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PART 1. ERGODIC COMPONENTS AND THE TRANSITIVITY GROUP

Section 1

Let M = M" be a smooth Riemannian manifold, T1M be the manifold of
unit tangent vectors and Stk ( M ), k = 1, 2, ... , n, be the manifold of
ordered orthonormal k-frames over M, Stk(M) = {(x, VI, V2’.’" Vk )Ix E
M, 03BD ~ TxM, ~v~ = 1, 03C51 ~ vj for i ~ j, 1 ~ i, j ~ n}, St1(M) = T1M. The
geodesic flow g’ on M acts in Tl M in the following way: if v E Tl M, then
glv is the result of the parallel translation of v along the geodesic
determined by v at distance t. Let jn be the Riemannian volume on M and
Xi be the Lebesgue measure on the unit sphere S n -1 in TX M. The natural
product measure d vi = d p X d Xi on Tl M is preserved under gt. If M is a
compact manifold of strictly negative curvature, then the geodesic flow is
ergodic with respect to the Liouville measure P, (see [1]). The frame flow
Ftk, k = 1, 2,..., n, on M is a natural extension of the geodesic flow. It
acts in the space Stk ( M ); given a frame w = (x, vl, ... , 1 Vk) we define Fk w
as the result of the parallel translation of w along the geodesic de-
termined by (x, vl) at distance t. It follows directly from the definition
that Ft = gl. Let Xk denote the natural Lebesgue measure on the Stiefel
manifold Stk = Stk of orthonormal k-frames in Rn with support at the
origin. Then the frame flow Fk preserves the product measure dvk = dit
X d03BBk. A natural problem emerges to find out when Fk is ergodic (with
respect to Vk). It turns out that, even if M is compact and negatively
curved, Fk may have first integrals (see [4], [5]). On the other hand,
sometimes the frame flow on such an M is ergodic.

(1) For any compact negatively curved M of odd dimension different
from 7 the frame flow is ergodic (and Bernoulli) for every k (see [4]).

(2) For any compact M the set of negatively curved metrics on M with
ergodic Fk (for every k ) is open and dense in the space of all C 3-metrics

* Partially supported by NSF Grant # MCS79-03046.
* * Work supported by SFB " Theoretische Mathematik" at Bonn.
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on M of negative curvature (see [2], [4]). This open set of metrics contains
the metric of constant negative curvature, if such a metric exists [5].

In this paper we prove the following theorem.

1.1. THEOREM: Let M be a compact connected manifold with a C3-Rieman-
nian metric of negative variable sectional curvature K, -039B2  K  - À2.
Suppose the dimension of M is even and different from 8 and X/A &#x3E; 0.93.

Then F f is ergodic and Bernoulli for k = 1, 2,..., dim M - 1.

1.2. REMARK: The space of n-frames on an orientable n-manifold M is

not connected, it has two components. Thus, the flow Fn must have at
least two ergodic components, and the ergodicity of Fn on each of them is
equivalent to the ergodicity of Ftn-1. On the other hand, if M is not

orientable, the ergodicity of Ft_ implies the ergodicity of Fn. Therefore,
from now on, when dealing with Fnt, we will consider only positively
oriented frames.

1.3. CONJECTURE: If A/A &#x3E; -1, then Fk is ergodic and Bernoulli, k = 1,
2,...,dim M- 1.

The first author is grateful to the Sonderforschungsbereich "Theore-
tische Mathematik" of the Universitât Bonn for inviting him to Bonn
which made it possible for the authors to work on the problem.

Section 2

Each space Stk(M) is fibered over the manifold of unit tangent vectors
Tl M and the fiber is Stnk-1. The space Stk(M) is also fibered over

Stl(M) for every 1  k, the fiber being Stnk-l. It is easy to see that the
frame flow preserves the structure of all these fiber bundles. Let Pkl
denote the natural projection from Stk(M) onto Stl(M), 1  k, then

That means that each flow Fk, k = 1, 2,..., n - 2 is a factor of Ftn-1. So, if
Fnl -1 1 is ergodic or Bernoulli, then the same is true for Fk, k = 1,
2,..., n - 2. The structure group of the bundle p : Stn-1(M) ~ Tl M =

St1(M) is (a subgroup of) SO( n - 1). The group SO( n - 1) acts natu-
rally in the fibers of this bundle by rotations in the ( n - 1)-dimensional
plane perpendicular to the first vector of the frame. Since the parallel
translation along a geodesic commutes with rotations in the perpendicu-
lar plane, we have for every g E SO( n - 1), w E Stn-1(M) and real t
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That means that Ftn-1 is a SO( n - 1)-extension of the geodesic flow
g’= FIl (see [3]). Suppose now that M has negative sectional curvature.
Consider two tangent vectors w = (x1, v1) and w2 = (x2, v2) which de-
fine asymptotic geodesics, i.e., Xl and X 2 belong to the same horosphere
S, VI and V2 are perpendicular to S, and the distance in the induced
metric in Tl M between g,w , 1 and gl£AJ2 tends to 0 as t ~ ~. Let d be the

distance in Tl M and the induced distances in Stk(M).

2.1. DEFINITION: Denote by wl c Tx1M and w2 c Tx2M respectively the
( n - 1 )-planes perpendicular to v, and V2. For every vector v E 03C9~l there

exists a unique vector P03C9103C92v E w’ 2 such that d(Ft2(03C91, v), Ft2(03C92, P03C9103C92v))
~ 0 as t - 00. The linear isometry p 03C9~1 ~ W2L is called a positive
horospherical translation.

In a similar manner, if - VI and - v2 define asymptotic geodesic, we
define the corresponding negative horospherical translation.

2.2. DEFINITION: Fix a unit tangent vector w = (x, v), V E TxM, and
consider a finite sequence w, E Tl M, i = 1, 2,..., m, such that 03C91 = 03C92m = 03C9

and for every i = 1, 2,..., m - 1 the pair (03C9l, 03C9l + 1 ) defines a positive or
negative horospherical translation. The composition of these translations

P03C9103C92...03C9m is a rotation in 03C9~. All rotations we can obtain in this way form a
subgroup H CA) of SO(n - 1) called the transivity group at £AJ.

The transitivity group H,, acts in the unit sphere S n - 2 of w. Consider
the bundle p : Stn - 1 (M) - Stl (M) with fiber SO( n - 1) and the induced
action of H in p -1 ( 03C9 ).

2.3. PROPOSITION (see [4]): If Hw acts transitively in p-1(03C9) then Ftn-1 is

ergodic and is a K-flow (H03C9 is the closure of H03C9).

2.4. REMARK : The same flow F,,1-1 is a group extension of the geodesic
flow gt which is Bernoulli (see [12]). Therefore (see [13]), the K-property
for Ftn- 1 implies the Bernoulli property (actually mixing is enough).

2.5. REMARK: Since the sectional curvature of M is negative, for every w,
W E T1M there are wl, £AJ2’...’ 03C9m E TiM such that 03C91 = 03C9, w2 = w’ and
for every i = 1, 2,..., m - 1 the pair 03C9l, wl + 1 defines two geodesics
asymptotic in the positive or negative direction (see [1]). Hence, for every
£AJ, w’ E TI M the transitivity groups HCA) and H03C9’ are conjugate in SO( n -
1).

2.6. PROPOSITION (see [5]): If Hw acts transitively on S n - 2, n is even and
n ~ 8, then Hw acts transitively in p -1 ( w ).
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Thus, to prove Theorem 1.1 it suffices to show that under the pinching
assumption of the theorem the transitivity group acts transitively on the
sphere S" - 2. It is enough to prove this statement for the universal cover
M of M. Fix a unit tangent vector w = (x, v) ~ T1 and consider the
geodesic y defined by this vector. Denote by 03C9+~ and 03C9-~ the two ends of
y on the absolute and let S+ and S- be the two horospheres passing
through x with centers at 03C9+~ andw- (see Fig. la). Denote by S+t and Sl-
the two families of concentric horospheres centered at 03C9+~ and 03C9-~. The

parameter t is chosen in such a way that Sol = S +, S-0 = S - , St+ ~ 03B3 ~ 03C9-~
as t ~ oo, St ~ 03B3 ~ 03C9+~ as t - oo and t is the arclength along y. Let
at E SI ~ St , then the isosceles triangle (03C9+~, at, 03C9-~) has a unique triple
of coherent midpoints (x, O+, 0-) so that every two points belong to
the same horosphere (or sphere) centered at the opposite vertex (see fig.
lb).

2.7. LEMMA: The set S+t n St- is homeomorphic to the sphere S n - 2 for
every t, 0  t  00.

PROOF: Since the curvature is negative the statement of the lemma is true
for any finite positive t. For t = oo the statement of the lemma was

proved independently by Eberlein [8] and Im Hof [10].
Let now 03B1~ ~ S+~ ~ S-~ (see Fig. lc). By construction x is a midpoint

of this triangle, denote the other two midpoints by O+ and O- . Consider
now the tangent unit vectors w 1 = w at x, w2 at 0+ , 03C93 at O - and w4 at x
as shown in Fig. 2. Every two points (03C9l, 03C9l+1), i = 1, 2, 3, define

asymptotic geodesics, but wl = -03C94. Therefore, to get an element of the
transitivity group at w in this way we must consider two such points at
oo, ai and cî 2 and the composition of the parallel translations along the
triangles (x, 03C9+~, 03B11~, 03C9-~, x ) and (x, 03C9+~, a 2 co x ) gives an element
h(03B11~, 03B12~) of H. Let

Figure 1



279

Figure 2

To prove that Hw is transitive on sn-2 we are going to fix u ~ £AJ-L of

norm 1 and to show ’that under the pinching assumption the set V· u

contains an open neighborhood on the sphere S"- 2. Denote by W the set
of elements of SO(n - 1) which correspond to the parallel translations
along all possible triangles (x, 03C9+~, 03B11~, 03C9-~ x). It is obvious that V· u

contains an open neighborhood on Sn-2 if and only if W· u does.

Consider now the case of constant negative curvature (see Fig. 3). Join
x and 03B11~ by a geodesic. The tangent vector v1 to this geodesic at x is
perpendicular to w. Therefore, the set S+~ ~ S-~ can be identified with the

Figure 3
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unit sphere in (A) 1-. The parallel translation along the triangle
(x, 03C9+~, 03B11~, 03C9-~, x ) induces an isometry Is(v1) of 03C9~.

2.8. PROPOSITION: If the curvature is constant, then ls(vl) is the reflection
of 03C9~ with respect to the superplane perpendicular to VI.

PROOF: It is clear that v’ is reflected by Is( VI), and Is( VI) is identical in
the subspace perpendicular to the plane (,w = v, vl ).

Thus, if the curvature is constant, then by translating any given vector
u E Sn-2 along different triangles we get the whole sphere Sn-2. Now we
treat the case of variable curvature as a "perturbation" of the case of
constant curvature. Though the situation may deteriorate and we may
not be able to get the whole sphere sn - 2, we still expect to get an open
neighborhood, provided the "perturbation" is small, i.e., the curvature is
close to constant.

Given an infinite triangle (x, w -, 03B11~, 03C9-~, x ) on M we will construct
now the corresponding triangle for the constant curvature case. Take the
geodesic connecting 03B11~ and x and project its tangent vector vl on 03C9~.
The projection w is certainly a non-zero vector in 03C9~ because 03B11~ does
not coincide neither withw’ nor withw-. Denote Wl = w/~w~ = 03C0(03B11~).
So, we have a projection 03C0 from S+~ ~ S-~ on Sn-2. The last one can be
identified with the unit sphere in £AJc1- , where a, is a fixed tangent vector
to the unit n-ball with the hyperbolic metric. Let P(03B11~) denote the
isometry of w 1 induced by the parallel translation along the original
triangle and let Pc(03B11~) denote the corresponding reflection in £AJc1- (see
Proposition 2.8).

2.9. PROPOSITION: If the angular distance da(P(03B11~)u, Pc(03B11~)u) on Sn-2
is strictly less than 03C0/2 for every 03B11~ ~ S+~ ~ S-~, then the set W. u ( i. e.,
the set of all translations of u along all possible triangles) contains an open
neighborhood of - u on S n - 2.

PROOF: We have a mapping Rc: Sn-2 ~ Sn-2 which comes from the
constant curvature case, Rc(v) is the reflection of u with respect to the
superplane perpendicular to v. Note that, if n is even, Re is a mapping of
degree O. Another mapping R : Sn-2 ~ Sn-2 sends 03B11~ to the parallel
translation of u along the triangle (x, 03C9+~, 03B11~, 03C9-~). Consider the follow-
ing diagram
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It does not commute, but by assumption the distance between R(a) and
Rc(03C0(03B1)) is less than 03C0/2.

2.10. LEMMA: The projection 17 is homotopic to the identity.

PROOF: For every set St+ n S,- consider the corresponding projection 03C0t
on Sn-2. When t is small 03C0t is homotopic to the identity, and it changes
continuously. So, qr is also homotopic to the identity.

Suppose now that u corresponds to the north pole of the sphere and
let B = {z ~ Sn-2|da(u, z)  }. The image Rc(B03C0/4) is the lower semi-
sphere, Rc(~B03C0/4) is the equator. Let us now approximate 03C0 by a smooth
mapping à such that the distance between R and Rc, o 77- is still less than

qr/2. Take the height function h, h (u) = 1, h ( - u) = - 1. According to
the Sard theorem for almost every number f3 the preimage -1 o h-1(03B2)
= -1(~B03B2) is a collection Al(03B2) of embedded spheres Sn - 3. Let d be the
maximal distance between R(03B1) and Re -,k(a). Choose a "good" 03B2 such
that d/2  03B2  ff/4. Since à is homotopic to the identity, there is a

preimage Aj(03B2) which is mapped one-to-one and with degree 1 onto ~B03B2.
The set Aj(03B2) divides Sn-2 into two parts one of which is mapped onto
int BR by 7r. Consider now R(Aj(03B2)) and its projection m(R(Aj(03B2)))
onto B2 a along the meridians. The composition m o R|Aj(03B2) is 03C0-/2-close to
if 0 Rc, so it must have the same degree. Therefore, the south pole with an
open neighborhood belongs to the image of R. The proposition is proved.

In the next sections we prove that under the pinching assumption of
Theorem 1.1 the angular distance between R(03B1) and Rc(03C0(A)) is strictly
less than qr/2. That will mean that the condition of Proposition 2.9 is
satisfied and will finish the proof of Theorem 1.1.

PART II. PARALLEL TRANSLATION AROUND INFINITE TRIANGLES

In the hyperbolic space all triangles with three infinite vertices are

congruent and the parallel translation around such a triangle rotates
every vector in the plane of the triangle by 180° and is the identity for
vectors perpendicular to the plane (see Proposition 2.8). We shall prove
that this is approximately true in general, the error depending on the
curvature bounds -039B2  K  -03BB2. Thus, for a curvature sufficiently
close to a constant the condition of Proposition 2.9 is satisfied.

Part II is organized as follows. In Section 3 we reformulate the

Aleksandrov-Toponogov comparison theorems for infinite triangles, ob-
tain auxiliary bounds for lengths, angles and areas and introduce the
approximate plane of a triangle (see 3.3.7). In Section 5 we use the

estimates for asymptotic Jacobi fields derived in Section 4 to replace the
parallel translation around an infinite triangle by a special parallel
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Figure 4

translation around the finite triangle formed by the midpoints (see Fig.
11). The difference between these two translations is bounded by const -
(039B/03BB - 1). Finally, for vectors in the approximate plane of the triangle
and for vectors perpendicular to it we use a global construction to

produce vector fields which are almost parallel along the edges of the
midpoint triangle. Thus, we exhibit a map which rotates the approximate
plane of the triangle by 180 ° , is the identity for perpendicular vectors
and differs from the parallel translation around the infinite triangle by an
error which tends to 0 when the ratio A/À tends to 1. Bounds for this
error for vectors in the approximate plane of the infinite triangle and
perpendicular to it are obtained in 5.2.2 and 5.2.4 respectively.

§3. Comparison results for infinite triangles

3.1. Reformulation of the A leksandrov - Toponogov angle comparison results
in terms of triangle secants

Let M be a simply connected Riemannian manifold with curvature
bounds -039B2  K  -03BB2. Let ABC be a triangle in M with points D E AB
and E E A C (see Fig. 4). Denote by 1, s and h correspondingly the lengths
of the secants CD, DE and the height dropped from C on AB. Subindices
A and À denote the corresponding quantities in the constant curvature
comparison triangles with the same edgelengths. All heights are assumed
interior. Let a, 03B2, y be the angles. The angle comparison results

imply immediately
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REMARK: As usual, the lower bounds also hold without sign restrictions
on the curvature, while the upper bounds are not true for arbitrary
triangles.

3.2. Extension to infinite triangles

Since infinite triangles are obtained as limits of finite triangles with
lengths of secants and angles converging, one has immediately the

extensions of 3.1.1 and 3.1.2 to infinite triangles, except that we have to
agree what the corresponding points on the infinite edges of the triangles
in M, MA, M03BB are.

3.2.1. In the case of one or two infinite vertices we parametrize the
infinite edges in such a way that they are asymptotic at the infinite
vertices. Let a, b, c be the edges of the triangle. By choosing a (0)
correctly one also finds in the case of three infinite vertices a unique
parametrization of the edges a, b, c such that they are pairwise asymp-
totic (a+ with b-, etc.); the points a(0), b(0), c(0) (or O1, 02, O3) are
called the midpoints of the infinite edges.

3.3. Explicit formulas

Triangles with one infinité vertex in the hyperbolic plane are determined
by two of the four quantities a, y, fl (03B3), u" = "d(C, ~)-d(B, ~)
through the following formulas (obtained by putting u := b - c in a finite
triangle and taking the limit

e’ = cosh a - sinh a - cos 13 = (cosh a - sinh a - cos y ) -1 

sinh h = sinh a - sin y.

These have to be used together with 3.1.1 and 3.1.2, for example

implies

implies



284

Figure 5. Conventions 03B2  Y

u := d(C, ~)- d(B, ~), ----- horocircles (or horospheres)

Triangles with two infinite vertices in the hyperbolic plane are de-
termined by the angle a at the finite vertex or by the length u (see Fig. 6,
the dotted curves indicate horospheres) through the formulas

Combining again with 3.1.1 and 3.1.2 we have in general

Figure 6. Midpoint 03 of + oc and - oo defined by condition d ( A1, + 00)- d(A, - oo ) = 0.
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Application of the above inequalities to triangles with three vertices at
infinity now gives the information which we need. O,’s are the midpoints
(3.2.1) of the edges. In the hyperbolic plane we have (see Fig. 7):

3.3.5. 03B1 = 1 203C0, u = In 2; sinh h = 1 = sinh 2s· cos1a; on the other

hand, cos 60° = cosh s . sin 1 203C3, Hence, sinh s = 1 2, es

= 1 2(5 + 1), sin y = cos f3 = 1/15 = tgh s; V is in the plane
spanned by E+ and N, the "plane of the (totally geodesic)
triangle".

This implies estimates which are sharp for À = A:

3.3.6. (1/A) log1(15 + 1) =: s039B  s = s03BB := (1/03BB) 10g1 2(5 + 1), (see
3.1.2) (1/A) log 2 =: u039B  u  u03BB := (1/A) log 2.
(Take in 3.3.4 the limit of h - 1 2 u as A goes to infinity),
(03BB/5 039B) cos f3* := tgh 03BBs039B  cos 03B2  tgh 039Bs03BB =: cos 03B2* 
039B/03BB5, (see 3.3.2)
2-039B/203BB = e-039B(u03BB/2)  sin1 203B1  e -À(uA/2) = 2-03BB/2039B, (see 3.3.4)
or cos 03B1* := 1 - 2 · 2-03BB/039B  sin(1 203C0-03B1)  1 - 2 · 2-039B/03BB =: cos 03B1*.

The estimates for a in 3.3.6 justify

3.3.7. DEFINITION: The approximation plane of the triangle ~1~2~3 at O1
is defined as the span of N and E+ ; N is called the approximate normal of
the edge at 01. ( Fig. 7 below illustrates these notions.)

In the following we need as a measure of the planarity of the infinite
triangle ~1~2~3 a bound ~* for the angle between the halfplanes:
positive span (±E+, N ) and positive span (±E+, V) (see Fig. 8).

For this purpose choose Y at O1 such that Y~N, Y~E+, dim
span(E+, N, V, Y) = 3, (V, Y)  177’.

Figure 7.u := d(O1, ~2)-d(O2, ~2).
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Clearly 177’ - (V, Y ) is the angle between the halfplanes and we shall
derive the upper bound E * by estimating «V, Y) from below in the
triangle O2O1~4 (~4 is the infinite point defined by Y).

First, in the triangles ~1O1~2, ~1O1~4, ~2O1~4 we have that the
broken ways from oo to oo via 01 are longer by u1, U2, U3 than the direct
line from oo to oo with

for i = 2, 3 because of 3.3.4, for ul because of 3.3.6.
Let o04001 (resp. 004002 ) be parametrized asymptotically to the edges

of ooloC2oC3 at oo, (resp. at o02 ). Then 01 is at parameter - ul from o02
and at - u2 from 004; the parametrization CC2004 is ahead of the parame-
trization of OICG4 by Ul + u2 - U3. We therefore shift the origin 02 by
v := !( U1 + u2 - u3) towards oc, to obtain the origin 0124 of the coherent
parametrization of CG1002004. Then, again by 3.3.6, u039B  U4 :=

d(O124, ~4)- d(O124, ~2)  u03BB; similarly 3.1.2 says that d(O2, ~4)-
d( 02, ~1) is bounded by the corresponding difference in constant curva-

Figure 8. Y ~ N, E+, (V, Y)  1 203C0, dim span(E+, N, V, Y) = 3, ~2~4 and O1~4 are not
asymptotically parametrized.
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ture, the latter being obtained from 3.3.2 (see Fig. 9):

mg cosh Av.

This gives the needed bound for the triangle 0,0,oc,:

which implies with 3.1.1, 3.3.1 (and the choice of Y).

3.4. Area bounds

If a surface formed by a family of geodesics is inscribed into any triangle
T, then the area of this "ruled" surface is bounded from above by the
area of the triangle T. with the same edgelengths in the hyperbolic plane

Figure 9. 2s039B  d(Ol’ O2)  2sx, is the origin for O~1~2~4, d(02’ O124) = v = 1 2(u1 + u2 -
U3), d(O2, ~4)- d(Ol’ ~4)  w*.
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Table 1

of curvature - a2, [2], [7, p. 106]. This result extends immediately to
triangles with one, two or three infinite vertices.

3.4.1. EXAMPLE: Let T have one infinite vertex and u = 0 (see 3.3.2), then:

area (ruled surface inscribed in T ) :

if in addition a  2s03BB (see 3.3.6), then cos 03B203BB(2s03BB) = 1/5, hence

REMARK: The slightly weaker inequality - area (03C0-203B2039B(a))/03BB2 -
follows directly from 3.1.1 and the Gauss Bonnet theorem for the

spanned surface.

§ 4. Asymptotic Jacobi fields

Throughout this section the curvature bounds -039B2  K  - 03BB2  0 are
assumed. Since asymptotic Jacobi fields can be obtained as limits of
Jacobi fields with a fixed J(O) and with the first zero further and further
away one has the following well known consequence of the classical
Raugh estimates (see [9]).

In the hyperbolic plane we also have J’(s) + J(s) = 0, the following
generalizes this relation.
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4.2. Put 03BA2 - 1 2(039B2 + 03BB2) and let P be a unit length parallel field along a
geodesic c. Then for any asymptotic Jacobi field J along c

which has the immediate consequences

means perpendicular to J ) , 

PROOF: Since for an asymptotic Jacobi field no point along c is dis-

tinguished, it suffices to prove the inequality at s = 0. For any parallel
field P we have from 4.1

hence,

We substitute J" = - R(J, c’) c’ and use

together with (4.1) to obtain the main inequality:

For the angle estimate note that

We illustrate the obtained information by the following
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4.2. COROLLARY: The second fundamental form S of a horosphere satisfies

and its intrinsic curvature K H is bounded by

PROOF : Let J(0) be a vector tangent to a horosphere, if one extends J(0)
to an asymptotic Jacobi field, then the second fundamental form is given
by S - J(0) = J’(0). The Gauss equations give the bounds for the intrinsic
curvature.

4.4. COROLLARY: A surface spanned by asymptotic geodesics through y is
"almost plane " along y, see (4.4.2) for estimates.

REMARK: This fact will be used to produce almost parallel vector fields
with known global properties.

To be more precise and to prove the corollary we introduce the
following notation (see Fig. 10).

4.4.1. Let s - c(s, t) be a family of unit speed asymptotic geodesics along
another unit speed geodesic 03B3(t); in particular lims~~d(c(s, t ), c(s, ))

Figure 10
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= 0 and 03B3(t)=c(03C3(t), t), where a is a Busemann function for the

asymptote class, taken along y. Let c’(s, t) := ~/(~s)c(s, t) be the unit
tangent field of the asymptotes, (s, t) := ~/(~t)c(s, t)~ c’ is an asymp-
totic Jacobi field along each of the asymptotes. Since (t) = c’(03C3(t), t)· à
+ è(a(t), t), we have ||2 = 1 - d2 = 1 - ~, c’(Q(t), t»2,
D/(dt)(c’(03C3(t), t)) = D/(~s)c’(03C3(t), t) · à + D/(~t)c’ = D/(as)c. Let

v(t) :- (c’ - (e’, 1’)1’)/(le’ - ~c’, 1’)yl) = (c’ - ~c’, ~)/(|c|) be the

component of c’ perpendicular to  and normalized to unit length.

(independent of the angle between y and the asymptotes).

PROOF: The components perpendicular to  (etc.) are indicated by 1 00FF
(etc.). After a short computation we find (using 4.4.1):

hence with 4.2

§ 5. Parallel translation around a cusp

5.l. The adapted connection

We consider again the situation described in 4.4.1. Since the area of the
surface spanned by the asymptotes is finite (3.4) we can parallel translate
a vector along one asymptote to infinity and back along another one.
Also we can split the tangent bundle of M along c.

We have a natural connection for the bundle E:
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5.1.2. DEFINITION: For a section Y in E put

DEy:= (DY)~c’ = E-component of DY.

5.1.3. Dc’Y=DEc’Y, since (Y, c’) = 0 implies (De’ Y, c’) = 0.

Thus, the two derivatives agree in the direction c’, but the advantage of
DE is its small curvature:

PROOF: Assume ( D/(as ))Y = 0 = (DE/(~s))Y. Then

Now |R(u, v)w + «A 2 + 03BB2)/2)(~v, wu - ~u, w~v))|  2 3(039B2 - 03BB2)|u A
v|·lwl [7, p. 91] completes the proof.

5.1.5. D E-translation around a cusp. Assume that the baseline y of the

cusp in 4.4.1 has length  2s03BB (see 3.3.6), since we want to deal with
cusps obtained by connecting two midpoints of the edges of an infinite
triangle. Then use 3.4.1 and 5.1.4 to obtain:
The D E-translation around such a cusp differs from the identity at most

by [7, p. 92]

~RE~·(area of the cusp)

REMARK: If the curvature is constant, À = A, then the D-translation

around an infinité triangle is same as the D E-translation around the

triangle connecting its midpoints.

5.2. Almost DE-parallel vector fields

Clearly, the usefulness of (5.1.5) depends on being able to produce almost
D E-parallel fields. We deal separately with the two cases where the
vectors are approximately in the plane of the triangle (see 3.3.7) and
perpendicular to it, respectively.

5.2.1. Let W(t) := (y - (00FF, c’~c’)/(| - ~, c’~c’|) = c/|c| be the compo-
nent of  perpendicular to c’ and normalized to unit length. This vector
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field starts and ends approximately in the plane of the triangle (3.3.9)
and it is almost DE-parallel:

where

PROOF: The last inequality follows from 3.3.2 with /3 = 1 203C0, a  s03BB (3.3.6)
and u=max03B303C3-min03B303C3. For the differentiation we use again the for-
mulas in 4.4.1:

and the estimate follows from 4.2, since é and (D/~s)c are the value and
the derivative of an asymptotic Jacobi field.

5.2.2. THEOREM: Let, as in 3.3.7, span( N, E+) be the approximate plane of
an infinite triangle at the midpoint (3.2.1) of an edge; let N~ be the normal
to the edge in this plane and let PN~ be obtained by the parallel translation
of N1 around the infinite triangle. Then the following dimension indepen-
dent estimate ( which is sharp for À = 039B) holds:

here ~* is taken from 3.3.9 and d * from 5.2.1.

PROOF: The third error term results from changing the parallel transla-
tion around the infinite triangle to the D E-translation around the mid-
point triangle (see 5.1.5). The error E * from 3.3.9 occurs twice at each
midpoint since the edges of the midpoint triangle may not lie in the

approximate plane of the infinite triangle (3.3.7). The last error results
from 5.2.1 along each secant since we are using only approximately
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D E-parallel fields to get from one midpoint to another one. Finally note,
that along each secant we switch from the normal pointing toward the
opposite vertex to the normal pointing away from it.

5.2.3. To construct almost D E-parallel fields approximately perpendicular
to W (see 5.2.1) let X be a D-parallel unit field along y, X ~ y, X(O) 1 c’.
Define

Put ~:=(03BA-03BB) e(03BA/039B)d* where d * is taken from 5.2.1, and assume the
curvature bounds are such that 2s03BB·~  1 (see 3.3.6 for s03BB). Then

REMARK: The last estimate is still sharp at À= A, but the factor after
( K - A) comes from rather rough estimates in the following proof.
PROOF: Recall (D/dt) c’(03C3(t), t) = ( D / 8 s ) c(03C3(t), t ) from 4.4.1 to get

where

Also, ~ X, c’~(t) ( = 0 at t = 0) grows slowly along y (use ~X, c~ = -·
(X, c’) from 4.4.1), thus,
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This proves the bound for (DE/dt) z and together with

gives the total rotation of z(t) against a DE-parallel field (starting from
z(0)) along Y.

5.2.4. THEOREM: In the situation described in 5.2.2 let X be a vector which
at the midpoint 0, of an infinite edge is perpendicular to the approximate
plane of the triangle (span( N, E+), see 3.3.7). Then the parallel translation
PX of X around the infinite triangle is very close to X:

PROOF: Let X also denote the vector field which is parallel along the
halfedges of the infinite triangle and continuous at 0, and 03. For a
global control of X construct a pyramid over 01, 02, 03 by joining the
point X. - which is determined by X( Ol ) at infinity (see Fig. 11 ) - with
the edges of the midpoint triangle. Consider the initial tangents of the
asymptotic geodesic forming the faces of the pyramid, take the compo-
nents of these tangents perpendicular to the corresponding cusp of the
infinite triangle, normalize the resulting vector field to length 1 and

denote it by Y, along the i-th cusp. Then:

(from 3.3.9, indices mod 3),

(from 4.4.2, each of the two surfaces spanned

by asymptotes which meet along OlOl+1 is almost plane in the
sense of 4.4).

Next, let V, be D-parallel along O, O; + 1 starting with Vl(Oi) = Y ( O, ), then
(DE/dt) Vl is bounded by 5.2.3 and the parallel translation around the
cusp from 0, to oo, to 0, + 1 differs from the DE-translation along OlOl+1
by the error of 5.1.5. Therefore we control the angle between X and Y
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Figure 11. An infinite triangle with the midpoint triangle 010203 and the pyramid over it
determined by X ~ N, E +.

around the infinite triangle:

When switching from Y1 to Y2 at 0, we make another error  2~*, then
along 0203 we again pick up 2 - error (4.4.2) + error (5.2.3) + error (5.1.5);
the same again for Y3 along 030, and a final ~* between X(O1) and
Y3(O1). This proves 5.2.4.
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Table 2 shows that under the pinching assumption 03BB/039B  0.93 the
condition of Proposition 2.9 is satisfied, which proves Theorem 1.1.

Table 2. (The error 6. t: * is more than 1. error (5.2.4))
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