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1. Introduction

Among the homogeneous Riemannian manifolds the naturally reductive
homogeneous spaces are the simplest kind and because of this they have
been studied extensively (see [10], [6]). Classical examples are the sym-
metric spaces and more general all the isotropy irreducible homogeneous
spaces studied by J. Wolf [17]. See also [6]. Also some nice examples are
constructed in the theory of 3-symmetric spaces [7], [11]. But in general it
is mostly difficult to see whether a given homogeneous metric g on a
Riemannian manifold M is naturally reductive or not because one has to
look at all the groups of isometries of (M, g) acting transitively on M.
Hence it could be useful to have an infinitesimal characterization of such
manifolds which at least in some cases makes it possible to come more
quickly to a conclusion.

The first purposes of this paper is to provide such a characterization
and then to illustrate this by treating some remarkable examples. The
main tool to derive our result is a theorem of Ambrose and Slinger [1]. In
what follows we always suppose the Riemannian manifolds to be con-
nected, simply-connected and complete. In that case Ambrose and Singer
characterize homogeneous Riemannian manifolds by a local condition
which has to be satisfied at all points. They use a tensor field T of type
(1,2) and derive two necessary and sufficient conditions involving T, the
Riemann curvature tensor and their covariant derivatives (see section 2
for more details). As such their theorem is a generalization of Cartan’s
theorem for symmetric spaces. We shall prove that a Riemannian mani-
fold is a naturally reductive homogeneous space if and only if there exists
a tensor field T satisfying the two conditions of Ambrose and Singer and
in addition the condition TX X = 0 for all tangent vector fields X. Note
that this last condition appears very naturally in our attempt to give a
kind of classification for homogeneous spaces based on the Ambrose-
Singer theorem [14].

This key result will be used in the study of some nilpotent Lie groups.
More specifically, in the second part of this paper we will treat briefly the
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so-called generalized Heisenberg groups or groups of type H, studied in [8],
[9]. Using the result above we shall give an alternative proof of Kaplan’s
result: the only naturally reductive groups of type H are the Heisenberg
groups and their quaternionic analogs.

The explicit determination of the geodesics and the Killing vector
fields gives rise to a remarkable example already discovered by A.
Kaplan [9]. It is well-known that the geodesics of a naturally reductive
homogeneous space are orbits of one-parameter subgroups of isometries.
The 6-dimensional example of Kaplan provides a counterexample for the
converse theorem. Hence, by treating this example, we show that there
exist connected, simply connected homogeneous manifolds which do not
admit a tensor field T satisfying the two conditions of Ambrose and
Singer and the additional condition TX X = 0 but all of whose geodesics
are still orbits of one-parameter subgroups of isometries. This implies
that Theorem 5.4 of [1] has to be modified and we do this in Corollary
1.4 of section 2. Moreover this example shows that the differentiability
condition in the paper of Szenthe [13] cannot be removed.

Our study of the naturally reductive spaces and the groups of type H
arose during our study of harmonic, commutative and D’Atri spaces (see
[15] for a survey). D’Atri spaces are spaces such that all the geodesic
symmetries are volume-preserving local diffeomorphisms. It is not dif-

ficult to prove that all naturally reductive homogeneous spaces are D’Atri
spaces. This is done in [5] but it can also be proved using Jacobi vector
fields. A natural question is whether this property characterizes naturally
reductive homogeneous spaces. It is proved in [9] that all the groups of
type H have this property and hence they provide again a lot of

counterexamples. But there is much more. The naturally reductive spaces
have the stronger property that all the eigenvalues of the matrix of the
metric tensor with respect to a normal coordinate system have the

antipodal symmetry. (A D’Atri space is characterized by the fact that the
product of the eigenvalues has antipodal symmetry.) We shall show that
the 6-dimensional group of type H has also this property and so we
provide an example of a manifold with this property but which is not
naturally reductive.

Finally we show that the 6-dimensional example is a 3- and 4-symmet-
ric space.

2. Naturally reductive homogeneous spaces

Let (M, g) be a connected n-dimensional homogeneous manifold. Fur-
ther let G be a Lie group acting transitively and effectively on the left on
M as a group of isometries and denote by K the isotropy subgroup at
some point p of M. Let g and f denote the Lie algebras of G and K.
Suppose m is a vector space complement to f in g such that Ad(K)m c m.

Then we may identify m with Tp M by the map X ~ X*p, where X*
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denotes the Killing vector field on (M, g) generated by the one-parame-
ter subgroup (exp tX} acting on M. We denote by ~,~ the inner product
on m induced by the metric g.

DEFINITION 2.1.: The manifold (M, g) (or the metric g) is said to be

naturally reductive if there exists a Lie group G and a subspace m with the
properties described above and such that

where [X, Y]m denotes the projection of [X, Y] on m.
Geometrically these manifolds may be defined by using the following

theorem (see [10, II, chapter X]).

THEOREM 2.2: The homogeneous manifold ( M, g) is naturally reductive if
and only if the geodesic through p and tangent to X E m n-- Tp M is the curve
(exp tX)p, orbit of the one-parameter subgroup exp tX of G, for all X.

It is clear that if we want to say that M is naturally reductive we first
have to determine all transitive isometry groups of G of M and then to
consider all the complements of k in g which are invariant under Ad( K ).
In most of the cases this is not an easy task. Therefore we shall proof a
theorem which makes it in a lot of examples much easier to reach a
conclusion. We refer to [14] for a series of examples.

THEOREM 2.3: Let ( M, g) be a connected, simply connected and complete
Riemannian manifold. Then (M, g) is a naturally reductive homogeneous
space if and only if there exists a tensor field T of type (1,2) such that

and

where X, Y, Z E X(M). ~ denotes the Levi Civita connection and R is the
Riemann curvature tensor.

The conditions (AS) are the Ambrose-Singer conditions and the
existence of a tensor T satisfying these conditions is equivalent to the
homogeneity of the manifold. Note that with ~ = v - T, (ii) and (iii)
are equivalent to VR = T = 0 and (i) means that 1-7 is a metric
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connection. (See [1].) Hence we shall only prove that (2.2) is equivalent to
the naturally reductive property.

To do this we need to recall briefly the construction of a transitive and
effective group G of isometries acting on M when a tensor T is given.
Thereby we concentrate on some facts concerning the Lie algebra g of G.
The proofs are in [1]. See also [14].

77

Let (9(m) M be the principal bundle of orthonormal frames of M.

(AS(i)) implies that the linear connection V = v - T is metric and hence
induces an infinitesimal connection on (9 (M). Let u = ( p, ul , ... , un) be a
point of O(M) and denote by J(u) the holonomy bundle of V through
u. J(u) is a principal subbundle of (9(M) whose structure group is the
holonomy group (u) of V. This is a subgroup of O(n). Ambrose and
Singer proved that when T satisfies the conditions (AS), then G = J(u)
has a Lie group structure and acts transitively and effectively on M on
the left as a group of isometries.

In what follows we use the same notation as in [10]. A* denotes the
fundamental vertical vector field which corresponds to an element A of
the Lie algebra so(n) of O(n). Further B(03BE) denotes the standard
horizontal vector field with respect to V and corresponding to the vector
t of In 11. Then the Lie algebra g of G is the subalgebra of 1(f(u))
generated by the restrictions of the vector fields A*, ... ,A*, B1,...,Bn to
(u). Here (A1,...,Ar) is a basis of the Lie algebra of (u) and
BI,..., Bn are the horizontal vector fields corresponding to a natural basis
of Rn (see [10, II, p. 137]). The isotropy subgroup K of the point p = 77’( u)
is the connected subgroup of G whose Lie algebra f is generated by
A*1,...,A*n. Note that f is isomorphic to the holonomy algebra of V.

Next we write down explicitly the Lie brackets for the basis elements
of g. Therefore we have only to note that (see [10, 1, p. 120])

Further, for v = (q, v1,...,vn)~(u) we have (see [10, I, p. 137]):

where v is the isometry
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and Rn is equipped with the standard metric. Here R denotes the
curvature tensor of V given by

and the tensor S given by

1%e torsion tensor of V.
Now let m denote the vector subspace of g generated by Bl, .... Bn.

Then it follows from (2.4) and from the fact that K is connected that

This means that the homogeneous Riemannian space is reductive.
Finally we note that (B1,...,Bn) is an orthonormal basis of m with

respect to the inner product induced from g. Hence the map

is an isometry for all v = (q, v1,...,vn) of (9(M) (see [1]).

PROOF OF THEOREM 2.1: First suppose that the homogeneous space
(M, g) is naturally reductive and let g = m ~ f be a naturally reductive
decomposition of the Lie algebra g of the transitive group of isometries
G. Let V be the corresponding canonical connection and put T = V - V.
Then Tx Y + TYX = 0 and T satisfies the conditions (AS) since 1? and T
are parallel with respect to V (see [10, II, chapter X]). 

Conversely, let T be a (1,2)-tensor field which satisfies the conditions
of the theorem. Put again p = p - T. Then the theorem of Ambrose
and Singer implies that G = (u) is a transitive group of isometries of M
acting effectively on M. Further, as we have already noted, there exists a
reductive decomposition g = m ~ f. An element of m is of the form B(03BE),
§ OE R " and
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where T is evaluated at q = 03C0(v). Hence we have

Since Tx is skew-symmetric for all X we obtain (2.1) and hence M is
naturally reductive.

From Theorem 2.2 and from (2.3) we obtain

COROLLARY 2.4: Let (M, g) be a connected, simply connected homoge-
neous manifold. Then there exists a tensor field T of type (1,2) which
satisfies the conditions (AS) and such that T, Y + TyX = 0 for all X E
1( M ), if and only if the geodesic tangent to X E m ~ Tp M at p is the curve
(exp tX)p for all X.

This is Theorem 5.4 of [1] with a slight modification. This is necessary
because of the 6-dimensional example of Kaplan which will be discussed
in Section 4. Further we note that in their Theorem 5.4 Ambrose and

Singer prove that when T satisfies (AS) and (2.2), then the geodesics are
orbits of one-parameter subgroups of G = (u) with infinitesimal gener-
ators in m. Taking into account Theorem 2.2, this provides another proof
of Theorem 2.3.

3. Lie groups of type H

In this section we give a brief survey on some general aspects of groups
of type H. We refer to [8], [9] for more details. At the same time we
concentrate on the naturally reductive case and we give a different proof
of the main theorem using the theory of two-fold vector cross products.

First we start with the definition of such a group. Let and Z be two

real vector spaces of dimension n and m (m ~ 1) both equipped with an
inner product which we shall denote for both spaces with the same
symbol (,). Further let j : Z - End() be a linear map such that

Note that these conditions imply, using polarization:

for all x, y~V and a, b E Z.
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Next we define the Lie algebra n as the direct sum of V and Z together
with the bracket defined by

where a, b E Z and x, y E V. Then n is said to be a Lie algebra of type H.
It is a 2-step nilpotent Lie algebra with center Z.

The simply connected, connected Lie group N whose Lie algebra is n
is called a Lie group of type H or a generalized Heisenberg group. There
are infinitely many groups of type H with center of any given dimension.

Note that the Lie algebra n has an inner product such that V and Z
are orthogonal:

a, b E Z and x, y E V. Hence the Lie group has a left invariant metric
induced by this metric on n.

In what follows some special Lie algebras of type H will play a
fundamental role. These non-Abelian algebras can be obtained using
composition algebras W (the complex numbers C, the quaternions H and
the Cayley numbers Cay) as follows: Let Z be the subspace of W formed
by the purely imaginary elements. Further let V = W n, n E N0, and put
j : Z - End( ) for the linear map defined by

where ax denotes the ordinary scalar multiplication of a and x. The
corresponding groups are the Heisenberg groups or their quaternionic and
Cayley analogs.
Now we look for the naturally reductive groups and we give an

alternative proof of a result of Kaplan [9], using Theorem 2.3.

THEOREM 3.1: The homogeneous manifold ( N, ~,~) is naturally reductive if
and only if N is a Heisenberg group or a quaternionic analog.

To prove this we first prove the following

LEMMA 3.2: If ( N, ~,~) is naturally reductive, then dim Z = 1 or 3.

PROOF: It follows from Theorem 2.3 that there exists a tensor T of type
(1,2) such that TXY + TYX = 0 and which satisfies the conditions (AS).
Further let p denote the Ricci tensor of the manifold (N, ~,~). Then we
have from (AS(ii)):
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The connection of Levi Civita has been computed in [8]. We have:

where x, y E h and a, b~ Z. For the Ricci tensor one obtains (see [8]):

Then it follows easily from (3.7) and (3.8) that all the components of B7p
vanish except

Hence (3.6) will be satisfied if and only if

Since Tw is skew-symmetric for all w E n we must have

Next we put p = p - T. Then it follows from (3.7) and (3.13) that

So we obtain

Since j(a) is skew-symmetric for all a~ Z, T = 0 implies
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Further polarization of (3.2) implies

and hence (3.15) becomes

Finally we have

and from this, using (3.16) and (3.17), we conclude that

But we also have

Hence, with

we can conclude from (3.18) and (3.19) that T is a two-fold vector cross
product on Z (see [2]). Hence we must have dim Z = 1 when Tab = 0 or
otherwise dim Z = 3 or 7.

It remains to prove that dim Z = 7 is not possible. To show this we
first recall that with W = Il ~ Z and the multiplication

we obtain an 8-dimensional composition algebra. The inner product on Z
can be extended to W by putting

and taking Z to be orthogonal to R. Then (3.17) implies that W is
associative. Indeed, let j : W ~ End(V) be the linear map defined by

It is clear that j is injective. Moreover (ab) =(a)(b) since

as follows from (3.17) and (3.20). Hence j is a monomorphism between



398

the algebras W and End(V) and so W is associative. This excludes the
case dim Z = 7 since any 8-dimensional composition algebra is not

associative. Hence the lemma is proved.

PROOF oF THEOREM 3.1: Using the classification of Clifford modules,
Kaplan proved in [9] that for dim Z = 1 the corresponding groups N are
the Heisenberg groups and for dim Z = 3 the groups N are the quater-
nionic analogs.

To finish the proof we have to show that in these cases there exists a
tensor T satisfying the required conditions. Therefore, let T be defined as
follows:

It is easy to verify that T satisfies the conditions (AS) or equivalently
R= T = 0. The explicit expression for R is given in [8] and the

properties of the composition algebras are given in [2].

4. Geodesics and killing vector f ields on groups of type H

The main purpose of this section is to give an answer to the question:
When are the geodesics on a group (N, (,)) of type H orbits of one-
parameter subgroups of isometries of ( N, (,))? To do this we will not use
the description of the full group of isometries of ( N, (,)) given in [8], but
we will consider the Killing vector fields.

First we determine a global coordinate system (v1,...,vn; u1...,um)
on N. To do this, let ( xl, ... , xn ) and ( al, ... , am) be orthonormal frames
on V and Z. Then we put for p E N:

Then we have
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where the A03B1ji are the structure constants of n, i.e.

Next let A, respectively B, be a skew-symmetric endomorphism of V,
respectively Z, such that

and put

Then we have

THEOREM 4.1 : The Killing vector fields e of (N, ~,~) are given by

where

= const.,

const.

PROOF: The Killing equations can be written as follows:

Let p be the Ricci tensor of N. Then the Lie derivative L03BE03C1 vanishes.
More specifically we have
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U sing (3.7) and (3.8) we derive the following conditions which are

equivalent to (4.7) and (4.8):

where

From the first and third condition we derive

and hence

where aij + aji = 0 and a,,, À, are constants. Similarly, the second condi-
tion gives

with b03B103B2 + b03B203B1 = 0. Next we determine the functions b03B103B2 and TJa using the
last equation in (4.9). Therefore we substitute (4.12) in the equation.
Differentiation with respect to uf3 gives that b03B103B2 are constant. Moreover

The integrability conditions of this system are

Taking into account (4.3) and (3.4), (4.14) is equivalent to (4.4).
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Conversely, suppose that we have (4.4). Then we have

const.

So the required formula (4.6) follows from (4.15), (4.12) and (4.10).
The geodesics of the manifold (N, ~,~) have been calculated explicitly

in [8], [9]. Let 03B3(t) = exp(x(t) + a(t)) be the geodesic tangent at 0 to the
vector (0)=03BB+03BC, 03BB~ V, 03BC E Z. Then we have

for !1 =1= 0 and

for 03BC=0.
From this it is clear that when li = 0, 03B3(t) = (exp t03BB)O is the orbit of a

one-parameter subgroup of isometries of ( N, ~,~) but in general we have

THEOREM 4.2: The geodesic 03B3(t) with (0)=03BB + it is an orbit of a
one-parameter subgroup of isometries of ( N, (,» if and only if there exist
skew-symmetric endomorphisms A and B of V and Z such that

for all a E Z.

PROOF. The conditions (4.18) are the necessary and sufficient conditions
for the existence of a Killing vector field e such that 1( y( t )) = ( t ) for all
t.

5. The geometry of the 6-dimensional group of type H

It is not difficult to see that there is only one group of type H of
dimension 6 (see below). This manifold has been discussed by Kaplan [9].
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In this section we discuss this manifold and its geometry in detail because
of its remarkable properties.

This example can be described as follows. Let V = H, the space of the
quaternions, and let Z be a 2-dimensional subspace of purely imaginary
quaternions. Let j : Z - End(V) be the linear map defined by

i.e. j(a)x is the ordinary multiplication of x by a. It is clear that
n = V~ Z is a Lie algebra of type H. Further it follows from the results
in section 4 that the corresponding Lie group N of type H is a homoge-
neous space which is not naturally reductive.

Kaplan proved in [9] that the geodesics of this group N are still orbits
of one parameter subgroups of isometries. Now we shall give a new proof
of this result using Theorem 4.2.

THEOREM 5.1 : Let ( N, ~,~) 
denote the 6-dimensional group of type H. Then

the geodesics of ( N, ~,~) are orbits of one-parameter subgroups of isometries
of (N, ~,~).

PROOF: Let 03B3(t) be the geodesic of N through y(0)=0 and such that
(0) = 03BB + jn, where 03BB~V, jn E Z. First we suppose 03BB ~ 0 and jn ~ 0. Let
(a1, a2) be an orthonormal frame of Z such that 03BC = 03BC1a1 and let x be a
unit vector of V such that 03BB=03BB1x1. Then (xi, j(a)1)x1, j( a2 )Xl’
j(a1)j(a2)x1} is an orthonormal basis of V.

It follows from Theorem 4.2 that there exists a Killing vector field e
such that 03BE(03B3(t)) = ( t ) if and only if there exist skew-symmetric endo-
morphisms A and B of V and Z satisfying (4.18). Now it is clear that in
our case B = 0 and further A is uniquely determined by

Hence these geodesics are orbits of unique one-parameter subgroups of
isometries.

If À = 0 or it = 0 we have 03B3(t) = exp tu or 03B3(t) = exp t03BB. Hence we put
A = B = 0. In this case the geodesics are again orbits of one-parameter
subgroups but these subgroups are not uniquely determined.

REMARK: The property proved in Theorem 5.1 cannot be extended to all
groups of type H. Indeed, it can be proved by further research that there
exist groups of type H such that not all the geodesics are orbits of
one-parameter subgroups (see [9] for a proof in the case m = 0 (mod 4)).
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Next we want to concentrate on another property which holds at least

partly for all groups of type H. Before doing this we need some

preliminaries.
Let (M, g) be an n-dimensional Riemannian manifold and m a point

of M. Further let (x1,..., Xn) be a system of normal coordinates centered
at m and p a point of M such that r = d(m, p )  i(m) where i(m) is the
injectivity radius at m. Then p can be j oined to m by a unique geodesic y.
Put y(0) = m, 03B3(r) = p = expm (re) where e is the unit velocity vector. The
geodesic symmetry y (about m) is defined by

and this is an involutive local diffeomorphism.
Riemannian manifolds with volume-preserving or, equivalently, diver-

gence-preserving geodesic symmetries were studied in [3], [4], [5] and such
manifolds are called D’Atri spaces in [15], [16]. They can be characterized
as follows. Let

Then it is easily seen that (M, g) is a D’Atri space if and only if

for all m E M and all p near m. So 0 has antipodal symmetry.
Examples of D’Atri spaces are the so-called commutative spaces (see

for example [15]). This class includes the harmonic spaces, their products
and also all symmetric spaces. Also the naturally reductive homogeneous
Riemannian manifolds have this property [5] and these were, among the
homogeneous manifolds, the only known examples. It is the search for

non-naturally reductive examples which gave rise to our work [14], [15],
[16] and to part of the work of Kaplan [9]. Note that up to now no
examples of non-homogeneous D’Atri spaces are known.

In [9] Kaplan proved the following remarkable result

THEOREM 5.2: A ll the groups of type H are D’A tri spaces.

Hence the volume-preserving geodesic symmetry property does not
characterize the naturally reductive spaces among the homogeneous
spaces. But D’Atri proved in [5] a stronger result. Let G=(gij) be the
matrix of g with respect to a normal coordinate system at m. Then the

eigenvalues of G are independent of the choice of the normal coordinate
system at m. D’Atri proved that all these eigenvalues have the antipodal
symmetry. A different proof for this property can be given using the



404

special form of the Jacobi equation in terms of the canonical connection
and the associated tensor T or the torsion tensor of this connection. In
what follows we shall prove that the 6-dimensional group of type H has
also this property so that again this cannot be characteristic for the class
of naturally reductive homogeneous spaces.

THEOREM 5.3: Let ( N, ~,~) be the 6-dimensional group of type H. Then all
the eigenvalues of the matrix of the metric tensor (,) with respect to any
normal coordinate system have the antipodal symmetry.

PROOF: Let G be the matrix of (,) with respect to a normal coordinate
system centered at 0 and let y be a geodesic through 0 and q E y. Then
we have to prove that

First we have to compute G(q). Therefore we put t = 1 in (4.16) and
(4.17). This gives the relation between the global coordinates ( v,, ua) of
p = exp(x(1) + a(1)) and the normal coordinates (03BBl, 03BC03B1) with respect to
the basis (xl(0), a03B1(0)) of T0N. Further, from (4.2) we obtain that in
general the dual frame of (x,, aa) is determined by the left invariant

1-forms 0" 03C803B1, where

for i, j = 1,..., n and a = 1,..., m. Hence

To obtain the components of G( p) with respect to normal coordinates
we have to express dvl and du03B1 as functions of d03BBl, dit,,,. Therefore we
use the fact that the eigenvalues of G are independent of the normal
coordinate system choosen at 0 and hence we put

On the 6-dimensional manifold we then choose a basis (al, a2) for Z and
the basis (xl, x2, xi, x4) of V with
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An easy calculation now shows that

Moreover from (4.16) and (4.17) we derive

where

if |03BC| ~ 0. The case IILI = 0 can be obtained by continuity.
Note that

and

where

Now from (5.8) we compute dv,, dua; then use (5.3) and (5.4) and
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substitute in (5.5) after evaluating at p. So we obtain the following form
for the characteristic polynomial:

for j = 1,...,8 and 03B2=1,....,4.
From this it is clear that

when O03B2=0 for all 03B2. When at least one O03B2 ~ 0, the same result is

obtained as can be seen easily by multiplying the first, third and fifth row
by Oa. This finishes the proof since p can be any arbitrary point q near 0.

REMARKS:

A. As we already mentioned we do not know of any nonhomogeneous
manifold having the properties given in Theorem 5.2 or Theorem 5.3. It
would be nice to know if a Riemannian manifold with one of these

properties is (locally) homogeneous. This would imply that a harmonic
space is (locally) homogeneous.

Further it would also be of some interest to know if the property of
Theorem 5.3 has something to do with the fact that all geodesics are
orbits of one-parameter subgroups. Is an extension of that property to
the class of manifolds such that all geodesics are orbits of one-parameter
subgroups, possible?

B. In [1] the authors consider also the class of homogeneous manifolds
such that ~XTX = 0 for all X~X(M). It is straightforward but tedious
to prove that such a (1,2)-tensor T cannot exist on the 6-dimensional
group of type H.

Note that TXX = 0 implies 7xTx = 0 as can be seen from (AS(iii)).
Finally we derive another property for the 6-dimensional example in

relation with the theory of k-symmetric spaces. We refer to [7],[11] for a
detailed theory about these spaces and for further references.
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First we write down explicitly the brackets for the Lie algebra n of the
6-dimensional group ( N, ~,~). We obtain easily

l all the other brackets being zero.

Next put

and define the linear map S of n by

It follows at once from (5.13) and (5.14) that S is an isometric automor-
phism of the Lie algebra (n, ~,~) and moreover S3 = I. Hence N is a
3-symmetric space. Note that the canonical almost complex structure J
associated with S, i.e.

is neither nearly Kâhler nor almost Kâhler (see [14], [7]). The fact that J
is not nearly Kâhler agrees with the fact that (N, ~,~) is not naturally
reductive.

Next consider the linear map S defined by

It is easily seen that S is again an isometric automorphism of (n, ~,~) but
now S4 = I. Hence ( N, ~,~) is also a 4-symmetric space. So we proved

THEOREM 5.4: The 6-dimensional group of type H is 3- and 4-symmetric.

We note that these two facts are implicitly included in [12]. See also
[14]. Further a more detailed research about the relation between k-sym-
metric spaces and general groups of type H would be of some interest.
We hope to come back on this in another paper.
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