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1. Introduction

Kodaira proved (see [2], Theorem 19) that a compact complex analytic
surface with a trivial canonical bundle is a complex torus, a K3 surface or
an elliptic surface of the form C2 IG, where C2 denotes the space of two
complex variables (z, w) and G is a properly discontinuous non-abelian
group of affine transformations without fixed points of C2 which leave
invariant the two-form d z A dw.

Surfaces in the last class, referred to as Kodaira surfaces, are complex
analytic fibre bundles of elliptic curves over an elliptic curve and, from
the point of view of the differential (or even real-analytic) structure,
parallelizable manifolds represented as non-trivial circle bundles over the
real- three-dimensional torus: a denumerable family indexed by the

single torsion coefficient of their first integral homology group. (Absence
of torsion is taken as index one.)

If X is a compact complex analytic surface with a trivial canonical
bundle, a non-zero global holomorphic two-form 11 will satisfy:

d~ = 0, ~ 039B ~ = 0 and ~ 039B ~ &#x3E; 0 at every point of X. (1)

Conversely, any global complex-valued two-formq on the underlying
canonically oriented differential manifold Xo of X, satisfying conditions
(1), defines an integrable almost complex structure, that is, a complex
structure on Xo, with respect to which q is holomorphic (and nowhere
null).

Thus, if we denote by P the complex projective space associated to
H2(X0, C) and by p~P the point corresponding to the cohomology
class of a global holomorphic non-zero two-form, for some complex
structure on Xo with a trivial canonical bundle, p will necessarily lie in
the open set D determined on the quadric p · p = 0 by the condition
p · p &#x3E; 0, where multiplication and conjugation respectively come from
cup product and conjugation on H2( Xo, C).

The group of orientation preserving diffeomorphisms of Xo acts natu-
rally on D.
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Starting with a Kodaira surface X (compare [4]), we prove:

THEOREM 2: Given any line p ~ D of H2(X0, C), there exist representa-
tives ~ of p satisfying conditions (1).

THEOREM 3: Any two such representatives define isomorphic complex ana-
lytic structures on Xo.

From results of Kodaira and Yau (see [2]&#x26;[3]), it can be seen that any
complex structure on Xo appears in this manner, i.e. has a trivial

canonical bundle.

Thus, a parametrising space for the isomorphism classes of complex
structures on X. should be the quotient of D by the action of the
orientation preserving diffeomorphisms of Xo.

It turns out that this quotient may be identified to the product of the
complex plane with a punctured disk (say, the unit disk without zero)
.and embodies the moduli space (Theorem 4).

Our approach involves related results on discrete co-compact sub-
groups of a certain four-dimensional nilpotent real Lie group (Theorem
1) and makes the treatment of this case quite similar to that of tori.

2. A description of Kodaira surfaces

Let X be a Kodaira surface. Then (see [2]), the fundamental group of X
may be generated by four elements g,, i = 1, 2, 3, 4, satisfying the
following relations:

= id for all couples

and g3g4g-13g-14 1 = g2 for some positive integer m.
The universal covering of X is complex analytically isomorphic to C2,

the space of two complex variables (z, w), is such a manner that gj,
regarded as covering transformations, take the form:

where ai == a2 = 0 and 03B1303B14 - 03B1403B13 = m · 03B22.
We shall identify C2 with R4, the space of four real variables

(x, y, u, v ), by z = x + iy, w = u + iv.
Now, considering the group A of all real-affine transformations of

C2 = R4, commuting with any transformation of the form
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one discovers that A may be identified to C2 endowed with the following
multiplication:

Thus, the complex structure of C2 determines a right-invariant com-
plex structure on A and any Kodaira surface appears as the compact
quotient of A by some discrete subgroup r, generated, according to (3),
by gj (0, 0) = (03B1j, 03B2j), j = 1, 2, 3, 4.

Conversely, given a discrete subgroup r of A, such that the space of
left cosets A/0393 = {a · 0393; a~A} is compact, the complex structure in-
duced on this quotient will give a Kodaira surface, since the canonical
bundle is trivial and A /r can be neither a torus (see details below), nor a
K3 surface.

3. Proof of the theorems

We identify the Lie algebra a of right-invariant tangent vector fields on A
with R4, the tangent space of A = C2 = R4 at the origin, and denote by
X,, i = 1, 2, 3, 4, the canonical base.

Simple computations give:

Consequently:

for all couples
and

It follows that a is nilpotent and its center is spanned by X3 and X4.
The exponential mapping will be a diffeomorfism and multiplication, in
logarithmic coordinates, will have the form: (Campbell-Baker-Hausdorff
formula)
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These formulae make plain that the logarithmic image (i.e. the image
by the inverse of the exponential mapping) of any discrete co-compact
subgroup of A has to span a as a vector space. Therefore r is non-abelian
and must be isomorphic to the fundamental group of a Kodaira surface.

Given two such groups r and r’, corresponding to the same torsion
coefficient m, we may choose generators g) and g’j respectively, j = 1, 2, 3,
4, according to (2). We identify a and A by exp. If we look at g) and g’j as
elements of a, then {gj} as well as {g’j} have to be bases of a (g1, gl lie
in the center of a and g2, g2 are proportional to X4) and the linear map
defined by gj - g’j is an automorphism of a which carries r onto r’.
We have proved:

THEOREM 1 : Discrete co-compact subgroups F of A are classified, up to
automorphisms of A, by the single torsion coefficient of H1(A/0393, Z).

We consider now, dually, right-invariant forms on A and set:

We have (Maurer-Cartan equations):

and

Let us fix the topological (differential) type X, of a Kodaira surface X.
Theorem 1 shows that, instead of obtaining the various complex

structures on Xo by different representations of the fundamental group,
we may fix some lO and vary the right-invariant complex structure of A.
Such a complex structure corresponds to a right-invariant complex
two-form q (determined up to multiplication by non-zero constants)
with:

and at every point of A .

A basis of right-invariant closed two-forms on A is given by:

Moreover, 03B812 is exact by (9) and any wedge product 0, -1 A 03B8kl of forms
in (11) vanishes, except the case {i, j, k, l) = {1, 2, 3, 4), when 0i j 039B Bkl 
= ± dx 039B dy 039B du 039B dv.
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Since the second Betti number of a Kodaira surface is four, we see
that

considered as forms on Xo = A/03930, determine a basis of H2( X0, C).
If, with respect to this basis, a point p E D has homogeneous coor-

dinates (pij), 1  1  j  4, (i, j) ~ (1, 2), (3, 4), then clearly 11 = p1303B813 +
p1403B814 + P23023 + p24e24 defines a right-invariant complex structure of A
and, considered on Xo, a representative for the line p~ D of H2(X0, C).
This proves:

THEOREM 2: Let P be the projective space associated to H2(X0, C) and
D := {p~P|p·p=0, p · p&#x3E;0}, where multiplication comes from cup

product.
For any line p E D of H2(X0, C), there exist two-forms 11, representing

p and such that d 11 = 0, 11 /B 11 = 0 and 11 A fi &#x3E; 0 at every point of Xo.
Thus, 11 is a nowhere null holomorphic two-form corresponding to some

complex structure on X0. ~
Left translation of a closed right-invariant two form remains right-in-

variant and alters at most the coefficient of (JI 2 , since the induced

diffeomorphism on Xo is homotopic to the identity.
So far as we are interested only in isomorphism classes of complex

structures on Xo, it is readily seen that, by convenient left translations,
we may altogether dispense with 03B812 and restrict to forms

which are parametrised (up to multiplication by non-zero constants
precisely by D.

REMARK 1: At this point, it is possible to perform a construction similar
to that encountered in the case of tori (see [1]).

For p = (pij)~ D, we conceive the right-invariant complex structure
on A given by q in (13) as a complex structure on a, that is, a certain
point in the Grassmann manifold of complex two-planes in a (&#x26; C.

The pull-back K over D of the canonical quotient vector bundle of the
Grassmann manifold is, differentiably, identical to the trivial (real) vector
bundle a X D, so that ro acts naturally and holomorphically on K (to the
right). This action is properly discontinuous, without fixed points and
K/ro projects onto D as a complex analytic family of Kodaira surfaces.
The fibre over p OE D is Xo endowed with the complex structure de-
termined by q in (13).

Furthermore, this family is complete.

Let now P be a two-form on Xo, cohomologous to some fixed
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(considered on Xo ) determined, according to (13), by a point p E D.
Suppose that v A v = 0 and v n v &#x3E; 0 at every point of Xo. We want to
prove that q and v define isomorphic complex structures.

Since Xo with the structure induced by v has to be isomorphic to some
fibre in the family above, our problem may be reformulated as follows:

Let p and p’ be points in D, q and q’ the corresponding two-forms
given by (13).

Suppose that f : Xo - Xo is an orientation preserving diffeomorphism
such that f *p’ = p.

Then, one should prove that q and q’ define isomorphic complex
structures.

Let F be a lifting of f to the universal covering A of Xo.
The map F induces an automorphism (p of the covering transformation

gr6up ro of Xo and the arguments for Theorem 1 show that (p extends
uniquely to an automorphism 4Y of A.

If p" E D satisfies 4Y* p" = p and q" corresponds to p" by (13), then ~
and q" define isomorphic complex structures because 03A6*~" and q are
both right-invariant and (conveniently proportioned) differ at most by
multiples of 03B812 which disappear by appropriate left translations.

This means that we reduced the problem to the case of a diffeomor-
phism F commuting with the covering transformations. Consequently, f *
is the identity on H1(X0, Z) and, by de Rham and Poincaré duality, f * is
the identity on H1( Xo, C) and H3( Xo, C).

Let tij ~ H2(X0, C) denote the cohomology class of 0, j and let t’ij =

f*tij, 1  i  j  4, (i, j) ~ (1, 2), (3, 4).
Since f * commutes with cup (wedge) products and the bilinear form

on H2(X0, C) is nondegenerate, one readily finds that:

If we let ro be generated by (the exponential image of) Xl, X2, X3 and
- 2lmX4, then ml2tl4 is an integral class and m/2. À has to be an
integer k. (Integrate, e.g. on the two-cycles corresponding to the subalge-
bras spanned by {X1, X3}, {X2, X3}, {X1, X4}, {X2, X4}.)

But the same effect (14) on H2( X0, C) will be obtained if we consider
the automorphism of A determined by the automorphism of ro :
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According to previous discussions, this suffices to establish:

THEOREM 3: The complex structure defined on Xo by a two-form q

satisfying

and at every point of Xo,

depends ( up to isomorphism ) exclusively on the line of H2( X0, C) de-
termined by the cohomology class of 11. D

It remains to describe the quotient of D by the action of orientation
preserving diffeomorphisms of Xo and we saw already that for this

purpose we may restrict our considerations to diffeomorphisms induced
by orientation preserving automorphisms of A sending ro onto ro .

These automorphisms are entirely determined by their restriction to ro
which (on generators) has to be of the following form:

where V = - 2/mX4, all coefficients are integers and ad - bc = e = ± 1.
Now, in homogeneous coordinates (p13, p23, p14, p24), D is given by:

and the effect of (15) on D is:

where

Using (16), it follows that (up to sign) plalp24 undergoes a modular
transformation, while P13/P14 is translated by - 2 k/m .

But (p13, p23, p14, p24) ~ (p14/p24, p13/p14) defines an isomorphism
of D onto H+ X H+ U H_ X H_ , where H+ and H_ denote the upper
and lower half plane respectively.
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The quotient of H+ by the modular group is isomorphic to the

complex plane and the quotient of H+ by an infinite cyclic group of
(real) translations is isomorphic to a punctured disk.

If we let a=e= -d= -1 and b=c=p=q=r=s=k=0 in (15),
then the induced automorphism of D clearly interchanges the two con-
nected components of D.
We also notice that in our considerations we made use of a fixed

orientation on Xo = A/ro. But the case of the reversed orientation is the
pull-back of the initial case by means of the orientation-reversing diffeo-
morphism of X, induced by: Xl ~ X,, i = 1, 2, 4 and X3 ~ - X3.

This concludes the arguments for:

THEOREM 4: The moduli space corresponding to isomorphism classes of
complex structures on Xo may be identified to the product of the complex
plane with a punctured disk.

REMARK 2: Recall that a Kodaira surface X is a complex analytic fibre
bundle of elliptic curves over an elliptic curve. The typical fibre is

isomorphic to the identity component of the automorphism group of X.
It can be seen that the first coordinate in the parametrising space

above comes from the modulus of the base (i.e. of the meromorphic
function-field on X), while the second one can be (holomorphically)
mapped to the modulus of the fibre.
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