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1. Introduction

Let p be a prime, q = pa, and denote by Fqm the field of qm elements. Let
~1,...,~b: Fqm ~ ex be multiplicative characters. Composing with the
norm map Nm: F§m - Fq gives multiplicative characters on Fqm:

We extend these characters to Fq m by defining ~(m)i(0) = 0.
Let X be an algebraic variety over Fq and gl, ... , gb regular functions

on X. We define character sums Sm ( X; gl , ... , gb; ~1,...,~b)( = Sm ) by

where the sum is over all x E X(Fqm), the Fqm-valued points of X.
Such sums have been studied classically by Davenport [6] in the one

variable case, and the Brewer and Jacobsthal sums in particular are of
this type. More recently, mixed sums involving additive and multiplica-
tive characters have been treated p-adically by Gross-Koblitz, Boyarsky,
Robba, and Adolphson-Sperber. Sums involving multiplicative characters
alone have been studied p-adically by Heiligman, in his Princeton thesis,
and by Dwork [10a]. Indeed, the present work is related to Dwork’s
one-variable cohomological study of sums of this type associated to the
hypergeometric differential equation (see [2]).

The L-function associated with these character sums by the formula

* Partially supported by NSF grants MCS 79-03315 and MCS81-08814(A01).
** Partially supported by NSF grant MCS 80-01865.
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is an Artin L-function associated with a certain Kummer covering of X.
More precisely, let w be a generator for the cyclic group of multiplicative
characters of F q and write X, = i i = 1,..., b. The F q-covering Y of X
defined by

(where g E Fq acts on Y by sending (x, y) to (x, gy)) and character w
determine an Artin L-function

where P runs over all closed point of X and deg P is the degree of the
, 

residue field of P over F.. It is well-known that these two constructions
agree, i.e.,

By results of Dwork and Grothendieck, this L-function is rational. In
this article, we are concerned with the case where X is affine space with
the coordinate hyperplanes removed and - - e Fq[x1,...,xn]. Put

where the sum is over all x = (x1,...,xn)~ (F qm)n. Let

The theory of Dwork and Reich produces a p-adic entire function (of
the variable t), namely det(I - ta), the Fredholm determinant of the

completely continuous Frobenius endomorphism a of a certain p-adic
Banach space. This entire function is related to L*(t) (see Eqn. (2.17)).
The main result of this paper is Theorem 3, which gives a lower bound
for the Newton polygon of det(I - ta). This lower bound gives useful
information concerning the properties and particularly the p-adic behav-
ior of the character sums. In particular, we are able to apply the estimates
for the Newton polygon to obtain bounds for the degree and total degree
of L* ( t ) (where we define for a rational function fi g, f and g relatively
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prime polynomials,

These results (Theorems 4, 5, 6, 7) may be regarded as the analogues for
multiplicative characters of the main theorems of [4] and [5].
We thank the referee for indicating how Deligne’s work on the

Euler-Poincaré characteristic reduces our computation of the degree of
the L-function to the degree of the zeta function of an associated variety.
To estimate this degree the results of Bombieri [4] may be applied.
However a better result is obtained by modifying his argument. Thus the
fine analysis of the entire function det( I - ta) is not, strictly speaking,
necessary for the computation of the degree of L*(t). However, the
estimates for the matrix of the Frobenius endomorphism a and for the
Newton polygon of det( I - ta) enable us to obtain estimates for the total
degree of L*(t) and to analyze the unit roots (Theorem 8) of L*(t).
We therefore view this paper as constructing the (pre-cohomological)

Banach space theory for the p-adic study of the character sums Sm and
the associated L-functions L(t). In addition, we draw from the pre-
cohomological theory new information concerning degree, total degree,
and "first slope" of the Newton polygon. As in other situations of this
type, we believe that in the generic case L*(t)(-1)n+1 is a polynomial of
degree equal to the upper estimate (namely, Dn) we obtain in Theorem 5
for deg L*(t)(-1)n+1. We believe that generically L(t)(-1)n-1 

1 

is a poly-
nomial of degree ( D - 1)". The present study indicates a possible weight
function which will underlie a Dwork-type cohomological analysis of
these character sums.

We believe the methods of this paper will lead to a similar treatment

of "mixed" sums of the type

where f, g E Fq[x1,...,xn], ~ is a multiplicative character on F q, and 41 is
an additive character on Fq.

The outline of the paper is as follows: in Sections 2, 3, 4, 5 we derive
the lower bound for the Newton polygon. We apply this result in Section
6 to estimate the degree of L*(t) and in Section 7 to estimate the total
degree of L*(t). In Section 8 we find sufficient conditions for L* ( t ) to
have a unique unit root and study the example of an elliptic curve that is
a three-fold covering of the line.

Finally, we note that if h1, h 2 are polynomials and X a multiplicative
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character, then

Hence by increasing the number b of characters if necessary, our results
may be easily extended to the case where g1,...,gb are rational functions.

The first author would like to thank the University of Minnesota for
its hospitality while this research was carried out.

2. Theory of Dwork-Reich

In this section we fix notation and review the work of Reich [13]. Let Qp
denote the p-adic numbers and let 03A9 be the completion of an algebraic
closure of Q p . Let Ka denote the unique unramified extension of Qp in 03A9
of degree a over Qp. The residue class field of Ka is F. (where q = pa) and
the Frobenius automorphism x H x p of Gal(Fq/Fp) lifts to a generator T
of Gal(Ka/Qp). If 03B6 is a (q - 1 )-st root of unity in Ka, then (03B6) = 03B6p.
Denote by "ord" the additive valuation on 03A9 normalized so that ord p = 1,
and denote by "ordq" the additive valuation normalized so that

ordq q = 1.
Let h~Fq[x1,...,xn] be a non-zero homogeneous polynomial of de-

gree d  1. Let (9, denote the ring of integers of Ku. We denote by h the
polynomial in Oa[x1,...,xn] whose coefficients are roots of unity and
whose reduction mod p is h (i.e., h is the Teichmüller lifting of h ).

For technical reasons, in order to apply the results of [13], we work
over a field whose value group contains positive rational numbers E, à
satisfying E + d0  11 q. For example, taking 03A90 = Ka(), where 17 is a

root of p of sufficiently high order, gives such a field. Put 9, = Qp().
The Frobenius automorphism T of Ka is extended to Qo by requiring that
T(7r)= ?I.

For E, à as above, define a subset D = D(~, 0, h ) of 03A9n by

Denote by J=J(~, A, h ) the space of bounded holomorphic functions
on D(~, A, h) that are defined over 03A90, i.e., 5z7is the set of bounded

functions on D that are uniform limits of rational functions in

03A90(x1,...,xn) whose denominators are non-vanishing on D. Under the
sup norm, J is a p-adic Banach space of type c(I) (in the terminology of
[14]). If h is a product of distinct irreducible factors, then Reich [13] has
given an explicit orthonormal basis for 59’: The order of the variables
xl, ... , xn induces a lexicographic order on the set of monomials of fixed
degree in xl , ... , X n. Let M be the maximal monomial occurring in h. Let
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{Qv}v~0 be the set of all monomials not divisible by M. Then the set

can be made into an orthonormal basis for JF by multiplying each i E I

by a suitable constant y, E 00.
Let 4,p be the 0-linear endomorphism of J defined by

where the sum runs over n-tuples y = (YI’ ... ,yn)~03A9n such that y,p = x,,
i = 1,..., n, and let 03C8q = (03C8p)a. For F e,5?7, we denote by 03B1F=03C8q o F the
endomorphism of J obtained by composing 03C8q with multiplication by F.
Reich [13] shows that aF is completely continuous (in the sense of [14]),
hence the following hold:

Tr aF and det(I - taF) are well-defined and independent of E, à (subject
to E, à &#x3E; 0,,E + dà  1). (2.3A)

det( I - t03B1F) is a p-adic entire function. (2.3B)

Define for m ~ 1

where x E (Fqm)n is the reduction of x modulo p. The Reich trace formula
[13] asserts

We now describe how (2.4) connects p-adic analysis with the theory of
character sums. Suppose we have b multiplicative characters XII ... Xb:
F q ~ Kâ (we allow one or more of these characters to be trivial).
Composing with the norm map Nm : F qm ~ Fq gives multiplicative char-
acters on F qm:

which we extend to Fqm by defining x(m)l(0) = 0. Let gl, ... , gb E
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Fq[x1,...,xn] and put d, = deg g,. We are interested in the character sum

and its associated L-function

We first give an elementary argument to replace the g, by rational
functions which are quotients of homogeneous polynomials of the same
degree.

For i = 1,...,b, let l ~ Fq[x0, x1,...,xn] be the homogenization of g, :

Then

Hence

By factoring the gi into their irreducible factors and using the multiplica-
tivity of the ~i, we can find distinct irreducible homogeneous polynomi-
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als h1,...,hc ~ Fq[x0, x1,...,xn] and multiplicative characters ~’1,....,~’c
such that

where e, = deg h,. Furthermore, h, is not divisible by xo for any i.
Thus if we set h = x0h1h2·...·hc, then h satisfies Reich’s hypothesis,

namely, h is a product of distinct irreducible factors. Let w: Fy - Kâ be
the Teichmüller character: for x E F q, a (1 ) is the unique root of unity in
Kf whose reduction mod p is x. The character group of Fq is cyclic of
order q - 1, generated by w, so we may write ~’l = for i = l, 2,..., c,
where 0  IL,  q - 2. For i = 1, 2,..., c, set

where h, is the Teichmüller lifting of h i. Note that h i (xq) = h¡(x)q +
pfi (x), where fi(x) E Oa[x0, xl, ... , xn ] is a homogeneous polynomial of
degree qe,, hence

The second factor on the right may be expanded by the binomial series,
and will converge for 1 p - fi(x)/hl(x)q| 1. It is then straightforward to
check that Hi(x) ~J(~, A, h ) for suitablee, A, where h = x003A0cj=1hj.

Note that if x~D(~, 0394, h) satisfies xq=x, then (2.10) implies
Hl(x)q-1=1. Furthermore, f or such x, equation (2.11) implies that

Hi(x) mod p coincides with hl(x)/xe0, where x denotes the reduction of
x mod p. Hence

More generally, if x E D(~, A, h ), x qm = x, then

It follows immediately that



332

Put H(x)=03A0cl=1Hl(x)03BCl ~J(~, 0, h ) and let aH denote the composition
03C8q 0 H, acting on J(~, A, h). We define an operator à on power series
with constant term 1 as follows: if f(t)~1+t03A9[[t]], put f(t)03B4 =
f(t)/f(qt). Then (2.3C), (2.4), and (2.14) imply

By (2.8) and (2.9),

The injectivity of 8 then allows us to express the original L-function in
terms of aH:

This equation is the starting point for our work. We shall estimate the
Newton polygon of det(I - taH ) (under a certain hypothesis on the ~’l)
and use this estimate to study the L-function on the left-hand side of
(2.17).

3. A Reduction Step

Our method gives a good estimate for the Newton polygon when all ~’l
take values in Q p . Since x § = 03C903BC,, this will be the case exactly when

(recall that q = pa ), where 0  vl  p - 2. This gives a factorization of H:
If we put

then

Put 03B1H,0 = ’¥p 0 -1 o 03A0cl=1H(l)0(x)03BDl, an 03A91-linear endomorphism of J.
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Equation (3.1) implies

The Fredholm determinants of aH and aH,o are related by

where the product is over all roots of 03B6a = 1 (see [10, §7]). Thus a point
(x,y)~R2 is a vertex of the Newton polygon of det( I - taH ) computed
with respect to the valuation "ordq" if and only if (ax, ay ) is a vertex of
the Newton polygon of det03A91(I- taH@,) computed with respect to the
valuation "ord." Hence we are reduced to estimating the Newton poly-
gon of det03A91(I - taH,O)’ which will be the object of the next two sections.

4. Estimâtes f or the Frobenius Matrix

For our purposes, it is convenient to give a new orthonormal basis for the
space J=J(~, A, h), where h = x0h1· ...·hc is a product of distinct
irreducible homogeneous polynomials with unit coefficients. We shall
define a total order on the set of monomials in xo, xl, ... , xn. Let M’, M"
be two such monomials and denote by ordx0(M’) (resp. ordx0(M")) the
highest power of xo that divides M’ (resp. M").

1. If deg M’  deg M", define M’  M ".

2. If deg M’ = deg M" and ordx0M’ &#x3E; ordxoM", define M’  M".
3. If deg M’ = deg M" and ordxo M’ = ordxoM"(= e, say),

then xüeM’ and xüeM" are monomials in xl, ... , xn of the same degree.
The order of the variables x1,...,xn induces a lexicographic order on
monomials of a fixed degree in xl, ... , xn, hence xûeM’ and X0 eM " are
ordered. We give M’ and M" the induced ordering. This defines a total
order on the set of monomials in xo, x1,...,xn which is compatible with
multiplication of monomials, i.e., if M’, M", M "’ are monomials and
M’  M ", then M’M "’  M "M "’.

Let M, be the maximal monomial occurring in h,. Then M = 03A0ci=1Ml is
the maximal monomial in 03A0ci=1hi, xo M is the maximal monomial in h,
and x0 + M. Let {Q03BD }03BD~0 be the set of all monomials in xo, xl, ... , ’Xn that
are not divisible by xo M. By Reich [13], the set I = {Q03BDhj}03BD~0,j~Z can
be made into an orthonormal basis for J by multiplying each element of
I by a suitable constant, namely, any constant 03B303BD,j such that ~03B303BD,jQ03BDhj~J
= 1.

THEOREM 1: Let ( R, }03BC~0 be the set of all monomials in x1,..., xn that arc
not divisible by M. Then the set
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can be made into an orthonormal basis for,5Pby multiplying each element of
I’ by a suitable constant, namely, any constant 03B3(03BC, ko, k) such that

~03B3(03BC, ko, k)R03BCxk00(h1 · ... ·hc)k~J=1.

PROOF: Let h = h1 · ... · hc. We must show that every e ~Jcan be written
in the form

with (a(03BC, ko, k)} converging to 0, and that for such a representation of
t one has ~03BE~J= sup03BC,k0,k|a(03BC, k0, k)|. We know by Reich that

with {b(03BD,j)} converging to 0. Put D = 03A3cl=1 deg h,. Using [13], we have

To describe y(¡..t, ko, k) we distinguish two cases:
If k ~ ko, then

If k &#x3E; ko, then

A straightforward calculation using (4.3) and (4.4) shows that for each v,
j we can write

(a sum over finitely many triples jn, ko, k ) with
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for all v, j, jn, ko, k. Substitution in (4.2) then shows that every 1 OE Jfhas
an expansion of the form (4.1) with {a(03BC, ko, k)l converging to 0.

It remains to show that ~03BE~J= sup03BC,k0,k|a(03BC, k0, k)|. Clearly, ~03BE~J
sup03BC,k0,k|a(03BC,k0,k)| so we need only prove the opposite inequality. For
this, it suffices to show the following.

If 03B4 &#x3E; 0 is such that ~03BE~J03B4, then sup |a(03BC,k0,k)|03B4.
/l-.ko,k

For i = 1, 2, let

where 03A3(1) (resp. 03A3(2)) denotes a sum over those it, ko, k such that
la(JL, ko, k)|  03B4 (resp. la(ii, k,, k)|  8). Then e = e, + 03BE2 and ~03BE1~J  8,
so ~03BE2~J03B4 also. Furthermore, L:(2) is a finite sum since {a(03BC, ko, k)}
converges to zero.

For any triple (jn, ko, k ),

a sum over finitely many pairs v, j, with 1 d (v, j; jn, ko , k)| ~ 1. Further-
more, if we put K = min(ko, k ), then d(03BD,j; ju, ko, k ) = 0 for j  K. And

if we pick v’ such that

then Id(v’, K; jn, ko, k)| = 1. Note also that Qv. is maximal (in the order-
ing defined at the beginning of this section) among those monomials Q,
such that d(03BD, K; tt, ko, k)~0. Finally, note that if v, j is such that

d(03BD,j;03BC,k0,k)~0, then

with equality holding if ( v, j ) = ( v’, K ). Consequently,

where |(03BD,j; 03BC, ko, k)| ~ 1 and 1 K; it, ko, k)1 | = 1.
Let À = min ( K I K = min(ko, k), |a(03BC, ko, k)| ~ &#x26; 1 . Consider (4.7) with

i = 2 and substitute on the right-hand side from (4.10). This expresses 03BE2
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in terms of the 03B303BD,jQ03BDhj. Choose p such that Q03C1 is maximal among all
monomials Q, such that Q03BDh03BB occurs with non-zero coefficient in this
expansion of 03BE2. It is not hard to see that there is a unique triple
(03BC, ko, k) such that |a(03BC, ko, k)| ~ 03B4 and such that Q03C1h03BB occurs with
non-zero coefficient on the right-hand side of (4.10), and that

|(03C1, À ; tt, ko, k)1 = 1. It then follows that the coefficient of Yp,ÀQphÀ in
t2 is a(03BC, ko, k)d(03C1, À ; jn, ko, k), which has magnitude &#x3E; 5. But

{03B303BD,jQ03BDhj} is an orthonormal basis for J, so ~03BE2~J~03B4, a contradiction.
This contradiction shows there is no triple jn, ko, k with |a(03BC, ko, k)| ~ 8,
which establishes (4.6). QED
We now return to the problem of estimating the Newton polygon of

det03A91(I - t03B1H,0). Let 03BE1,···1 ea be an integral basis for Qo over 2, that has
the property of p-adic directness [9, §3c], i.e., for any 03B21,...,03B2a~ 03A91,

Then an orthonormal basis for J as an !11-linear space can be obtained
from the set

by multiplying each i~ I by a suitable constant y, ~ °0 (in fact, one may
take y, = y(¡..t, ko, k) as given by (4.3) and (4.4)).

Put e, = deg h, for i = 1,... c, let E = 03A3cl=1el03BDl and let R = [E/(p - 1)],
where the v, are as defined in §3. Let deg(R03BCxk00k) denote the degree of
R03BCxk00k as rational function (i.e., degree of numerator minus degree of
denominator). A straightforward calculation using the definition of aH 0
shows that if 03BElR03BCxk00k ~ Î, then all basis elements 03BEl,R03BC,xk’00k’ ~  that
appear with non-zero coefficient in 03B1H,0(03BElR03BCxk00k) satisfy

Let ff., be the closed °l-subspace of 3’with orthonormal basis

Then (4.11) and (4.12) imply that aH,o is stable on,5w,’, so by [14, Lemme
2], 
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But (4.11) implies that |deg(R03BC’xk’00k’)|  |deg(R03BCxk00k)| unless

deg R03BCxk00k = 0, and (4.12) implies that k o  k’0 unless k0 ~ -R. Hence
by [14, Prop. 12]

Equations (4.13) and (4.14) reduce us to the problem of estimating the
Newton polygon of det03A91(I - t03B1H,0|JJ). Let

so that (C(i, i’))l,l’~J is the matrix of «H,o with respect to J. By [14, Prop.
7a],

where the outer sum is over all subsets {i1,..., im} of m distinct elements
of J and the inner sum is over all permutations a on m letters, sgn(a)
being the sign of the permutation a. The main result of this section is
Theorem 2, which estimates ord C(i, i’). In the next section we shall use
(4.15), (4.16), and Theorem 2 to estimate the Newton polygon of det03A91(I
- t03B1H,0|JJ).

For j~Z, j  0, put

i.e., 03BB(j) is the smallest integer such that p03BB(j) + j ~ 0. For convenience
we put 03BB(j) = 0 when j &#x3E; 0. Define

THEOREM

PROOF: Put where has degree pe,.
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Then

where a(l)r~Oa satisfies a(l)0=1 and ord a(l)r~r and B(l)r(x)~Oa[x]
satisfies B(l)0(x) = 1, and deg B(l)r(x) = elrp. Hence

where ar E ma satisfies ao = 1 and

ord ar ~ r

and Br(x)~ Oa[x] satisfies Bo ( x ) = 1 and

where .

By [3, Lemma 1]

where M(/, it, ko, k, r, S)E ma[XO’ x1,...,xn, x-10] satisfies

deg

Note that i E J implies k ~ 0; also, v  p - 2, so k + v - rp  0 for r &#x3E; 1.
We have separated the term where r = 0 for special consideration because
k + v may be positive or negative, and these two cases are treated
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differently. We can write

wi th a, 03B2 ~ 0, 03B20 ~ -R, ord A(l,...,03B2)~0, and

Suppose first k + 03BD ~ 0. Then 03C8p o -1(03BElR03BCHxk00-Ek+03BD) is an ele-

ment of Oa[x0,...,xn, x-10] and every term on the right-hand side of
(4.22) has coefficients in Oa, so we have by p-adic directness the trivial
estimate

When k’ = 0, a short calculation shows that the right-hand side of (4.17)
is 0. For k’  0, the coefficient of R03BC’xk’00k’ on the right-hand side of
(4.22) is

where the sum is over r ~ 1, s ~ 0, 03B2~Z~0 subject to the condition

Thus by (4.19), (4.25), and the p-adic directness of ( e, la 1= 1,

where the infimum is over all r, s subject to (4.26). Since 03BB(k+03BD-rp) =
r + À (k + v ) and 03B2~0, (4.26) implies

The theorem now follows immediately from (4.27) and (4.24).
In case k + v  0, we have in place of (4.22)

where M( l, li, ko, k, r, s ) E Oa[x0,..., xn, x-10] satisfies (4.23). One then
proceeds as in the case k + 03BD0, k’  0 using (4.25) and (4.26). QED
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5. Weights and the Newton Polygon

Let rm denote the class of subsets of J of cardinality m. We shall define a
function w : J - {0} ~{03BD/(p - 1) + Z~0} (which we shall call a weight
function) having the properties that (for cm as in (4.15))

and that for r ~ 0, the number of i E J with wei) = r is finite. Then the
problem of estimating ord c_ is reduced to the problem of determining
the number of elements of J of a given weight. For r E Z~0, define

The argument of [10, §7] then proves that the Newton polygon of

det03A91(I-t03B1H,0) (with respect to the valuation "ord") lies above the

polygon with vertices (0, 0), ( a W(0), 0), and (if v &#x3E; 0)

(if v = 0 the x-coordinate is replaced by a 03A3Nr=0W(r)). The last paragraph
of §3 then implies

THEOREM 3: Suppose the X;, i = 1, 2,..., c all have order dividing p - 1.
Then the Newton polygon of det( I - t03B1H) (with respect to the valuation

"ordq") is contained in the convex closure of the points (0, 0), ( W(o), 0),
and ( if v &#x3E; 0)

( if v = 0, the x-coordinate is replaced by 03A3Nr=0W(r)).

It remains to define a weight function w satisfying (5.1).
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LEMMA 1: Consider 1 sequences of real numbers, each of length m:
{n(i)r}mr=1, i = 1, 2,..., 1. Let Q be a permutation on m letters. If x and y are
non-negative real numbers, then

PROOF: We first show that for any fixed r,

Let i0, i1 be such that n(i0)03C3(r) = maxl{n(l)03C3(r)}, n(l1)r = maxl{n(l)r}. Inequality
(5.2) follows from the observation that (since x, y ~ 0)

The lemma now follows by summing (5.2) over r. QED
We define a mapping k: J - Z as follows. If i = 03BElR03BCxk00xk ~ J, put

k(i) = k.

PROPOSITION 1: The function

satisfies (5.1).

PROOF : From (4.16) and Theorem 2,

where the inf is taken over all {ir}mr=1 ~ rm and over all permutations o
of m letters. From the definition of À,

so (5.4) implies
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Now apply Lemma 1 with 1 = 2, n(1)r = 0, n(2)r = - (k(ir) + 1 - v/( p - 1)),
x = p, y = 1 to conclude

It is now easy to check tht W(r + 03BD/(p - 1)) is a finite rational

number. In fact, since w(03BElR03BCxk00k) is independent of 1, W( r + 03BD/(p-
1)) is an integer. We can determine W(r+03BD/(p-1)) explicitly. Let
c(r) = (r+n-1n-1), the number of monomials of degree r in n variables.

PROOF: Suppose v &#x3E; 0. Recall that i ~ J implies k(i) ~ 0. By Proposition
1, w(i) = 0 if and only if k(i) = 0. But i = 03BElR03BCxk00~ J implies k0 ~ -R
and deg ( i ) = 0. Thus W(O) is the number of monomials R03BC, not divisible
by M, with deg R03BC ~ R. Since deg M = D &#x3E; R, this is just the number of
monomials of degree  R in n variables, namely, 03A3Rs=0c(s).

For r ~ 0, w(i) = r + 03BD/(p - 1) if and only if k(i) = - r - 1. Hence
w(r + 03BD/(p - 1)) is the number of monomials R03BC, not divisible by M,
with deg R03BC  ( r + 1) D + R (since k0  - R). The number of monomials
of degree s not divisible by M is c(s) - c ( s - D ) (we define c(s) = 0 for
s  0), hence

The case P = 0 is handled similarly. QED

6. Degree of the L-function

By (2.17) and the Dwork rationality criterion [8, Thm. 3],
L*(g1,...,gb; ~1,....,~b; is a rational function. Thus we may
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write

(so deg L*(g1,...,gb; ~1,...,xb; t)(- 1)n-1 = r-s). Inverting (2.17) and

solving for the Fredholm determinant of a, yields

where

LEMMA 2 [4, Corollary to Lemma 3]: I f L*(g1,...,gb; ~1,...,~b; , t)( -1)n-1
is written as in (6.1), then

provided v &#x3E; 0, where the sums E’ are over all m such that the summands
are positive. If v = 0, the right hand side should be replaced by

Since ordq(qm03C1l) = m + ordq03C1l and
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as x - +00, the left-hand side of (6.2) equals

We now determine the asymptotic growth of the right-hand side of (6.2).

PROPOSITION 3: The right-hand side of (6.2) equals

PROOF: We give the proof when v &#x3E; 0, the case v = 0 being similar. By
Proposition 2, W(k + 03BD/(p - 1)) is a polynomial in k + 03BD/(p - 1) of
degree n - 1 with leading coefficient Dn/(n - 1)! Hence

and

The proposition follows immediately. QED
We can now estimate the degree of L*.

THEOREM 4: Suppose the X;, i = 1, 2,..., c all have order dividing p - 1.
Then

PROOF: Substituting (6.3) and Proposition 3 into (6.2) and letting x -
+ oo gives the inequality on the right. The inequality on the left follows
by the argument of [4, Theorem 1(ii)]. QED

REMARK: Let us drop for a moment the assumption that the X,’s take
values in Qp. Associated to the collections {gl}bi=1, (xi}bl=1 is a lisse rank
one 1-adic (l ~ p) étale sheaf Y on the variety X = AnFq -
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This sheaf has the property that

where Hlc(X, J) is étale cohomology with proper supports and F is the
Frobenius endomorphism. Hence deg L* is the Euler-Poincaré character-
istic of J. However, J becomes trivial on an étale galois covering of X of
degree prime to p, so by a theorem of Deligne [12], the degree of
L*(g1,...,gb; ~1,...,~b; t ) is unchanged if we replace all the ~l by the
trivial character. But Theorem 4 is applicable if all the X, are trivial. Thus
we have the following more general form of Theorem 4.

THEOREM 5: For arbitrary multiplicative characters ~l of Fqx,

In fact, by Deligne’s result we have

where Z(X, t ) is the zeta function of X. An alternative approach to the
problem of bounding deg L*(t) is to express Z(X, t ) in terms of ex-
ponential sums and use the estimates of Bombieri [4]. If we let 03A8 be a

non-trivial additive character on Fq and put

then a straightforward combinatorial argument shows

hence
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Bombieri’s estimate for deg L*(03A8, x003A0bj=1gj; t ) is not as sharp as
Theorem 5. However, one can modify the argument of [4] to take account
of the special role played by the variable xo. This leads to the sharper
result :

THEOREM 5’: For arbitrary multiplicative characters ~l, i = 1,..., b, of F q,

More generally, this modification leads to better bounds for the degree
(and total degree) of the L-function associated to an exponential sum on
a closed subvariety of An. We intend to report on this result in a

subsequent article.
We believe that the upper bound D" for L*(t)(-1)n-1 (given by

Theorem 5’) is best possible and, in fact, is generically attained. Suppose
for a moment that b = 1, i.e., that we have a single polynomial
g(x1,...,xn) and a single multiplicative character X. We believe that if g
is regular (i.e., the polynomials g, xl(~g/~xl), i = 1,...,n have no com-
mon zero in projective space) and X is non-trivial, then L*(g ; X ; t)(-l)n-1
is a polynomial and

We note that the statement is true when n = 1 by Eqn. (30) of [2], and is
true (for any n ) when deg g = 1 by direct calculation. When this state-
ment holds, it allows us to obtain information about the related character
sum

where the coordinate hyperplanes are not deleted. Put

We follow the procedure of [8] to compute deg L(g; X; t)(-1)n-1. For any
subset A of (1, 2,...,n}, let n(A) be the cardinality of A and let gA be
the polynomial in n - n(A) variables obtained from g by setting x, = 0
for i E A. Then Sm(g, ~) = 03A3AS*m(gA, X), consequently
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If g is regular then so is 9A for all A ; furthermore, deg g = deg gA. Hence

In the case n = 1, it is known that if the g, are distinct and irreducible,
then

deg

This can be derived from results in [11]. A direct proof was given by
Davenport [6].

7. Total degree of the L-function

We follow closely the method of [5], which involves evaluating the sums
in Theorem 3. While we can explicitly compute the x-coordinates, we can
only give a lower bound for the y-coordinates. This will be sufficient to
estimate the total number of zeros and poles of the L-function.

Recall the basic facts about the binomial coefficients c(s) = (s+n-1n-1):

hence 03A3rs=0c(s) is the coefficient of z r in (1 - z)-n(1 - z ) -1:

One has from (7.1)

hence 03A3rs=0sc(s) is the coefficient of zr-1 in n(1-z)-n-1(1-z)-1:
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Assume for the moment that v &#x3E; 0. By Proposition 2 and (7.2),

Using (7.4) we have

We have proved

PROPOSITION 4: Under the hypotheses of Theorem 3, if v &#x3E; 0, then the
Newton polygon of det( I - taH ) is contained in the convex closure of the
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points (0, 0), ((R+nn), 0), and

N = 0, 1, 2,.... ( The same argument shows that if v = 0, then the same
statement holds provided the point (( R+nn), 0) is deleted.)

Write as in (6.1)

By [7, Exp. XXI, Cor. 5.5.3(iii)], 0  ordq03C1l, ordq~j  n. Writing out the
right-hand side of (2.17),

Hence the zeros and poles of L* ( t ) all occur among the zeros of

03A0nm=0 det( I - qmtaH)(’/n) of ordq ~ n. Let Nm be the number of zeros of
det( I - qmt03B1H) of ordq  n. Then

tot.deg

Now Nm is the total length of the projections on the x-axis of the sides of
slope  n - m of the Newton polygon of det( I - t03B1H), hence Nm can be
estimated by Proposition 4. Let ~(n) be the least integer  ((n + 1)p -
03BD)/(p - 1). Then it is easily checked that the slope of the line through
(o, 0) and the point given by (7.5) with N = ~(n) + 2 - m has slope
 n - m, hence Nm is bounded by the x-coordinate of this point:
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From (7.6) and the fact that R  D,

Let C denote the right-hand side of (7.7). It is the coefficient of x(~(n)+4)D
in (1 + xD)n(1 - x )-n-1, hence is the residue at 0 of the differential

Making the substitution x ~ z/(1 + z) and using the invariance of re-
sidues, C = res0F(z)dz/z, where

Since the coefficients in the Laurent expansion of F( z ) are all non-nega-
tive, this residue is bounded by F( z ) for all z &#x3E; 0. For example, we may
take z = D. Using (1 + 1/D)D  e we get

THEOREM 6: Under the hypotheses of Theorem 3,

PROOF: It is easily checked that ~(n) + 4 - n  5 + [( n + p - 2)/(p - 1)].
One then uses (7.8). QED

We can still estimate the total degree, even without the hypotheses of
Theorem 3. If the characters ~1,...,~b take values in the unramified

extension of Q of degree a, the estimate in Theorem 2 is modified as
follows: C(03BC, ko, k; 03BC’, k’0, k’) is the coefficient of R03BC,xk’00k’ in

03B1H(R03BCxk00k), then

It follows that the polygon described in Theorem 3 is a lower bound for
the Newton polygon of det(I - t03B1H) computed with respect to "ord"
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(rather than "ord,,"). Consequently, to obtain a lower bound for the
Newton polygon of det(I - taH ) with respect to "ord q" simple divide
each y-coordinate by a. Put it = min, ( ju, 1, R = [03A3el03BCl/( pa - 1)].

PROPOSITION 5 : If Il&#x3E; 0 the Newton polygon of det( I - t03B1H) with respect
to "ord," is contained in the convex closure of the points (0, 0), ((R+nn), 0),
and

N = 0, 1, 2,.... If it = 0, the same statement holds when the point ((R+nn), 0)
is deleted.

Applying the argument of Theorem 6 to this estimate for the Newton
polygon gives

THEOREM 7: 

8. Unit root

We investigate circumstances under which L*(g1,...,gb; ~1,...,~b; t)
has a unique unit root. By (2.17), we see that this happens if and only if
det( I - taH ) has a unique unit root, in which case these unit roots are
equal. By Proposition 5, if it &#x3E; 0 then det( I - taH ) will have at most one
unit root when (R+nn) = 1, i.e., when R = 0.

THEOREM 8: If R = 0, 03A0bl=1gl(0,...,0) ~ 0, and 03BC &#x3E; 0 ( i . e ., all ~l are

non-trivial), then L*(g1,...,gb; ~1,...,~b; t) has a unique unit root.

PROOF: By the above remarks, it suffices to show there is at least one unit
root. By (2.17), this will be the case provided Tr aH is a unit. In the
notation of the paragraph preceding Proposition 5, we must show that
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03A3C(03BC, ko, k; it, ko, k) is a unit, where the sum is over all R03BCxk00k with

Estimate (7.9), together with our hypothesis on the li,’s, implies that for
k  -1,

For k = 0, there is only one basis element satisfying (8.1), namely,
R03BCxk00k = 1 (i.e., k = k0 = 0, R03BC = 1). Thus we are reduced to showing
that the coefficient of 1 in the expansion of 03B1H(1) in terms of the

orthonormal basis is a unit.

Now 03B1H(1) = 03C8q(03A0cl=1Hl(x)03BCl), where the Hl are given by (2.10). The
assumption 03A0bi=1 g, (O, ... , 0) ~ 0 implies that each homogenization g, con-
tains a term of the form -y, x,,, where dl = deg g, and yl is a non-zero

constant. Hence the h . 1 s, which are the irreducible factors of the g,’s, all
contain a term of the form 03B3’jxej0, where e. = deg hj and 03B3’j is a non-zero
constant. It follows that the coefficient of xej0 in h. is a root of unity.
Therefore

where as in the proof of Theorem 2 a’r~Oa satisfies a’ = 1 and ord a’r ~ r,
B’r(x)~Oa[x] ] satisfies B’0(x)=1 and deg B’r(x)=Drp. Since we are

doing a mod p calculation, we may, by [3, Lemma 1], ignore the terms
with r ~ 1. Our above remarks show that the coefficient of x03A3el03BCl0 in nhf’
is a root of unity. The assertion now follows from (8.2). QED

REMARK: We believe that under the hypotheses of Theorem 8, the unit
root is 03A0bl=1~i(gl(0,...,0)).

EXAMPLE: Assume p~ 2. Let g(x)~ Fp[x] be a quadratic polynomial in
one variable, say,

Assume that 31(p - 1) and let Xl’ X2 be the cubic characters, say,

where w is the Teichmüller character on F p. Suppose that b2 - 4ac ~ 0.
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Then the projective completion C of the curve Y3 = ax 2 + bx + c is

non-singular, hence is an elliptic curve. Its zeta function is therefore of
the form

Since there is exactly one point at infinity on C, the number Nm of
solutions of y3 = ax2 + bx + c with x, y~ Fpm is

We can also count the number of solutions using the cubic characters :
denoting by ~(m)l the composition of X with the norm map from Fpm to
Fp,

Hence

The L-functions associated to ( g, XI) and ( g, ~2) are linear polynomials
(for example, by [2, Lemma 1 and Eqn. (21)]), hence 03A3x~Fpm~(m)1(g(x))
equals either -03C0m1 or -03C0m2 and 03A3x~Fpm~(m)2(g(x)) equals the other.
We can determine which is which if c ~ 0. Since p = 1(mod 3), C is not

supersingular so exactly one of 7ri and ir2 is a p-adic unit, say ff,. Since
c ~ 0, Theorem 8 applies to ( g, ~1) and we conclude that the L-function
associated to the sum 03A3x~F pm~(m)1(g(x)) has a unique unit root. But

and the right-hand side is either - 03C0m1 - X ( g (0» ’ or -03C0m2 - X 1(g(0))m.
Since ~(g(0)) is a root of unity (hence a unit) and since 03A3x~F pm~(m)1(g(x))
has a unique unit root, we conclude 
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Note also that the sum03A3x~F pm~(m)2(g(x)) = - 17Î - ~2(g(0))m has 2 unit
roots, so that the hypothesis R &#x3E; 0 of Theorem 8 is indeed necessary.
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