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Introduction. Statement of the results

All varieties occurring in this note are assumed to be defined over C. We
call an affine (resp. projective) variety factorial if its affine (resp. homoge-
neous) coordinate ring is a unique factorization domain. It seems that the
question whether a given affine or projective variety is factorial, goes
back to Felix Klein and Max Noether in the late 19th century (see e.g.
[20, p. 32]).

Some well-known examples of factorial projective varieties are, besides
the trivial example Pn, the nonsingular quadric Qn c I?n+l 1 for n  3
(Klein), and the Grassmann variety Gn,k of k-planes in I?n considered as a
projective variety in P, via Plücker embedding, where N = (n+1 k+1) -1 (the
question whether G,,,k is factorial was raised by Severi around 1915 and
answered in the affirmative by Samuel in the early 1960’s (cf. [1] and [20,
pp. 37 ff.])).

Since the examples mentioned above are all homogeneous-rational
manifolds, it is a quite natural question whether any homogeneous-ra-
tional manifold is factorial or, more realistically, to decide which of them
are. Here, by a homogeneous-rational manifold we mean a compact
homogeneous projective-rational complex manifold of positive dimen-
sion. Equivalently, a compact complex manifold X of positive dimension
is homogeneous-rational if and only if either there is a connected

semisimple complex Lie group G acting transitively on X such that
X = G/H, where H is a proper parabolic subgroup of G, or X is

homogeneous with vanishing first Betti number and nonvanishing Euler
characteristic, or X is homogeneous and Kahler with H1(X, O) = 0 (see
[2], [3], [8]).

Now, none of the above equivalent conditions for homogeneous-ra-
tionality involves an embedding of X into P,. Hence the question for
factoriality of homogeneous-rational manifolds should be stated more
precisely in the following form: Given a holomorphic embedding f : X ~ I?N
of a homogeneous-rational manifold X, under which conditions ( on X and f)
is f(X) factorial ?
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We first define some rather special embeddings. For this purpose let X
be a homogeneous-rational manifold, G a connected simply-connected
semisimple complex Lie group acting transitively on X. A holomorphic
embedding f : X - P, is called homogeneously normal if f is G-equiv-
ariant, i.e. if there is a holomorphic representation ~f: G ~ SL(N + 1, C)
such that ~f(g)(f(x)) = f(g(x)) for all g E G and x E X. It is not

difficult to see that this definition is independent of G, i.e. if G * is
another connected simply-connected semisimple complex Lie group act-
ing likewise transitively on X, then a holomorphic embedding f : X ~ PN
is G-equivariant if and only if f is G*-equivariant (cf. [22, Kap. II, Sect.
2.3]). A holomorphic embedding f : X ~ PN is called homogeneously
minimal if it is homogeneously normal and if N is minimal, i.e. N  M for
any homogeneously normal embedding f * : X ~ PM. Then we have the
following result which is a special case of a theorem of Tits ([24, III.D]):

THEOREM T: There exists a homogeneously minimal embedding of X, and
this is unique up to an automorphism of the ambient projective space.

Note that it is necessary to assume the group G to be simply-con-
nected in order to obtain homogeneously minimal embeddings which
everybody would expect (for instance, there is no PGL(2, C)-equivariant
embedding of P, in P1). In the case X = Gn,k, the homogeneously
minimal embedding of X is just the Plücker embedding. It should be

pointed out that, in contrast to the name "minimal", this N is not

necessarily so small: For instance, if X = G/B, where B is a Borel

subgroup of G, then N = 2dim X - 1. On the other hand, it is well-known
that any projective-algebraic manifold of dimension d admits an embed-
ding into P2d+ 1 (cf. [9, p. 173]).

Let X be a homogeneous-rational manifold and G a connected semi-
simple complex Lie group acting transitively on X. Write X = G/H with
H a proper parabolic subgroup of G, and denote by H’ the commutator
group of H. We define the rank(1) of X, written rk(X), as the dimension
of the complex Lie group H/H’. Equivalently, rk(X) is the number of
maximal parabolic subgroups of G which contain H. Using this descrip-
tion of the rank and a theorem of Remmert-van de Ven ([19, Satz (2.2)]),
it is easy to see that the rank of X depends only on X, but not on the
group G. One can also show that rk(X) = b2(X), where b2(X) denotes
the 2nd Betti number of X (cf. [5, p. 245] and [23, Remark in § 3]).
Obviously, rk(X) = 1 if and only if H is a maximal parabolic subgroup of
G and, by [18], this is equivalent to the condition that each holomorphic
map h: X - Y of X into a complex space Y of dimension  dim X be

(1) This definition of the rank has nothing whatsoever to do with the rank of a symmetric
(in particular hermitian symmetric) space in differential geometry. However, our nota-
tion seems to be rather familiar, see e.g. [25, p. 114].
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constant. In particular, every rank 1-homogeneous-rational manifold is
irreducible. (A homogeneous-rational manifold X is called irreducible if
Aut( X) is a simple complex Lie group, reducible otherwise. Evidently, a
homogeneous-rational manifold X is reducible if and only if there are
homogeneous-rational manifolds Xl, X2 such that X ~ X1 X X2.)

Let us look at some examples: The homogeneous-rational manifolds
of rank 1 are projective spaces, quadrics of dimension &#x3E; 3, Grassman-
nians, "Grassmannians" of linear subspaces of Pn+1 l which lie on the
quadric Qn c Pn+1 (cf. [24, II.C.7, II.C.l1D, "Grassmannians" of linear
subspaces of Pn, n  5 odd, which are totally isotropic with respect to a
nullcorrelation (cf. [24, II.C.7, II.C.llD, and finally 24 pairwise non-iso-
morphic rank 1-homogeneous-rational manifolds, whose automorphism
groups are exceptional simple complex Lie groups (cf. [23]). In higher
rank, the probably best-known examples are, besides direct products of
rank 1-homogeneous-rational manifolds, the flag manifolds of Pn, n  2,
of rank n, the simplest being the rank 2-homogeneous-rational manifold
F2 = {(x, L ) E P2  P*2; x ~ L } of dimension 3.
Now we are in position to state our main results.

THEOREM 1 (FACTORIALITY CRITERION): The following statements about a
holomorphic embedding f : X ~ PN of a homogeneous-rational manifold X
are equivalent:

(i) f(X) is factorial;
(ii) (a) rk(X) = 1 and
(b) there is a linear k-plane IPkclPN such that f(X)cPk and

f: X ~ Pk is homogeneously minimal.

The proof of this theorem is carried out in Section 2 by inspecting the
divisor class group Cl(X) of X and using a criterion of factoriality which
is due to Samuel. Fundamental for the proof is the following Normality
Criterion which is proved in Section 1.

THEOREM 2 (NORMALITY CRITERION): The following statements about a
holomorphic embedding f : X ~ PN of a homogeneous-rational manifold X
are equivalent:

(i) f(X) is projectively normal;
(ii) f is homogeneously normal.

Recall that a projective variety is called projectively normal if its

homogeneous coordinate ring is a normal domain. We suspect that (at
least) part of the Normality Criterion is known, but we do not know any
adequate reference (except for the case X = Gn,k, f = Plücker embedding:
Severi showed in 1915 that f(X) is projectively normal (cf. [21, p. 100],
see also [13])).

Let X be a homogeneous-rational manifold homogeneously minimally
embedded in PN. We define an affine kernel Xa of X to be the comple-
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ment of a general hyperplane section in X. Thus X, is an affine variety,
and we ask for the divisor class group of Xa . This question was raised by
Remmert around 1965. We give a complete answer to this question:

THEOREM 3: If X is a homogeneous-rational manifold, then the divisor class
group Cl(Xa) of an affine kernel Xa of X is isomorphic to Z rk(X)-1. In
particular, Xa is factorial if and only if rk(X) = 1.

The proof of this theorem is similar to that of Theorem 1 and is also
given in Section 2. It is done by investigating the canonical surjective
mapping Cl(X) ~ Cl(Xa) between the divisor class groups of X and Xu .

In Section 3, we give two applications of Theorem 1. First, the

homogeneous coordinate ring S of a homogeneously minimally embedded
rank 1-homogeneous manifold X is Gorenstein (for Grassmannians, this
has been shown by Hochster in [11]). This is proved by first showing that
S is Cohen-Macaulay and then, of course, applying Murthy’s Theorem
([17]). For the second application, let X be a rank 1-homogeneous-ra-
tional manifold, homogeneously minimally embedded in PN, and let R be
the local ring of the vertex of the affine cone over X in affine ( N + 1)-
space. Using a result of Danilov ([6]), we prove that, unless X is

isomorphic to a projective space (in which case R is regular), R is a
non-regular local unique factorization domain whose completion R is again
factorial.

It should be noted that the proofs of the theorems as well as the
applications, though not being very complicated, depend on an interplay
of several mathematical fields: from representation theory of semisimple
complex Lie algebras and Lie groups, we use Tits’ embedding theorem
and the Borel-Weil Theorem; from complex analysis, we use Bott’s

Theorem and results of Remmert-van de Ven; from algebraic geometry
and commutative algebra, we use Samuel’s Criterion of Factoriality,
Murthy’s Theorem, results of Danilov on the divisor class group of a
complete local ring, etc.

It seems that most of our results carry over to varieties G/H over
more general algebraically closed ground fields K, at least for char K = 0.

It is the author’s pleasure to thank Prof. R. Remmert for bringing the
above mentioned problems to his attention as well as for many helpful
conversations during the preparation of this paper.

1. Proof of Theorem 2

We first discuss the Borel-Weil Theorem, which will turn out to be crucial
for the proof of our Normality Criterion. Let always X = G/H be a
homogeneous-rational manifold, where G is a connected simply-con-
nected semisimple complex Lie group acting transitively on X and H is a
proper parabolic subgroup of G. We further denote by Cl(X) the divisor
class group of X. We begin with the following simple
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LEMMA 1: 

PROOF: The first isomorphism follows from [10, p. 145]. Next, since
Hq(X, m) = 0 for q  1 (cf. [5, Lemma 14.2]), from the exact cohomology
sequence belonging to the short exact exponential sequence we obtain
H1(X, O*) ~ H2(X, Z). Finally, since b1(X) = 0, H2(X, Z) is torsion-

free, whence H2( X, Z) ~ Zrk(X) because of b2(X) = rk( X). D

Now let E9 be a line bundle on X, 2= (9 (D) with D a divisor on X. Let
|D| ~ P(H0(X, Y) be the corresponding linear system (which may be
empty). Since G is connected, G acts trivially on H2(X, Z), hence on
Cl(X). Thus, for D* ~ |D|, g ~ G, g(D*) ~ |D|, and hence G acts on
|D| ~ P(H0(X, Y)). Since G is simply-connected, this action lifts to a
linear action of G on H0(X, Y). In particular, H0(X, Y) is a G-module.
Now we state the following special case of the Borel-Weil Theorem ([4]):

THEOREM BW: If £9is a very ample line bundle on X, then the G-module
H0(X, Y) is irreducible.

PROOF OF THEOREM 2: Denote by S = 03A3n0Sn the homogeneous coordi-
nate ring of f(X), and let  be the integral closure of S. Then we have
(cf. [10, Ch. 11, Ex. 5.14]):  = 03A3n0 H0(f(X), O(n)). Here, O(1) denotes
the twisting sheaf of Serre (cf. [10, p. 117]), i.e. considered as a line
bundle on X, O(1) = f*H, where His the hyperplane section bundle on
, and O(n) = O(1)n. Then, by Theorem BW, for all n  0,
H0(f(X), O(n)) is an irreducible G-module.
Now let f be homogeneously normal. Then the linear action ~f:

G - SL( N + 1, C) induces a natural action f of G on S. This action
preserves the grading of S, i.e. f(G)Sn c Sn for all n  0, and, in fact,
furnishes Sn with the structure of a G-submodule of H0(f(X), (9 (n». But
H0(f(X), O(n)) is an irreducible G-module. Hence, for a fixed n  0, we
have either Sn = 0 which is clearly impossible, or Sn = H0(f(X), O(n)).
Thus we obtain S = , and f(X) is projectively normal.

Finally, if f is not homogeneously normal, then evidently S, c
H0(f( X), O(1)), and hence f ( X) is not projectively normal. D

EXAMPLE: As a special case of Theorem 2, for X = Pl, we obtain the
following well-known facts:
(1) The d-uple embedding of P1 in Pd (this embedding is given by the

monomials in two variables of degree d) is projectively normal (cf.
[10, Ch. IV, Ex. 3.4]).

(2) The twisted quartic curve in P3 (this is given by the (non-homoge-
neously normal) embedding [z0 : zj ] ~ 4 : Z6Z1 : z0z31 : zl ] of PB in
P3) is not projectively normal (cf. [10, Ch. I, Ex. 3.18]).
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2. Proof s of Theorem 1 and Theorem 3

We begin with some useful remarks concerning very ample line bundles
on homogeneous-rational manifolds. In this whole section, X = G/H is a
homogeneous-rational manifold, where, as usual, G is a connected sim-
ply-connected semisimple complex Lie group acting transitively on X and
H a proper parabolic subgroup of G. We further let r = rk(X).

By Lemma 1, H’(X, O*) ~ Zr, so it is reasonable to speak of line
bundles of type (n1,...,nr) ~ Zr on X. However, since a line bundle of
type (1,..., 1) should be "positive", this has to be rendered precise: Let B
be a Borel subgroup of G, and consider the B-action on X. Then there is
an open B-orbit U in X (the open "Bruhat-cell"), and the complement
X - U is a divisor on X consisting of r irreducible components D1,..., D,.
(see [15] ] for details in the case X = G/B ). Now, for (n1,...,nr) ~ Zr,
define the line bundle of type (n1,...,nr) to be the line bundle belonging
to the divisor n1D1 + ... +nrDr. Equivalently, line bundles of type
(n1,...,,nr) may be defined as follows: Let R = T. S be the reductive part
of H, where T ~ (C*)’ and S is semisimple. Then the groups T* and H*
of holomorphic characters of T and H are isomorphic, T* = H*. Obvi-
ously, T* ~ Zr, the isomorphism being given by Zr ~(n1,...,nr) ~
X(n1,...,nr) ~ T*, where X(n1,...,nr)(Z1,...,Zr) = Zn11*...*Znrr. Now the line
bundle of type (n1,...,n r) on X is the homogeneous line bundle given by
the character X(n1,...,nr) ~ T* ~ H*. Furthermore, line bundles of type
(n1,...,nr) on X may be described in the following way: Let P1,..., Pr the
maximal parabolic subgroups of G which contain H, let Jg t= G/P, , and
let 7r,: X ~ Xl the natural fibrations. Since rk(Xl) = 1, H1(Xl, O*) ~ Z.
Now take positive generators Yl of H1(Xl, O*), i = 1,...,r. Then the
line bundle £9 of type (nl,... nr) on X is given by 2=
03C0*1(Yn11) 0 ... ~ 03C0*r(Ynrr).

Now, very ample line bundles on X can be easily characterised:

REMARK : A line bundle 2 of type ( n 1, n,) on X is very ample if and only
if ni &#x3E; 0, i = 1,..., r. In particular, a holomorphic embedding f : X ~ P N is
homogeneously minimal if and only if f is given by a base s0, ... , sN of
H°( X, 2), where 2 is a line bundle of type (1, ... ,1) on X.

PROOF: The first part is contained in [4, §4], the second assertion follows
from Tits’ Theorem (see [22, Korollar 2.2.2]). D

We now come to the proof of Theorem 1. We employ Samuel’s

CRITERION OF FACTORIALITY (cf. [10, Ch. II, Ex. 6.3]): A projective
variety V is factorial if and only if (1) V is projectively normal, and (2) the
divisor class group Cl(V) of V is isomorphic to Z and is generated by the
class of a (suitable) hyperplane section.
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PROOF oF THEOREM 1: By Samuel’s Criterion and Lemma 1, clearly
rk(X) = 1 if f(X) is factorial. So assume rk(X) = 1. Take a line bundle
Y0 of type (1) on X. Hence20 generates H1(X, O*) ~ Z. By the Remark, f
is given by sections Sa,... ,SN E H0(X, 2), where Y is a line bundle of
type ( n ) on X, n  1, i.e. 2=23 with n  1. Let V* be a hyperplane in
PN not containing f(X) and V the corresponding hyperplane section.
Then we have Cl(f(X))/(V) ~ H1(X, O*)/(Y) = (Y0)/(Y) ~ Z/nZ.
Now, by Samuel’s Criterion, f(X) is factorial if and only if n = 1 and
f(X) is projectively normal. Hence the assertion follows from Theorem 2
and the Remark. 0

PROOF OF THEOREM 3: Let f : X ~ PN be a homogeneously minimal
embedding of X, and let an affine kernel Xa of X be given by Xa = f(X)
- Z, where Z is a general (i.e. smooth) hyperplane section of f(X). We

consider the exact sequence Z ~ Cl(X) ~ Cl(Xa) ~ 0, where the map i is

given by 1 ~ 1 . Z (cf. [10, Ch. II, Prop. 6.5]). Since the group Cl( X) is
torsion-free, the map i is injective. We have to determine the image Im(i )
of i in Cl(X). First, Cl(X) ~ H1(X, O*) ~ zr. Next, by the Remark, f is
given by a base Sa’ ..., SN of H0(X, Y0), where IRo is a line bundle of type
(1, ... ,1) in H1(X, O*). Hence, for the divisor class group of Xa we
obtain: Cl(Xa) ~ Cl(X)/Im(i) ~ H1(X, O*)/(Y0) ~ Zr/~(1,...,1)~ =
Zr-1, whence the assertion. In particular, if r = 1, then Cl(Xa) = 0, and
hence Xa is factorial (cf. [10, Ch. II, Prop. 6.2]).

3. Applications

In this section, we give two applications of Theorem 1 and the following
special case of a theorem of Bott (cf. [5, Thm. IV’]):

THEOREM B: If Y is a very ample line bundle on a homogeneous-rational
manifold X, then Hq(X, Y) = 0 for q  1 and Hq(X, Y) = 0 for
q  dim X.

For the first application, recall that a noetherian ring A is called

Cohen-Macaulay (Gorenstein, resp.) if, for every maximal ideal m of A,
the local ring Am is Cohen-Macaulay (Gorenstein, resp.), i.e. dim Am =

depth Am (the injective dimension of Am is finite, resp.). For generalities
on Cohen-Macaulay and Gorenstein rings, see e.g. [14]. Now we can
state:

COROLLARY 1: The homogeneous coordinate ring S of a homogeneously
minimally embedded rank 1-homogeneous-rational manifold X is Goren-
stein.
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PROOF: According to a theorem of Murthy ([17], see also [7, Thm. 12.3]),
a factorial Cohen-Macaulay factor ring of a Gorenstein ring is Goren-
stein. Hence, by Theorem 1, it is sufficient to show that S is Cohen-

Macaulay. In fact, we have quite generally

PROPOSITION: If f : X - PN is a homogeneously normal embedding of a
homogeneous-rational manifold X, then the homogeneous coordinate ring
S(f(X)) of f(X) is Cohen-Macaulay.

PROOF : It is well-known that the homogeneous coordinate ring S(V) of a
nonsingular projectively normal projective variety V is Cohen-Macaulay
provided Hq(V, O(n)) = 0 for all n ~ Z and 1  q  dim V - 1 (this is

e.g. a special case of Prop. B, p. 131, and Prop. 5.1 of [12]). Applying this
theorem to our situation, it follows from Theorem 2 and Theorem B that

S(f(X)) is Cohen-Macaulay. D

For the second application, let X be a homogeneous-rational manifold,
and let f: X - P, be a homogeneously minimal embedding of X. Denote
by V(X) the affine cone over f(X) in affine (N + l)-space. Let P be the
vertex of V(X) and R = (9v(x),p the local ring of P on V(X). Thus, by
Theorem 2, R is a normal domain, and, unless X is isomorphic to Pn for
some n, R is not regular.
Now assume additionally rk(X) = 1. Then, by Theorem 1, f(X) is

factorial, and hence R is a unique factorization domain (cf. [7, Cor.
10.3]). One may ask whether the completion R of R with respect to its
maximal ideal is again factorial. In general, if A is a local noetherian
Krull domain and A its completion, then, by Mori’s Theorem (cf. [7, Cor.
6.12]), A is factorial if A is, but the converse is false in general (see [7,
Example 19.9] for a counterexample). In our case, however, we have

COROLLARY 2: The ring R is a unique factorization domain.

PROOF: We use the following result of Danilov (cf. [6, Theorem in §2 and
Prop. 8], see also [16, p. 532 f.]): If Vits a nonsingular projectively normal
projective variety, A the local ring of the vertex of the affine cone over V,
and A the completion of A, then the divisor class groups of A and A are
isomorphic if and only if H1(V, O(n)) = 0 for all n  1. Applying this
theorem to our situation, by Theorem B we obtain Cl() = Cl(R) = 0,
whence the assertion. D
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