the places for which X is ramified,
we omit the subscript S from our notations: thus L*(~, s ), 03BC(~), 03BB(~),
etc.. With this notation, we summarize the results of this section in the
following theorem.

THEOREM 2.1: Let x and 03C8 be even characters of Gal( Kab/K ) of finite
order, and suppose that the order of 03C8 is a power of p. Then 03BC(~) 
d ordp(2), 03BC(~03C8)  d ordp(2), and

Now suppose that 03BC(~) = 03BC(~03C8) = d ordp(2), and that the order of X is
prime to p. Let L be the extension of K corresponding to X 0 -’ ( resp. X if
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where N is the number of places v on Kx satisfying the conditions
(i) v does not lie above p, and vlK is ramified for 03C8.

(ii) v splits conlpletely in Lx.

PROOF: The statement about the p-invariants is immediate from Lemma
2.1 and Proposition 2.1.

Let S (resp. T) be the set of places of K that either divide p or are
ramified for X (resp. ~03C8). Since X and 41 have relatively prime orders, T
contains S. By Proposition 2.1 and Lemma 2.1,

where M = 03A3’pg(p), the summation taken over those places p in T - S for
which ~03B8-1(03C3p) has p-power order. Since X is here assumed to have order
prime to p, and 0 has order prime to p if p &#x3E; 2 (and order 2 = p if p = 2),
this condition on p may be restated as ~03B8-1(03C3p) = 1 (resp. ~(03C3p) = 1 if

p = 2), i.e. p splits completely in L. This last is, for any extension v of p to
K~, equivalent to the assertion that v splits completely in L~, and g(p) is
by definition the number of extensions of p to K~. So M is the number
of places v on Koo which split completely in L~ and satisfy v 1 K E-= T ~ S.
Such v satisfy (i) and (ii); conversely if a place v on Koo satisfies (i) and
(ii), then v splits completely in L~, and v 1 K lies in T ( v|K ramified for
implies vlK ramified for X4,, since x and 03C8 have relatively prime orders)
but not in S (for vlK splits completely in L). This completes the proof.

§3. The analytic class number formula

Let F be any number field, 03B6(F, s) its zeta function. The functional

equation for 03B6(F, s) and the formula for the residue of 03B6(F, s) at s = 1
together imply that

Here, as usual, r1 denotes the number of real embeddings, r2 the number
of complex embeddings, h the class number, R the regulator, and w the
number of roots of unity of F.
Now let F be a CM-field, with maximal real subfield F+ . Let E be the

quadratic character of F+ corresponding to the extension F/F+ . Then
we have a factorization
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Applying (3.1) also to the field F+, we find that

Here d is the degree of F+ over 0, h * is the relative class number of

F/F+, w is as above the number of roots of unity in F, and Q denotes
the index [E : WE+ ], where E (resp. E+ ) is unit group of F (resp. F+ ),
and W is the group of roots of unity in F. Hence

this formula is called the analytic class number formula for h *.
Let p be a prime number, Q~ the 7L p-extension of Q, and let

F~ = FO x)’ For each integer n  0, there is a unique extension F" of F in
Fx of degree p" over F. Each F" is again a CM-field, and we may use (3.2)
to obain information on the behavior of the relative class number h*n of
Fn/F+n as n varies.
We will use a subscript n to refer to objects attached to Fn. From (3.2),

we have

the product on the right is taken over all characters 03C8 of Gal( F+n /F+ ),
and the L-functions on the right are attached to F+. Clearly dn = dp" for
n &#x3E; 0; the behavior of W,, and Qn is also predictable, at least for n large:

LEMMA 3.1: There is an integer n0  0 such that

COROLLARY: For n à nô,

the product taken over all characters 03C8 of Gal(F+n 1 F +) that are non-triv-
ial on Gal(F+n / F+n0).

PROOF: The corollary is immediate from the lemma and (3.2). To see part
(a) of the lemma, suppose first that the number of roots of unity in FX) is
finite. It is then clear that wn is independent of n for n large, say n  n o,
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i.e. (a) holds with 8 = 0. Now suppose that the number of roots of unity
in FOC) is infinite. The group of roots of unity of order prime to p in FOC) is
finite in any case, and so lies in F for some no &#x3E; 0. Hence wn/wno is a
power of p for n  no. It is easy to check by Galois theory that we must
have Fn = Fn0(03BCpn-n0wn0) for n  n0, and this implies (a) with 8 = 1.

To prove (b), we need the following description of Q. Let j denote the
nontrivial automorphism of F/F+ ; j corresponds under any embedding
F  C to complex conjugation. Hence, by a theorem of Kronecker, ~1-j
is a root of unity for any unit ~ ~ E. From this it follows that EIWE+ ~
E1-j/W2 C WIW2 . Hence Q is either 1 or 2, and Q = 2 if and only if
E1-j = W. It is immediate from this description that the following two
implications are valid, for any m  n  0:

(1) Suppose that the inclusion Wn  Wm is surjective on the 2-power
roots of unity. Then Q" = 2 implies Q,,, = 2.

(2) Suppose that the norm map from Wm to W,, is surjective. Then
Qm = 2 implies Q" = 2.

Now, if the number of 2-power roots of unity in F~ is finite, (1) may
be used, provided that n is sufficiently large; on the other hand, if the
number of 2-power roots of unity in Fx is infinite, then p = 2, and it is
well known that the norm maps Wm onto Wn for m  n &#x3E; 0, so (2)
applies. In either case, we see easily that Q" is independent of n for n
sufficiently large. This completes the proof.

REMARK: The above proof shows that 8 = 1 occurs precisely if F~
contains all the p-power roots of unity. An equivalent formulation in
terms of characters is as follows. Fx contains the p-power roots of unity
if it contains Il p (resp. 03BC4 if p = 2). If p is odd, F+(03BCp) is then an
extension of F+ in Fx of degree prime to p, hence F = F+(03BCp), and so
e0 = 1. Thus 8 = 1 if and only if e0 = 1 (when p is odd).

If p = 2, let 03C8 denote the non-trivial character of F+1/F+ , Fi+ being of
course the first layer of the 7L p-extension F+~/F+ . If FX) contains the
2-power roots of unity, the F+ (1l4) is an imaginary quadratic extension
of F+ in F~; hence 0 = E or ~03C8. So, when p = 2, 8 = 1 is equivalent to
~03B8=1 or 03C8.
We use (3.3) to relate the 03BC* and À* invariants of the Zp-extension

F~/F to the 03BC and À invariants of certain p-adic L-functions. In fact,
Iwasawa [9] showed that, when F is a cyclotomic field, one could give a
proof of the existence of 03BC* and À* from (3.3), using the Kubota-Leopoldt
functions; and Coates [2] pointed out that the standard properties of
p-adic L-functions would make the proof work in general (see also [5]).

PROPOSITION 3.1: There are integers 03BC*  0, 03BB*  0 and P* such that
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for n sufficiently large. In fact

where 8 is defined in Lemma 3.1, and S is the set of places of F+ that

ramify in F~.

PROOF: Let no be sufficiently large, so that the conclusions of Lemma 3.1
hold; we may suppose also that F+~/F+n0 is totally ramified at all places
dividing p. If 03C8 is a character of finite order of Gal(F+~/F+), with values
in Cxp, non-trivial on Gal(F+~/F+n0), then S (as defined in Proposition 3.1)
is precisely the set of places for which ~03C8 is ramified. Hence, by (2.1), we
have,

The second equality comes from (2.4).
Now let n  n0, and combine (3.3) and (3.4). As 03C8 varies over

characters of Gal(F+n/F+) that are nontrivial on Gal(F+n/F+n0), 03C8(03B3)-1
will vary over roots of unity 03B6 in Cp satisfying 03B6pn = 1, 03B6pn0 ~ 1. Hence

with e satisfying 03B6pn = 1, 03B6pn0 ~ 1. Now if the order of 03B6 is p"’, and if m is
sufficiently large, it is easy to see that

Hence, increasing no if necessary, we have from (3.5)

for n  n o and some integer C independent of n. This completes the
proof of the proposition.

§4. Kida’s formula

Let F be a CM-field with maximal real subfield F+, and let E be a
CM-field which is a p-extension of F (i.e. if E’ is the Galois closure of E
over F, then Gal(E’/F) is a p-group). Wherever appropriate we use
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subscripts E and F to distinguish between objects attached to E and
those attached to F. The aim of this section is to prove the following
theorem of Y. Kida [11]:

THEOREM 4.1 : Il j, = 0 if and only if 03BC*E = 0, and when this is the case,

the summations taken over all places w’ on E~ ( resp. w on E+~) which do
not lie above p, and v’ = w’IFx ( resp. v = w|F+~).

PROOF: If F c E c D is a tower of CM-fields, with D/F a p-extension, it
is easy to check that if the theorem holds for any two of the extensions

E/F, D/E, D/F, it holds for the third. This allows us to reduce first to
the case E/F Galois and then to the case E/F cyclic of degree p. Hence
we suppose that E/F is cyclic of degree p in the following.

If E = F1 (the first layer of the basic 7L p-extension F~/F ), it is

immediately that

so the theorem is valid in this case.
Now suppose that E ~ F~ = F. The extension of E+ corresponding to

the character ~E03B8E is contained in E (1l2 p)’ hence is abelian over F+
Hence we have a factorization

with 03C8 running over the characters of Gal(E+/F+). Since E n F~ = F,
we have an isomorphism Gal( E’X)/ E) == Gal(F~/F) under restriction, so
we may choose a topological generator YE of Gal( E~/E ) such that

YF = 03B3E|F~ is a topological generator of Gal( F~/F ). From this it is clear
that (4.1) implies

Let d=[F+ : Q], so that [E+ :0]=pd. Taking 03BC-invariants in (4.2) and
subtracting pd ord p (2) from both sides, we obtain
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By Theorem 2.1, the left hand side and each term on the right is

nonnegative; moreover, the terms on the right are either all positive or all
0. Hence 03BC(~E03B8E) = pd ord f, (2) if and only if 03BC(~F03B8F) = d ordp(2), or, by
Proposition 3.1, 03BC*E = 0 if and only if 03BC*F = 0. Thus the first part of the
theorem is proved.
We suppose now that p) = p) = 0. Taking À-invariants in (4.2), we

find

At this point it is convenient to separate the cases p &#x3E; 2 and p = 2.

Suppose p &#x3E; 2. By Theorem 2.1, with K = F+ and X = £ F()F’

where N is the number of places v on F+~ such that (i) v|F+ does not
divide p but is ramified for 03C8, and (ii) v splits in F~. Thus

However, any place v on F+ satisfying (i) ramifies in E+~, and so has a
unique extension w on E+~, and e(w/v)=p. From this it is easy to see
that the formula of the theorem holds for E/F, using Proposition 3.1.
Now suppose p = 2. Applying Theorem 2.1 with x = 1 we find

where N (resp. N’ ) is the number of places v on F+~ such that v|F+ does
not divide 2 but is ramified for ~F03B8F (resp. ~F03B8F03C8). Here 03C8 denotes the
non-trivial character of E+ 1 F+. The second condition is vacuous in this
case. Eliminating 03BB(1) and continuing as above, we find

In view of Proposition 3.1, we have only to show that

where w’ (resp. w ) runs over places of E~ (resp. E+~) not dividing 2, and
v’=w’|F~, v= w|F+~. This can be seen as follows. If v is a place on F:;
not dividing 2, let N( v ) = 1 if v|F+ is ramified for ~F, and put N( v ) = 0
otherwise; similarly let N’(v) = 1 if v 1 F’ is ramified for ~F03C8, N’( v ) = 0
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otherwise. Since 03B8F is ramified only for the primes above 2, we have

where v runs over the places on F+~ that do not divide 2. For any such v,
let Lv be the fixed field of the inertia group of v for the extension

E~/F+~. There are five possibilities for LI,; a case by case examination
shows that

the summations on the right taken over the places w’ on Ex (resp. places
w on E+) lying over v ; we note that v always splits completely in Ll, (the
residue field of Fx at v contains the maximal 2-extension of the prime
field). Summing over places v that do not lie above 2, we obtain (4.4).
This concludes the proof.
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