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1. Introduction

The concept of a wreath product of permutation groups has been well
documented in the literature. Kaluznin and Krasner introduced the idea
in [6] in order to obtain groups with a certain universal property. Various
other results were established in [6], for wreath products of finitely many
groups. Wreath products with an infinite number of factors were dis-
cussed in [2] and [8]. The approach used there was to write the wreath
product as a union of finite wreath products, with a suitable embedding
rule.

Hall in [3] approached the problem of a wreath product of infinitely
many permutation groups in a different manner. His construction in-
volved defining the wreath product directly as a subgroup of the symmet-
ric group on a suitably chosen set. The wreath product obtained was
"restricted", in some sense. Moreover, Hall only considered wreath
products of groups indexed by totally ordered sets. Hall used his results
to construct various groups with special properties. The work of Kaluznin
and Krasner was subsequently generalized in [4] by Holland who con-
structed " unrestricted" wreath products of permutation groups indexed
by a partially ordered set. He showed, in particular, that every transitive
permutation group could be embedded in an "unrestricted" wreath

product of primitive permutation groups. Some applications of the
results obtained appeared in [5]. The current paper generalizes some of
Hall’s results to wreath products of groups indexed by partially ordered
sets. Unlike Holland, we obtain "restricted" wreath products. Some
applications occur in [1]. We now describe the construction.

Let (A, ) be a partially ordered set and, for each 03BB~ A, let Gx be a
permutation group defined on a set Xx. In Xx, select a fixed element,
denoted by 103BB. Let X denote the set of all " vectors" (x03BB)03BB~039B, where
XÀ E XÀ, and for all but finitely many 03BB~039B, x03BB = 103BB. We write X =
Dr03BB~039BX03BB, the direct product of the sets xx. For each 03BB~ A we define an
equivalence relation on X by:

x ~ y(mod 03BB) if and only if x03BC=y03BC for all 03BC&#x3E;03BB.
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Let 1 = (103BB)03BB~039B and if g E G. define a permutation g on X by:
If x e 1 (mod À) then xg = x and if x = 1 (mod À) then xg = y where

Thus 9 only affects the À-coordinate of x, and then only in one special
case. Let Gx = {g|g~ G03BB}, for each A E A. Then, as in [3], G03BB ~ Gx. The
restricted wreath product of the groups GÀ, denoted by wrx,.A(Gx, Xx), is
then defined to be ~G03BB|03BB~ 039B~, a subgroup of the symmetric group on X.
When it is clear which sets are being acted upon, we shall simply write
wr03BB~039BG03BB for the wreath product. We note that in general wr03BB~039BG03BB
depends on the choice of the elements I.; however, just as in [3], if the G.
act transitively on X., for each 03BB~ A, then wrÀEAGÀ is independent of
the choice of the elements 103BB.

Note that when A is totally ordered, our definition coincides with that
of Hall. Also when A has no relations, then Lemma ‘.4 implies the
wreath product reduces to the direct product.

One particularly interesting kind of partially ordered set that can be
used is the set of all subgroups of a group. Alternatively if G is an

arbitrary group we can set 039B = 039B(G) = {H  G|H is finite} and define
G. to be H and regard G, as acting on itself by right multiplication, so
X, = H also. We then define W(G) = wrH~039BGH. Theorem 5.8 implies
that for all groups G, W( G ) is locally finite; if G is also countable then so
is W(G). Thus our wreath product allows us to have some control over
cardinality. Of course, the fewer finite subgroups a group G has, the
simpler W(G) is. For example, when G is torsion free W( G ) = 1, and if G
is a "Tarski Monster" (see [7], p. 30) then W(G) is simply a direct
product of cyclic groups of prime power order. Tarski monsters have
recently been shown to exist by Ol’sanskii [9]. For further results con-
cerning W(G) the reader is referred to [1].

In the case when A = (1, 2} and G, acts on itself by right multiplica-
tion, then W = wr{G1, G2} is simply the standard restricted wreath

product of the groups G, and G2. Furthermore, if G, acts on Jg and Y is
the orbit of 12 in X2 then it is well known that W = G(Y)1]G2 where as
usual G(Y)1 is the set of functions from Y to G 1, the so called base group.
The above isomorphism is as permutations groups on Xl X X2.

The layout of the paper is as follows. In section 2 we obtain various
preliminary results and commutator identities concerning conjugates of
certain elements. We also obtain a generalized embedding lemma which
says essentially that if r c A then wr03BB~0393G03BB  wrÀEAGÀ. ln Section 3 we
obtain what can be regarded as a Kaluznin-Krasner type result which we
state as:
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THEOREM 3.5: Let r be a finite partially ordered set and let Q be the same
set as r with some of the relations in r omitted. Suppose GÀ is finite and
transitive on X.. Then wrÀEQGÀ is permutationally isomorphic with a

subgroup of wrÀEAGÀ.

A further result of this kind also appears in Section 3.
In Section 4 we obtain a result analogous to Lemma 2 of [3]. Thus we

show that every element in a wreath product can be written in an

essentially unique manner as a product of certain other elements chosen
from certain canonical subgroups. The arguments used are similar to
those used by Hall, but, as with much of this work, the partial ordering
does create some subtle variations in the arguments used. In Section 5,
we consider those subgroups which fix certain coordinates and show that
under certain conditions such subgroups are normal. This gives a differ-
ent characterization of the subgroups defined in section 4, and enables us
to exhibit each wreath product as a split extension in a manner analogous
to the usual representation of the standard wreath product as the base
group extended by the top group. The final result of this section is our
main theorem which is a generalization of Hall’s theorem C in [3]. As
applications of the result (Theorem 5.8) we can show, for example, that a
wreath product of locally finite, locally solvable groups is also locally
finite and locally solvable.

In Section 6 we discuss briefly what effect using a different equiva-
lence relation has on the definition of the wreath product. For example,
Theorem 5.8 also implies that a wreath product of p-groups is again a
p-group. We give a very straightforward example of how a change in the
equivalence relation makes the result above false.

The notation used is generally standard and is essentially the notation
used in [10].

2. Preliminary results

In this section we shall obtain a generalization of Hall’s segmentation law
(see [3], p. 177) and a straightforward embedding lemma. We shall also
obtain certain conjugacy results which indicate exactly how certain group
elements act. These results will be of use throughout the rest of this
paper. We shall use the notation introduced in the introduction.

LEMMA 2.1: Let 03BB1,...,03BBn~ 039B and suppose g ~ ~G03BBl|i = 1,... , n). If g ~ 1,
then there exists y E X such that yg ~ y and y03BC = 103BC unless it = 03BBl for some i.

PROOF: Since g ~ 1 there must be some x E X such that xg ~ x. The only
coordinates of x that can be moved are the coordinates 03BB1,...,03BBn.
Suppose 03BB ~ 03BBl and for all i we have either À  À, or À and À, unrelated.
Then the À-coordinate of x is never moved. This coordinate also has no
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effect whatever on the action of g on x. Thus we may assume x03BB = lx and
still have xg ~ x.

Suppose without loss of generality that the À,-coordinate of x is

moved by g and let y = (y03BC)03BC~039B be chosen so that

Note that the action of g on the 03BB1-coordinate of x is determined by those
coordinates À for which À &#x3E; 03BB1. However if À &#x3E; Xi and x03BB ~ 103BB and 03BB ~ À,
for all i then the Xi-coordinate of x never gets moved by g. Thus the
coordinates À with À &#x3E; Xi must have x03BB = 1. and the preceding remarks
then imply yg ~ y. This completes the proof.
A subset r of A will be called full if À, jn E r and À  jn in A implies

À  jn in r. If G and H are permutation groups acting on sets X and Y
respectively then we shall say G and H are permutationally isomorphic if
there exist maps 0 and ~ so that

(i) 0 is an isomorphism from G onto H.
(ii) ~ is an injection from X into Y.
(iii) (xg)~ = (x~)(g03B8) for all x E X and g E G.
This terminology differs slightly from that of Holland [4]. The follow-

ing result is analogous to that of Hall ([3], lemma 3). However the proof
is slightly different.

LEMMA 2.2: Suppose r is a full subset of A. Put W = wrÀEA(GÀ, XÀ) and
V = wr03BB~0393(G03BB, Xx). Then V is permutationally isomorphic with ~G03BB|03BB~
0393~ ~ W.

PROOF: The group V acts on the set Y = Dr03BB~0393X03BB and we can identify Y
with a subset of X = Dr03BB~039BX03BB in a natural manner. Let ~: Y - X denote
this embedding. If y E r and g ~ Gy, let g be the map induced by g in V
and let g be the map induced by g in W. We define 0 : V - W by
()03B8 = g and then define (03A0nl=1l)03B8=03A0nl=1gl where g, E Gx@, say. We

need to show that 0 is well defined, which amounts to showing that if
g = 03A0nl=1l = 1y then 03A0nl=1gi = 1X. This follows by Lemma 2.1 however.
Clearly 0 is a homomorphism and is injective. Hence 0 is an isomorphism
of V onto ~G03B3|03B3~0393~. But the action of g on x E Y is the same as the
action of gO on y = xcp. Thus

Hence Vits permutationally isomorphic to ~G03B3|03B3~0393~.
In the sequel this result will be referred to as the (generalized)

embedding lemma and will often be used implicitly.
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We define a partial order « on the subsets of A as follows. If r,
à c A then we write r « à if and only if y  0 whenever y E rand
03B4~ A. If r is a full subset of A then we shall say that r is a segment of A
if for each a E A precisely one of the following holds:

(i) À E r
(ii) {03BB} ~ 0393
(iii) 0393 ~ {03BB}
(iv) no element of r is related to À.
A segmentation of A is a decomposition of A as a disjoint union of

segments A,, l~I039Bl, where I is an index set. The set I inherits the

ordering « in a natural manner. We can then obtain in a manner

analogous to Hall [3], the following segmentation law (or generalized
associative law).

LEMMA 2.3: Let I be an index set and for each i E I, let A, be a segment of
A. Suppose A = l~I039Bl and for each i E I, let W, = wr03BB~039BG03BBl and Yl =
Dr03BB~039BlX03BB. Then wrl~I(Wl, Yl) ~ wrÀEAGÀ as permutation groups.

The proof of this result is omitted. Here the groups Gx need not be
transitive on X., so the distinguished element of Y, must be chosen to be

(103BB)03BB~039Bl.
We now start the task of establishing the commutator and conjugacy

results that will be required later. For the sake of brevity, the proofs of
some results are omitted.

LEMMA 2.4: Suppose À, 03BC E A and À and it are unrelated. Then [G03BB, G, = 1.

PROOF: The straightforward proof simply requires an analysis of the
cases when x ~ 1(mod 03BB) and so on.

The next few results indicate how various elements interact with each
other. We shall first require some notation which will be of use later. For
each 03BB~ A define the groups

or (¡..t and À are unrelated

Thus
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LEMMA 2.5: Suppose h E Ux and g E Gx, for some fixed À E A. Then

PROOF: Suppose 03BBl ~ A for i = 1,..., n and that À, &#x3E; À or À, is unrelated
to À, for each i. Let h = h1...hn with hl ~ G03BBl. Notice that (xh-I)À = xx.
There are two cases. 

(i) If xh-1 ~ 1(mod03BB) then (xh-1)g=xh-1 and x(h-1gh)=x(h-1h)
= x.

(ii) If xh-1 == l(mod À) then, applying g,

If h is now âpplied, certainly we have (xh-1gh)03BB = xa g, since h does not
affect the À-coordinate, and (xh- 1gh)03BC = x IL if tt ~ À, since h, will change
the À,-coordinate if and only if h-1l changed the À,-coordinate. This
completes the proof.

Note that Lemma 2.5 says that g h can only affect the À-coordinate,
provided h E Ux. This is certainly not the case if h 5É Ux. For example, if
jn  À, g E G. and h E G03BC then gh affects the p-coordinate in general. A
more general result of this type appears elsewhere (see [1]).

LEMMA 2.6: Let g E Gx, h E GT and h, E G03BCl ( for i = 1,...,n). Suppose
ti, &#x3E; À for each i and that 03BB and T are unrelated. Then [gh1...hn, h] = 1.

PROOF: Let k = h1...hn and let x E X = Dr03B3~039B X03B3. Then by lemma 2.5,

otherwise.

Applying h and noting that  ~ 03BCl for any i, we have,

and

otherwise.

otherwise
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If we now apply h first we have:

otherwise.

Applying g k gives

and

otherwise

otherwise.

Thus, comparing these, we see hgk = gkh and the result follows.

COROLLARY 2.7: Let g~G03BB, h~G03BC and suppose that À and 03BC are

unrelated. Let k ~ T03BB and 1 E T03BC. Then [gk, hl] = 1.

PROOF: Let k = kl...kn and l = l1...ln where kl ~ Gl, 1, ~ G03C3l, r, &#x3E; À and

03C3l &#x3E; it. Let (03C3l1,..., 03C3lr} constitute the set of those elements which are
unrelated to À. Then all other a, must be bigger than À. The result then
follows by Lemma 2.6, the above observation and induction on r.

COROLLARY 2.8: Suppose À, T E 039B and À  T. Suppose a E Gx and h,
g E GT. If 1h = 1Tg then g-lag = h-lah.

PROOF: The result follows from Lemma 2.5 and the fact that xg--’ = xh -’
(mod À) for all x E X.

Corollary 2.8 essentially says that the effect of conjugating by an
element of GT is determined by the effect of the corresponding element
on 1. The next lemma is not surprising when one recalls the base ,group,
representation of a wreath product of two groups.

LEMMA 2.9: Suppose À, T E 039B and À  T. If 1 ~ a, b E Gx and h, g E GT
and if 1g ~ 1Th then g-1ag ~ h-1bh and [g-lag, h-1bh] = 1.

PROOF: The proof is omitted since it requires only a consideration of the
cases and the use of Lemma 2.5, in a rather simplified form.

The next result is a variation of Lemma 2.9.
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LEMMA 2.10: Suppose À, it, T E 039B and 03BC  À  T. Suppose g, h E GT,
1 ~ a~G03BC, b~ G03BB and 1Tg *- lTh. Then g-lag =1= h-1bh and

[g-1ag, h-1bh] = 1.

PROOF: Using the embedding lemma, we may assume 039B = {03BB, it, }. The
result then follows by a straightforward consideration of the possible
cases.

The list of commutator results is completed with the following result,
whose proof is again omitted.

LEMMA 2.11: Suppose À, IL, T E 039B. Suppose T &#x3E; 03BC, 03BB &#x3E; it and À and Tare
unrelated. Let g E Gx, h E GT and a, b E G03BC. If 1Th *- 1T or 1Àg *- lÀ then
[g-1ag, h-1bh] = 1.

3. Further embeddings

In the standard wreath product, A 1 B, provided B is finite, it is possible
to define the diagonal and this is a subgroup of A 1 B isomorphic to A.
We can obtain analogous results in our more general setting.

If g E G. and the orbit of 1 in XT is finite and if T &#x3E; À, Jet 0394g denote
the product of all the distinct conjugates of g by elements of GT . Thus if
1a1,...,1ak denote the distinct images of 1 in XT (with a, E GT ) then
corollary 2.8 implies

This product is well defined by Lemma 2.9. The next result tells us what
effect 0Tg has on x E X.

LEMMA 3.1: Suppose g E Gx and the orbit of 1, in XT is finite, with À  7".
Let a,, a2,..., ak be defined as above. Then

otherwise.

for some i and

for all 03B3 &#x3E; 03BB,
with y =1= r

PROOF: Use Lemma 2.5.
In this section we shall establish an analogue of a theorem of Kaluznin

and Krasner [6]. They proved that A 1 B contains an isomorphic copy of
every extention of A by B provided B is finite.
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LEMMA 3.2: Suppose g E Gp.’ h E Gx and 03BC and À are unrelated. Suppose
the orbit of 1T is finite and that T &#x3E; À and T &#x3E; 03BC. Then

PROOF : Use Corollary 2.7.
We can easily extend the definition of 0394. Suppose r c A, and that

0393 ~ {}. Then 0393~{} can be segmented. If 1Tal’...’ 1Tak are the
distinct images of 1T by elements al~ G then for h E H ~ wrYE rGY we
see, as before, that ha1,...,hak are the distinct conjugates of h and we
define 0394h = 03A0kl=1hal. We define 0394H to be {0394h|h~H}. In particular,
if GT is finite and GT acts transitively on XT then 0394(wr03B3~0393G03B3) is simply
the diagonal of (wr03B3~0393G03B3)  GT. In the context of this paper the introduc-
tion of the diagonal in terms of the map 0394 seems more appropriate.
Proposition 3.3 is hardly surprising in view of the preceding remarks.

PROPOSITION 3.3: Suppose r is a full subset of A and let T E A be fixed.
Suppose 7" &#x3E; y for all Y E r. If the orbit of 1T in X is finite and H  wr03B3~ 0393G03B3
then

PROOF: (i) Let a1,...,ak~G be such that l".aI’...’ l,ak are all the
distinct images of 1 in X. Then for g E GY with 03B3 ~ r, 0394g=03A0kl=1gal
and that 0394 is a homomorphism now follows from the observation that if
h E G, with p E r then 0394(gh)=0394(g)0394(h). This follows immediately
from an application of one of Lemma 2.6, Corollary 2.7 or Lemma 2.9.
To complete the proof that 0394H ~ H we note that as above 0394(wr03B3~0393G03B3)
is the diagonal of (wr03B3~0393G03B3) GT so 0394(wr03B3~0393G03B3) ~ wr03B3~0393G03B3 from known
results. Restricting 0394 to H proves the result.
(ii) To prove (ii) let g E GT and h E H. Then h = 03A0nl=1gl, for certain gi,
and 0394(h)=03A0nl=10394(gl), so it suffices to show [g, 0394(h)] = 1 when
h~G03BB for 03BB. But 0394(h)=03A0ki=1hal and 0394(h)g = 03A0kl=1halg. However
g induces a permutation of the conjugates, which all commute, so

This completes the proof.
Our next result shows that the commutator actions of K  wrYErGy

and 0394K are the same. 

LEMMA 3.4: Suppose r is a full subset of 039B and H, K  wrYErGY. Suppose
T E 039B and y  T for all y E f. Then [h, l] = [h, à,l], for all h E H, 1 E K.
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PROOF: Let h E H, 1 ~ K. Then 0394l = 03A0kl=1lal where the a, are chosen as
usual. Without loss of generality we may put a, = 1, and we set 03A9(g) =
03A0kl=2gal for g~G03B3. so if l=03A0nl=1gl then 0394(l)=l03A9(gl)...03A9(gn) using
Lemma 2.6, Corollary 2.7 and Lemma 2.9. But h commutes with all the
03A9(gi) by the same results. Hence [h, 0394l] = [h, l as required.
We come now to the main result in this section. We shall require some

new terminology. Let r be a set on which two partial orders  and 
are defined. We say that the order  extends the order 4 on r if

whenever À, jn E r and À 4 t£ then À  jn. If (039B, ) is a partially ordered
set and r c A then we may form a new partially ordered set (039B, ) by
simply suppressing some of the relations in (A, ), and  then extends
. We shall say r is an unfulfilled subset of A when talking about the
ordering 4 on r. To ease the notation we shall let 03A9 be a set with the

same elements as r and assume that the ordering on r is the usual one
and the ordering on g is .

THEOREM 3.5: Let r be a finite partially ordered set and let 03A9 be an

unfilfilled subset of r with Q = F. Let Gx be transitive on Xx and suppose
GÀ is finite for each À E F. Then wrÀEflGÀ is permutationally isomorphic
with a subgroup ofwrÀErGÀ.

PROOF: The proof is by induction on the number of relations in ( r, ).
Clearly we may assume Ifl &#x3E; 1 and that ( r, ) has n ~ 1 relations. Let
r = {03BB1,...,03BBr}. If n = 1 then we may assume À,  03BB2 and À, is unrelated
to Àj for all other values of i and j. Since g is unfulfilled, (03A9, ) has no
relations so wr03BB~03A9G03BB = DrÀEflGÀ. Let À = À, and T = À2. Then in (0393, ),
À  T so we can form 0394G03BB and this is a group isomorphic with G03BB by
Proposition 3.3(i). 

_

Consider the action of 0394G03BB on x~Dr03BB~0393X03BB. By Lemma 3.1, if

1a1,...,1ak are the distinct images of 1 then, for g E Gx,

otherwise.

for some i and

forall 03BC&#x3E;03BB
with jn =;É T.

However, in this case, only T &#x3E; À so 0394g acts like g on x = (x03BB)03BB~0393, and
as if À and Tare unrelated. The action of g E G03BC for jn ~ À is unchanged.
Hence wr03B3~03A9G03B3 is permutationally isomorphic with ~G03BC, 0394G03BB|03BC~03BB,
03BC~0393~.

Suppose that we know the result is true for n = k and that ( r, ) has
k + 1 relations. Suppose À, T E r and À  T. Let 03A9 be the same set as r,
but let 03A9 have all the relations of r except that À and Tare unrelated in
03A9. Then 03A9 has k relations, so for any unfulfilled subset 2 of 03A9 we have,
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by induction, that wr03B3~03A3G03B3 is permutationally isomorphic with a sub-
group of wr03B3~03A9G03B3.

Let 03BB = 0394G03BB ~ G03BB. Then as above, for g E GÀ, g = OTg acts on
x E Dr03B3~0393X03B3 as if y and T were unrelated. However the actions of Gy for
all 03B3 ~ 03BB are unchanged since all other relations are unchanged. It follows
that if H = ~G03B3|03B3 ~ 03BB~ then ~H, 03BB~ = wr03B3~03A9G03B3 as permutation groups.
This completes the proof.

There is a slight variation of this when some of the Gp. are not

transitive on the corresponding sets Xp.. The proof of the above result can
be slightly modified and so we state the following theorem without proof.

THEOREM 3.6: Let r be a finite partially ordered set. Suppose GT is not
transitive on XT for some T E r and that, in r, À  T. Suppose g is the
fulfilled subset of r, with 03A9 = r, that has all the relations of r except chat À
and T are unrelated. Then wr03BC~03A9G03BC is isomorphic, as a group, with

~0394G03BB, G03BC|03BC ~ 03BB, 03BC~0393~.

The results obtained in Theorems 3.5 and 3.6 are the best possible in
the sense that none of the G03BB can be infinite and r cannot be infinite.
For example, let G be a cyclic group of order 2 and for each prime pi ~ 2,
let Al be a cyclic group of order p,. Let A = Dri~1Ai and consider the
groups to be acting on themselves in the regular representation. Then
W = G B A contains no subgroup isomorphic with G X A. To see this, let
K be the base group of W. Then W = KA. Suppose X ~ A and let

 = {p1, p2,...}. Then X is a maximal 77’-group since if Y is a Tr-group
containing X, then Y contains, for each prime pl, a Sylow pi-subgroup, Y,
of W, which is also contained in X. Then YlK/K~ SylplW/K and
YK/K=Drl~1YlK/K = W/K. Thus W = YK, whence Y ~ A. Then Y ~
X and hence X = Y. (We have here used standard facts from the Sylow
theory of locally finite groups.)

It follows that every group isomorphic with A complements K. We
claim that for each such subgroup X, the centralizer CW(X)=X. It

suffices to show CK(X)=1, since W=KX and X  CW(X). Suppose
x E X. Then x = ka for some k E K and some a E A. Clearly if p is a

prime then x has order p if and only if a has order p. Thus if 1 E CK(X)
then 

since K is abelian.

The previous remark then shows l~CK(A) = 1. Thus CK(X)=1 and
G i A contains no subgroup isomorphic with G X A. Thus taking r =
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{1, 2), with the usual order, and G1 = G, G2 = A we see that none of the
G03BB can be infinite in Theorem 3.5. Taking r = (0, 1, 2,...}, with the
order 0  n for all n = 1, 2, 3, ... and m and n unrelated whenever m,
n =1= 0, and putting Go = G and G, = A, for i  1, we see that r cannot be
infinite.

4. A uniqueness result

In this section we shall obtain a generalization of Lemma 2 in Hall’s
paper [3]. This method of expressing elements of W = wr03BB~039B(G03BB, Xx) in
a unique manner as products of certain conjugates is sometimes useful
since it gives a certain amount of control over which coordinates are
moved. We shall use the notation already established. We shall be

interested in considering the effects of conjugating by elements in the
subgroups Tx, Ux, and Vx introduced in Section 2. We also let D’A = GV03BB03BB
a Vx, for 03BB~ A. Clearly G03BB  Dx. Our first result shows that the effects
of conjugating by elements from Tx, Ux, and V. are the same.

LEMMA 4.1: With the above notation D’A = GT03BB03BB Gu"*

PROOF: Clearly GT03BB03BB  GU03BB03BB  Dx. Suppose k~ D03BB and k 9 -h,...hn n where
g E G03BB and h, E G, for certain G03BC with jn il- À. Suppose that h, E Gx for
some i. Then

In this manner we can write every element of Dx as an element of GU03BB03BB,
whence G)x = D . The fact that GU03BB03BB = (if). follows from Lemma 2.6. The
result follows.

LEMMA 4.2: For each À (-= A, D03BB ~ U03BB=1.

PROOF: Let g = gh11...ghnn ~ D. ~ U03BB, where g, E Gx, h, E T03BB and suppose
g ~ 1. Then, for some x E X = DrÀEAXÀ, xg ~ x. Lemma 2.5 implies

However elements of Ux are generated by elements of Gp, for Il &#x3E; À or tt
and À unrelated. In particular elements of G03BC can never alter the À-coordi-
nate of x, which is a contradiction.
We can now obtain the uniqueness part of the result required. First,

we note that Szpilrajn [11] has shown that a partial order defined on a set
can always be extended to a total order. (This theorem is actually an
unpublished result of Banach, Kuratowski and Tarski.) Thus we shall let
 be an extension of the order  on A, so that (039B, ) is totally
ordered.
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LEMMA 4.3 : Let r = {03BB1,...,03BBn, 03BC1,...,03BCm} and g1...gn = h1...hm where
1 ~ g, E D03BBl and 1 ~ h, E D03BCl. Suppose 03BBl  À and 03BCl  03BCj, whenever i  j.
Then n = m and g; = h for ail i .

PROOF: We consider three cases. First suppose 03BB1  03BC1. Then g1 =
h1...hmg-1n...g-12. Hence gl E D03BB1 n UÀ1 (we cannot have 03BC1  ÀI 1 other-
wise 03BCl  03BC1, a contradiction). By Lemma 4.2, gl = 1, a contradiction.
Now suppose 03BB1 = 03BC1. Then

Hence gl = h 1 so g2 ... gn = h2...hm and the result follows by induction.
Finally suppose À1 and 03BC1 are unrelated in the ordering  . If 03BB1  03BCl for
all i then we obtain a contradiction as in the first case. Thus we may

assume it,  03BB1 for some i. Choose i as small as possible so that it,  À, .
Now

On the other hand, the choice of i implies h-1l ~ U03BCl. Hence h, ’ 1 E D03BCl n
U03BCl = 1, again a contradiction. This completes the proof. 
We can now obtain the extension of Hall’s result that is required.

PROPOSITION 4.4: Every element of W can be written uniquely in the form
g = gl ... gn where g, E DÀI and 03BBl  03BBj whenever i  j.

PROOF: The uniqueness part of the assertion follows from Lemma 4.3. To
prove existence, let g = h 1... h m E W where hl ~ G03BCl say. Choose it, F. r =
{03BC1,...,03BCm} so that it, is minimal and so that i is as small as possible
with 03BCl minimal. Then, for j  i, jn,  jn and if k 

= (h1...hl-1)-1 ~ U03BCl we
have, 

The result then follows by induction on m, with applications of Lemma
2.6 and Corollary 2.7 where necessary.

The results obtained above can be used to obtain a concise formula for
the order of a finite wreath product, in terms of the groups Gx and sets
X.. The details will appear elsewhere.

5. Subgroups fixing certain coordinates

The aim of this section is to obtain a structural result concerning wreath
products over arbitrary partially ordered sets. This should be regarded as
analogous to theorem C in Hall’s paper [3], although the result estab-
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lished here requires a rather different proof. The results already estab-
lished in Section 3 could be used to obtain a somewhat restricted version
of the main result of this section, but further machinery is necessary to
obtain the best possible result. At the same time we obtain certain

canonical subgroups of a wreath product.
We use the notation introduced earlier. Thus A will denote an arbi-

trary partially ordered set. For each 03BB~ A, G. will be a group acting on a
set X03BB and W = wr03BB~039B(G03BB, X03BB).

If r ç A then the set of elements of W fixing all coordinates in r will
be denoted by HI,. Thus H0393 = {g~ W|(xg)03B3=x03B3 for all 03B3~0393}. The
following result is then clear.

LEMMA 5.1: For all subsets r of A, H0393 is a subgroup of W.

In general, for r c A, Hr need not be a normal subgroup of W. For
example, if 039B = {1, 2} with the usual order and if h E G1, g E G2 (where
G, acts on itself in the right regular representation for i = 1, 2) then g
fixes the first coordinate but gh does not. We shall obtain conditions on
r which ensure that H r a W.
A subset r of A is called a filter with respect to À (=- A if jn E r

whenever ti E A and jn &#x3E; À. F is called a filter if whenever À E r and it &#x3E; À

then jn E r.

LEMMA 5.2: Let r be a filter with respect to À e A. Then G03BB  NW(H0393).

PROOF: If 0393 = Ø then Hr = W, so the result is clear. If À e r then

elements of Gx fix all coordinates but the À-coordinate, by definition.
Hence G03BB  Hr in this case. If 03BB~ r and h E Hr then for g ~ G., we
need to show g- lhg fixes all coordinates in r. There are several cases.

If x ~ 1 (mod À) then xg-1 = x so xg- lhg = xhg. Also since r is a
filter with respect to À, x ~ 1 (mod À) implies xh e 1 (mod À). Thus
xhg = xh . Hence if x ~ 1 (mod À) then xg- lhg = xh and all r-coordi-
nates are fixed.

If x ~ 1 (mod À) then

For  ~ 03BB and T E r we therefore have

since g fixes the T-coordinate.

since h fixes the T-coordinate
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For T = À, (xg-Ihg)À = x03BB since x = 1 (mod 03BB) implies xg-1 = 1 (mod 03BB)
and xg-’h = 1 (mod 03BB). This completes the proof.

COROLLARY 5.3: Suppose r c A and that r is a filter. Then Hr a w.

PROOF: If À E r then r is a filter with respect to À, so G03BB  NW(H0393) by
Lemma 5.2. If 03BB~ r then G03BB  H0393  NW(H0393). The result follows.

Note that even when r is a filter, Hr need not be normal in Sym X,
the symmetric group on X. Before giving some examples of filters, we
shall obtain a partial converse of Corollary 5.3.

LEMMA 5.4: Let r c A. If Hr a W then r is a filter, provided the orbit of
103BC is not trivial for all jn ~ r.

PROOF: Suppose H0393 ~ W, but r is not a filter. Then there exists À E r
and some 03BC &#x3E; À with jn ~ r. Then G03BC  H0393 and hence GW03BC  Hr since
Hr a W. Choose g ~ G03BC so that 103BCg ~ 103BC and choose h E G03BB, y ~ X03BB so
that yh ~ y. Then if x E X is chosen so that

we have

In particular, h - lgh does not fix the À-coordinate, a contradiction. The
result is proved.

To obtain examples of filters, let 03BB~ A and define the sets rx, 03A903BB, and
8À as follows:

The following result is then routine.

LEMMA 5.5: For each À E=- A, the sets 039303BB, DÀ and 039403BB = 039B - 039403BB are all filters.

It then follows from Corollary 5.3 that the subgroups H039303BB, H03A903BB and
H039403BB are all normal in W. We can form filters in other ways also. Let
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r ç A and let r* = UÀErQÀ. Then r* is a filter called the filter generated
by r. This method of forming filters enables us to decompose wreath
products into semi-direct products, as follows. We first introduce the
notation that if r c A then Wr = ~G03B3|03B3~0393~.

LEMMA 5.6: Let r be a filter. Then
(i) W = BrBr and H0393~ Hr = 1.
(ii) H0393 = (W0393)W~W.

(iii) Hr = Wr.

PROOF: (i) Since r is a filter, Hr ~ W. Also if y OE r then G03B3  Hr. Hence

and

Moreover W = hWr so W = H0393H0393. Clearly H0393 n H0393 = 1, so (i) is proved.
(ii) and (iii) follow from the observation in (i), the facts that W = VH0393

= H0393W0393 = H0393H0393 and the Dedekind law.
Notice that in general W0393 ~ H0393. It is always the case that W0393  H0393,

but when A = (1, 2, 3} with the usual order, and r = (2) then Wr = G2
 GG32  H0393. We now obtain a slightly different characterisation of

certain of the subgroups Hr. We recall that if 03BB ~ A then T03BB = ~G03BC|03BC &#x3E; 03BB~
and D. = GT03BB03BB. We shall write À for the complement of {03BB} in A.

LEMMA 5.7: For all À EE A, Dx = H03BB.

PROOF: By Lemma 2.5, D03BB  H03BB. Suppose g E H03BB. Then, by Proposition
4.4., g = gl ... gn, where 1 ~ gl ~ Dx for certain À, E A ( = 1,..., n ). By
choosing x E X correctly we may suppose xgl =1= x. Consequently the
03BB1-coordinate of x is moved, again by Lemma 2.9, and hence g moves the
03BB1-coordinate of x. Hence 03BB1 = À.

Suppose n  2. If 03BB2 is unrelated to À, then g = g2g1g3···gn by
Corollary 2.7 and, as above, À = À2, a contradiction. Thus 03BB1  À2. But
we can then choose x~X so that x03BB2 =A IX2 and x ~ X92 = xgl g2 . Thus, as
above, 03BB2=03BB=03BB1, again a contradiction. It follows that n = 1 and

g E D03BB1 = D.. Thus H03BB  D. and the proof is complete.
Suppose now that À is minimal in A. Then À is a filter and H03BB = DÀ a

W. Thus H03BB is the base group of G. B T. and is simply the direct product
of certain conjugates of CÀ by elements of T.. These observations will be
useful in the proof of the next theorem, which is the analogue of theorem
C in Hall [3] that we seek.
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THEOREM 5.8: Suppose x is a class of groups which is closed with respect to
forming (i) direct powers and (ii) split extensions. Then

(i) If A is finite and G À ~X for all À E 039B then W E X.
(ii) If Gx OE LX, for all À E A, then W E LX.

PROOF: (i) The result is proved by induction on A 1, the case 1 A = 1 being
clear. Suppose the result is true for sets 03A9 with IQI |  |039B|, and let r be the
set of minimal elements in A. Then 0393 is a filter and Lemma 5.6 (i)
implies W = HfHr. Also Hr = Wf in this case. Since |0393|  |039B|, it follows
that W0393~X. We claim also that Hr = DrYErDy. For, if y E r, D, = G W
 Hf. On the other hand, (GyIY E 0393~  03A003B3~0393D03B3 ~ W, so Lemma 5.6 (ii)
implies

Thus H0393 = 03A003B3~0393D03B3. Lemma 5.7 now implies, for y, w G r

Hence the product is actually direct and the claim follows. Now the
remark preceding Theorem 5.8 implies Hr is a direct product of finitely
many X-groups, and hence is an X-group. Hence W = HrHr E X, since X
is split extension closed.

Part (ii) follows from part (i). This completes the proof.
For further illustration of how useful the subgroups H0393 can be, the

reader is referred to [1].

6. Concluding remarks

When the wreath product was originally defined in Section 1, it was
mentioned that one could use other equivalence relations. Here we give
an example to show that the use of a different equivalence relation does
not give such nice results as we have obtained. We shall use the notation
introduced in Section 1, but introduce a new equivalence relation on X
by defining:

if and only
whenever

Such a relation can be defined for each A E A. If g E Gx we now define
g E G03BB as before. Thus (with the new relation) xg = x whenever x e 1
(mod À) whereas if x = 1 (mod À) then
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As before we put G03BB = {g|g~ G03BB} and define the wreath product to
be ~G03BB|03BB~039B~. We now show that the wreath product, defined in this
manner, of two groups of order 2 can be isomorphic with the symmetric
group on three symbols.

Let A = {1,2} and suppose 1 and 2 are unrelated. Let G, = (g) and
G2 = ~h~ be groups of order 2 acting on Xl = X2 = (1, 2} in the same
manner as the permutation group ~(1, 2)) acts. It is easy to see that g, h
and gh are all distinct and all fix the ordered pair (2, 2). Thus the wreath
product in this case essentially only acts on a three element set and hence
is isomorphic with the symmetric group on three symbols. In particular,
Theorem 5.8 is not valid for this wreath product. This illustrates how
crucial the choice of equivalence relation is in the definition of a

generalized wreath product.
To conclude, we remark that the wreath product as defined in Section

1 enables us to construct numerous, apparently new, examples. In [1], for
example, a canonical method is given for constructing certain FC-groups.
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