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Introduction

The Levi problem was originally posed in the following terms: if D is a
domain in C " with e2 boundary which is pseudoconvex is D a domain of
holomorphy?

It was then realised that the hypothesis on the boundary can be
removed if pseudoconvexity is replaced by completeness, which is a

concept that makes sense in any analytic manifold, and the final solution
of the Levi problem due to Grauert says that a complete analytic
manifold is necessarily Stein [3].

The original spirit of the problem has not been betrayed: domains
with C2 boundary in C" are pseudoconvex if and only if they are
complete ([4] p. 50).

The same is not true any more if Cn is replaced by any analytic
manifold: a well known example of Grauert provides a subset with C2
boundary of a complex torus which is pseudoconvex but all holomorphic
functions thereon are constant.

In this paper we prove that a q-pseudoconvex open subset of a Stein
manifold is necessarily q-complete (the converse is also true, see [2]). This
seems to be one of those facts that every complex analyst believes,
perhaps for psycological reasons, but no precise reference is, to my

knowledge, available and all mathematicians whom 1 have asked so far
don’t seem to know how a precise proof should go; the modest aim of
this paper is to fill this gap and provide a definite reference.

Most of the ideas in the proof are due to Mike Eastwood to whom 1
am, once more, deeply grateful.

We briefly recall the basic definitions:

DEFINITION 1: Let D be an open subset of an analytic manifold M of
dimension n ; we say that D has C2 boundary if for all x E aD there exists
an open neighbourhood U of x and a C2 function (p: U ~ R, called

defining function of D at x s.t. D ~ U = (y E U s.t. cp(y)  01 - and
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d~(x) ~ 0; in these conditions we can consider the complex Hessian

where zl, z2, ... , zn are local holomorphic coordinates at x. The signature
of this Hermitian matrix does not depend on the choice of the local
holomorphic coordinates but it does depend on cp. However the Levi form

where TxaD = {v = 03A3m1v1~/~zl ~ Tx M s. t. 03A3n1vi~~/~zi(x) = 0} is the holo-
morphic tangent space of aD at x, has a signature that depends only on
D and x.

If n ( x ) denotes the number of negative eigenvalues of F(~)(x) we say
that D is q-pseudoconvex if n(x)  q for all x E aD.

DEFINITION 2: A complex n-dimensional manifold D is said to be

q-complete if we can find a q-plurisubharmonic exaustion function on D i.e.
a C2 function 03A8 : D ~ R s.t.

(1) for all c ~ R the set Bc = {x ~ D s.t. 03A8(x)  c} is relatively
compact in D and

(2) The complex Hessian H(03A8)(x) has at least n - q positive eigen-
values for all x in D.

0-pseudoconvex and 0-complete domains are simply called pseudocon-
vex and complete.

THEOREM: If D is a domain with C2 boundary in a Stein manifold M and D
is q-pseudoconvex then it is also q-complete.

PROOF: We shall divide the proof into several steps.

Step 1: As there is always an analytic embedding of M into C N, for some
large N (see [5] p. 359) we can suppose at once that M is an analytic
submanifold of CN. Choose a holomorphic tubular neighbourhood p : V
~ M and set D = p-1(D) (cfr. [1] proof of Lemma 1, p. 131). We claim
that, after shrinking if necessary,

(a) ~x ~ ah n V, aD is C2 at x,
(b) If we consider D as an open subset of CN then n ( x, ) =

n(p(x), D), for al x E ~ n V.
Indeed, since the problem is local we can suppose that local coordi-

nates z1, z2, ...,zN have been chosen s.t., near x, M = ( z S.t. zN-n+1 =

ZN-n+2 =... = zN = 0), Zl’ Z2"" Zn are local coordinates of M at x and
p Z1, z2, ... , ZN ) = (z1, z2, ... , zn, 0,...,0).
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Let Û be a neighbourhood of x in CN so small that zl, z2,,..., zN are
defined in Û and that there exists a C2 defining function (D : U =  ~ M
- R for D with d03A6(x) ~ 0 and U c V. By shrinking Û if necessary we
can also suppose that  ~ p-1(U).
Define  :  ~ R by  = 03A6 o p i.e. (z1, z2, ... , zN) =

03A6(z1, z2, ... , 1 z,,, 0, ... , ,0). Then  is a defining function for b at x.

Moreover

where as usual v = 03A3Ni=1vi~/~zi, and

This proves the claim.

Step 2: So, if we suppose that D is q-pseudoconvex we have that,
Vx OE V ~ aD, ab is e2 at x and n(x, )  q.

Consider the function p : CN ~ R given by

Where dist denotes the Euclidean distance. Since Vx E=- aD, aD is C2 at x,
we can conclude that there exists a neighbourhood Û’ of aD in CN on
which p is C2 (by the inverse function theorem).

By shrinking Û’ if necessary, we can also suppose that Vy in U’ there
exists exactly one point c(y) ~ aD n U’ which is the closest point to y
under the Euclidean distance, that d03C1(c(y)) ~ 0 and that n(c(y), )  q.

Let (P: Û’ ~  ~ R be the function (p = log p; we claim that the
Hessian (£cp)(y) has at most q positive eigenvalues B;/y.

Indeed suppose that this is false, i.e. there exists a point y in U’ n D
s.t. (H~)(y) has (at least) q + 1 positive eigenvalues; the geometric
interpretation is: there are linear coordinates (t1, t2l 1 N) of CN s.t. the
Hermitian form given by the matrix
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is positive definite on the linear subspace V of TvCN = CN spanned by
(~/~1, ~/~t2,...,~/~tq+1).

By Taylor’s theorem we have

where a, = 1 2~~/~ti(y) and bjk = ~2~(y)/~tj~tk are constants, and 0(|t|2)
has the property that lim t ~00(|t|2)/|t|2 = 0 and so also

In order to simplify notation omit the limits of the summands and
write A(t) = y + 03A3tj~/~tj , B(t) = exp(03A3aiti + Ebjktjtk)’

Then the above equality can be written as 03C1(A(t)) - 03C1(y)(B(t)| =
{exp03A3Cjktjtk + 0(|t|2)) -1} 03C1(y)|B(t)| = {03A3Cjktjtk + 0’(|t|2)}03C1(y)|B(t)|,
where the last equality is obtained by expanding in Taylor series the
function exp and 0’(|t|2) has the same properties as 0(|t|2). Then one has

so we can choose E &#x3E; 0 small enough s. t. ~t, |t|  ~, one has
(a) A(t) ~ ~ ’ and 
(b) p (A (t» - 03C1(y)|B(t) &#x3E; 03C1 (y)/2 · 03A3Cjktjtk.

Set u = c(y)-y and define an analytic function T on the open ball
B~ = {t ~ Cq+1 S.t. |t|  ~}:

We can also suppose that E is so small that T( t ) E U’ if t ~ B~. Then it
is easy to check, and a picture shows how, that if t e B, one has
(c) 03C1(T’(t))  03C1(A(t)) - |u||B(t)|  |u|/203A3Cjktjtk  0

This in particular proves that T( t ) E D for all t E B~ - {0}, and, since
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03C1(T(0)) = 03C1(c(y0) = 0, 0 is a minimum for the function po T : B~ ~ R,
and so, taking partial derivatives,

Using the chain rule and the fact that T is analytic we have:
(d) 03A3Nh=1~03C1/~zh(c(y))~Th/~tj(0) = 0 for j = 1,2, .., q + 1.
In other words the vectors ~T/~tj (0), j = 1, 2,..., q + 1, are in Tc( v)~.

Moreover, B;/t in Cq+1, we have
(e) 03A3q+1j,k=1~203C1o T(0)/~tj~tktjtk  |u|/403A3q+1j,k=1Cjktjtk.

To prove this we first observe that it is clearly enough to check it for
small 1 t 1.

From the above inequality (c), using Taylor series, we deduce

for all t ~ B~, where djk = ~203C1o T(0)/~tj~tk are constants and 0"(ltI2) has
the same properties as 0(|t|2).

Then, after reducing E if necessary, we have, Vt E=- B,,

Let /J = ei03B8tj for 0  03B8  2 03C0; writing t’ in the above inequality and
observing that the second and third term are unchanged under the
substitution t - t’, we deduce, V0,

and by choosing B so that the first term is negative we prove the

inequality (e).
Using again the chain rule and the fact that T is analytic we have that

the Hermitian form

is positive definite.
It follows easily that the Hermitian form (~203C1(c(y))/~zh~zm)Nh,m=1 is

positive definite on the linear subspace V of 7c(v)~ spanned by the
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vectors ~T/~Tj(0), j = 1, 2,..., q + 1 ; in particular it follows automati-

cally that these vectors are linearly independent, so that dimV = q + 1;
but since - p is a defining function for D at c(y), we have that

n(c(y), )  q + 1 and this contradicts our hypothesis, so that the claim
is proved.
Step 3: By restricting ~ to Û’ n D we find a C2 function, called again
~:W = ’ ~ D ~ R s.t.

(a) limy~~D~(y) = - ~,
(b) (,)glip)(y) has at most q positive eigenvalues Vy in W.
Let F be a closed subset of M s.t. D - W ~ int F c F c D, and let

0  03A8  1 be a C2 bump function s.t. ’1’ = 0 on F, ’1’ = 1 in a neighbour-
hood of M - D, and supppse that F is chosen so that ~(y)  0 for y 5É F.

By considering the function qq’ = ~ ’ P, we have that
(a) limy ~~D~’(y) = - ~,
(b) (H~’)(y) has at most q positive eigenvalues ~y ~ D - F,
(c) w’  0.

Now we use the fact that M is Stein and so 0-complete (see [5], lemma
p. 358) i.e. there exists a 0-plurisubharmonic exhaustion function À : M
- R .

’fin E Z, the set Kn = {y ~ M s.t. 03BB(y)  n} is compact, therefore so is
F n Kn and there exist constants Cn s.t.

Now choose a C2 function f : R - R with the properties

First we notice that, Vc E=- R, Be = {y ~ D s. t. x(y)  cl is contained,
by the property ( c) of qq’ in f y E D s.t. f o 03BB (y)  c} which is compact
by the assumptions on f and À. Moreover Bc is closed in D and, since
limy~~D’(y) = - oo, it is also closed in M. Thus Bc is compact and X is
an exhaustion function.

For all y E D we have

where A(y) = (~03BB/~zi(y) · ~03BB/~zj(y))ni,j=1 is a semipositive Hermitian
form. If y E D - F then there exists a linear subspace of 7§,D, of
dimension n - q where -(H~~’)(y) is positive semidefinite. Therefore
(H~)(y) is positive definite on V.
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If y E F then either y E Ko ~ F in which case

or y E (Kn+1 - Kn ) ~ F for some integer n  0, in which case

Therefore X is also q-plurisubharmonic and we can finally say that the
theorem is proved. 0
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