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Abstract

For a convex polytope P which is the convex hull of a finite number of points, the set 03C0(P)
consists of all real square matrices A such that AP c P, i.e. that leave P invariant. In this

paper the extremals of 03C0(P) are characterized for P being a convex simplex, and the
number of its extremes is determined.

1. Introduction

In Berman and Plemmons [2] the first chapter deals with matrices that
leave a cone invariant, i.e. 03C0(K) = {A ~ Rdxd| AK c K} with K a cone
in Rd . An extensive bibliography on properties of 03C0(K) can be found in
this book. In e.g. Tam [8] it is shown that ’lT(K) is a polyhedral cone if K
is a polyhedral cone. One of the main problems is to characterize the
extremals of such a polyhedral cone ir(K); see e.g. Adin [1]. Instead of
taking a cone as matrix invariant we consider in this paper convex

polytopes, with a convex polytope being the convex hull of a finite

nonempty set of points in Rd; see e.g. Eggleston [4] and Sierksma [6]. In
Valentine [9] the term convex polyhedron is used. In a recent paper by
Elsner [3] is also deviated from the idea of using cones; here so-called
nontrivial convex sets are used as matrix invariants. In this paper we

restrict ourselves mainly to convex simplices So with one vertex at the
origin. By a convex simplex P in Rd we mean the convex hull of d + 1
points in Rd with nonempty interior. We shall characterize the extremes
of 03C0(S0) and calculate its number. In general, we define for X c R d the
set of matrices

Note that if X = {0}, then 03C0(X) = Rdxd. If X = {x} with x ~ 0, then
03C0(X) consists of all ( d, d )-matrices with eigenvector x and eigenvalue 1.
Before restricting ourselves to convex polytopes we give the following
result for arbitrary sets. Note that if X is convex then so is 03C0(X). By
cone X we mean the convex cone generated by X, i.e. all nonnegative
linear combinations of X. The set cone X is also denoted by XG; see [2].
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THEOREM 1: Let X ~ Rd. Then the following holds
(a) cone 03C0(X) c 03C0(cone X);
(b) cone 03C0(X) = 03C0(cone X) if X is compact, convex and contains 0.

PROOF: (a) Take any A E cone 03C0(X). Then there are matrices A1, ... , An
~ 03C0(X) such that A = 03A3n1=1 03BBlAl with 03BBl  0 for all i. Furthermore let
x = 03A3kl=103BClxl ~ cone X with 03BCl  0 and xl ~ X for all i. Then it follows

that Ax = A(03A3kl=103BClxl) = 03A3kl=103BClAxl = 03A3kl=103BCl(03A3nJ=103BBJAJxl) =
03A3l,J03BBJ03BClAJxl c cone X. Hence, A c 03C0(cone X).
(b) Take any A E 03C0(cone X) and let X ~ {0). Hence A (cone X) c cone X.
As 0 E X and X convex it follows that for each x E X there are À, 03BC &#x3E; 0

and y E X such that

or that (03BB/03BC)Ax ~ X. Let À* be the infimum of all À/it over x. Then
03BB* ~ 0, and (03BB*A)X ~ X. This means that À*A E 03C0(X). As 03C0(X) is

convex and contains 0, it follows that A E cone 03C0(X).

In Theorem 1(b) we have a sufficient condition in order to obtain
equality in (a). Note that we also have equality if X = cone X, because in
that case both X and 03C0(X) are convex cones; see e.g. Berman and
Plemmons [2]. The following example shows that equality does not hold
in general in Theorem 1. Take X = {(x1, x2) ~ R2| 1 Xl@ x2  0, x1 + x2 =
1}. Then cone X = R2+, and 03C0(cone X) consists of all nonnegative (2,2)-
matrices. On the other hand 03C0(X) consists of all matrices

with 0  a, b  1, so cone 03C0(X) consists of all nonnegative multiples of
these matrices. Hence 03C0(cone X) ~ cone 03C0(X).

In the following chapters we replace "cone" by "conv" and "extr", so
we consider qr(conv X), conv 03C0(X) and 77(extr X), extr 03C0(X).

2. Polytopes and simplices as matrix invariants

The main purpose of this chapter is to study the commutativity of 11" and
conv, i.e. 03C0(conv X) = conv 03C0(X) for X a polytope. Clearly, if X is

convex so is 03C0(X), and in that case we have conv 03C0(X) = 03C0(conv X).

THEOREM 2: For each X in R’ the following holds
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PROOF: Take any X ~ Rd. Clearly 77 (conv X) is convex in (Rdxd. So we
only have to show that 03C0(X) ~ 03C0(conv X). Take any A ~ 03C0(X). Then
AX ~ X. Now let x E A(conv X ). Then there are x1, ... , xs ~ X and
03BB1... , 03BBs  0 with 03BB1 + ... +03BBs = 1, such that x = A(03A3s-1=1 03BBlxl) =
03A3sl=1 03BBlAxl. As AXI E X for each i we have x E conv X, and it follows that
A (conv X) c conv X. Hence, A E 03C0(conv X).

Equality does not hold in general in the above theorem as is shown by
the following example. Take X = {(1,0), (0,1), (-!,0), (1,1), (0,0)1. Then

Then conv X = {(x1, x2) |0  xl, x2  1}, and 77’(conv X) consists of all
non-negative matrices with row sums  1. On the other hand the (2,1)-th
element of each matrix in conv 03C0(X) is zero. Equality also does not hold,
in general, in case X consists of the extremals of a convex cone X, i.e.
X = extr K.

It is well-known that conv X = conv(extr K ) = K (the Krein-Milman
theorem). However, in general, 03C0(conv X) = 03C0(K) ~ conv 77’(extr K ). In
order for 11"(K) being equal to conv qr(extr K ) it is therefore necessary
that extr 03C0(K) ~ r (extr K ) which is a conjecture of Loewy and Schneider
[SJ.

In the following we shall write 0 U S instead of (0} U S. In the next
theorem So = conv(0 U S ) is a convex simplex i.e. a convex simplex with
one vertex at the origin and 1 SI = d. The theorem shows the commutativ-
ity of 7r and conv for 0 U S. The proof of it is after Theorem 6.

THEOREM 3: Let 0 U S be the vertices of a convex simplex in R d. Then the
following holds

In order to prove this theorem we need a nonsingular transformation
T: Rd~ Rd such that

with S as in the above theorem. We denote Ed = {e1, ... , ed}, i.e. the set
of unit vectors in (Rd.

THEOREM 4: The following assertions are equivalent:
(i) A E qr(conv(0 U Ed ));
(ii) Ael, ... ,Aed E conv(0 U Ed);

(iii) A  0, column sums of A  1;
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PROOF: We shall show that (i) ~ (ii) ~ (iii) ~ (i).
(i) ~ (ii): Let A E 03C0(conv(0 U Ed)), so A(conv(0 U Ed)) c conv(0 U Ed).
As el ~ conv(0 ~ Ed), it follows that Ael ~ conv(0 ~ Ed) for each i =
1,...,d.
(ii) ~ (iii): As AeJ ~ conv(0 ~ Ed) for each j, it follows that the j-th
column of A is equal to 03A3dl=103BBlJel with 03BBlJ, ... , 03BBdJ  0 and 03BB1J + ... + 03BBdJ
 1, so the j-th column sum of A is equal to 03A3dl=103BBlJ and is  1. The

matrix A is nonnegative, because all 03BBlJ’s are nonnegative.
(iii) ~ (i): Take any x E conv(0 U Ed). Then there are scalars al, ... , 03B1d  0
with al + ... + 03B1d  1 such that x = 03A3dl=103B1lel. Hence, Ax = A(03A3dl=1 03B11el) =
03A3dl=103B1lAei. As the column sums of A are  1, it follows directly that
Ael ~ conv(0 ~ Ed) for each i = 1,...,d, and therefore we have Ax E
conv(0 U Ed), and hence A E 03C0(conv(0 U Ed).

Theorem 4 implies that all matrices in 03C0(0 U Ed) have Perron-Frobenius
eigen-value  1; this is the well-known Minkowski-theorem, see e.g.
Sierksma [7].

LEMMA 5 : Let T: Rd ~ Rd be a nonsingular transformation and let X ~ R d .
Then the following assertions hold :

(a) conv(TX) = T(conv X),
(b) 03C0(TX) = 03C0(X)T-1;
(c) conv 03C0(TX) = T[conv 03C0(X)]T-1.

PROOF: (a) is left to the reader. In order to prove (b), take anyA E 03C0(TX).
Hence, A(TX) ~ TX, and this implies that (T-1AT)(X) ~ X, so that

T-1AT ~ 03C0(X), or A E T[03C0(X)]T-1. The converse inclusion is shown

similarly. To prove (c), take any A ~ conv 03C0(TX) = conv[T03C0(X)T-1].
Then there are matrices B1, ... , Bk E 03C0( X), and scalars 03BB1,..., 03BBk  0 with
03BB1 + ... + 03BBk = 1 such that A = 03A3kl=103BBl(TBlT-1) = T(03A3kl=103BBlBl)T-1. As
03A3kl=103BBlBl ~ conv 03C0(X), it follows that A E T[conv 03C0(X)]T-1. The other
conclusion is also shown similarly.

The following theorem gives the commutativity of 03C0 and conv for 0 U Ed.

THEOREM 6 : 03C0(conv(0 U Ed )) = conv 03C0(0 U Ed).

PROOF: According to Theorem 2, we only have to show that 03C0(conv(0 U
Ed)) c conv 7r(0 U Ed). Take any A E 03C0(conv(0 U Ed)). Then A(conv(0 U
Ed)) ~ conv(0 ~ Ed). Theorem 4 then gives that A  0 and that all
column sums of A are  1. We must show now that A can be written as a
convex combination of matrices from 03C0(0 U Ed). To show this, we first
define A = A1 = {a(1)lJ}. Moreover, we define
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and h is the matrix with precisely one 1 in the j-th column in the ( i, j )-th
position if al) is the maximum in the j-th column of A, (if there are more
maxima in the j-th column choose one!) and zeroes otherwise ( j =
1, ... , d). Then consider the matrix

with A2 = {a(2)lJ} and define

Also define A3 = A2 - 03BB2I2 - A1 - 03BB1I1 - 03BB2I2, where I2 is defined for
the matrix A2 in the same way as h for A1. Continuing this process we
obtain, after at most d2 steps, the zero-matrix. So we obtain

Hence, A = 03A3d2l=103BBlIl. Clearly, A  0, and each 03BBl  0. Note that a column
of 1, becomes zero if the corresponding column of Al is zero. If after

d 2 - 1 steps there still is some nonzero element in Ad2-1 1 we have, say in
the j-th column,

or 03A3d2l=103BBl = 03A3dl=1aij  1. And this means that in fact A E conv 03C0(0 U Ed).

The number of steps in the proof of the above theorem is, in general
 d2. Question: under what conditions is the number of steps equal to
d2?

PROOF OF THEOREM 3: First note that 0 U S is the set of vertices of a

simplex, so ISI = d. We must show that

Clearly, there is a nonsingular transformation T: Rd ~ Rd such that
S = TEd = T(e1, ... , ed ). According to Lemma 5 and Theorem 6 we have
.77(conv(O U S )) = 77-(conv(0 U TEd )) = 77-(conv T(0 U Ed)) = 7r(7conv(0 U
Ed )) = T(03C0(conv(0 U Ed)))T-1 = T(conv 7r (0 U Ed))T-I = conv 03C0(T(0 U
Ed )) = conv 03C0(0 U TEd ) = conv 03C0(0 U S ).

3. The extrêmes of 03C0(S0)

In this chapter we shall characterize the extreme vertices of ’lT(So) and
determine their number. If P is a convex polytope then, in general, 03C0(P)
is not a polytope. For instance if we take the two points (0) and (1 1)0 l
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then P = conv 0 1 is convex but 7 ( P) is not: in 03C0(P) there are
matrices A =(alJ) with an al2l so an l can be as large as possible
which means that 77(P) is not bounded, so certaintly is not a convex
polytope. The following theorem gives a sufficient condition in order to
save the boundedness of 03C0(P).

THEOREM 7: If X is a bounded set in Rd with intconv(O U X) ~ Ø then
03C0(X) is bounded.

PROOF: Suppose, to the contrary, that 03C0(X) is not bounded. Then there
is a sequence of matrices Ak in 03C0(X) such that one of the elements, say
the (i, j)-th element, of the Ak’s goes to infinity. As the interior of
conv(0 U X) is nonempty, there is an element y E intconv(0 U X) with
yl ~ 0. Then y = 03A3sl=103BBlxl with xl ~ X, 03BBl  0, and 03BB1 + ... + 03BBs  1. Then
(Aky)J ~ oo for k - oo, As Aky = 03A3sl=103BBlAkxl is a finite sum, we have
Akxl ~ oc for k ~ oo and for some i. As Akx, E X, it follows that X is
not bounded which is a contradiction. Therefore we have in fact that

03C0(X) is bounded.

It is open question whether 03C0(X) is a convex polytope in case X is a
convex polytope in Rd with intconv(0 U X) ~ Ø. Question: Is the number
of extreme vertices of 03C0(X) less then or equal to (d + 1)d (see the
following theorem)?

THEOREM 8: Let 0 U S be the vertices of a convex simplex. Then the
following holds:

PROOF: There is a nonsingular transformation T: Rd ~ Rd such that
0 ~ S = T(0 U Ed ), so we have directly that |03C0(0 U S)| = Ir (0 U Ed)l. We
only have to show that

First note that A0 = 0 for each A E 03C0(0 U Ed ). The problem of determin-
ing the number of matrices in 77(0 U Ed) is therefore equivalent to the
problem of finding the number of bipartite graphs (G, H) on 2(d + 1)
vertices with |G| = |H| = d + 1, with one edge fixed, and such that the
degree of each vertex in G is 1. Let there be a fixed edge between a E G
and b E H. Then there are for each vertex ~ a in G precisely d + 1
possibilities in H. This holds for all of the vertices in G that are ~ a. So
the number of such bipartite graphs is equal to
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Hence, |03C0(0 U Ed)| = (d + 1)d.

To illustrate the above theorem we consider the following example.
Let d = 2 and S0 = conv{(0 0), (1 0), (0 1)} = conv(0 ~ E2). Then we have0 0 1

Note that |03C0(0 U S) | = 32 = 9. In order to characterize the extreme vertices
of So we need the following two lemmas.

LEMMA 9 : Let X c R dld be convex and T : R d- R dbe nonsingular. Then
the following holds:

PROOF: Take any A E extr( TXT -1 ). Hence, A e conv(TXT-1)B (AI.
Suppose, to the contrary, that A e T(extr X)T-1. We shall show first
that T-IA T E extr X, or that T-1AT ~ conv XB {T-1AT}. Taking
T-1A T E conv XB { T-1A T}, there should exist matrices B1,..., Bk E X,
all ~ T-1AT, and scalars 03BB1,...,03BBk  0 with À, + ... + 03BBk = 1, such that
T-1AT= 03A3ki=103BBlBl, or A = 03A3ki=103BBlTBlT-1, and Bl ~ T-1AT for all i.

Because TBiT-1 ~ conv(TXT-1) for all i, we have A E conv(TXT-1)B
{A}, hence A ~ extr( TA T-1), and this is a contradiction. Therefore we
have, T -’A T E extr X, and this means that A E T(extr X)T-1. The con-
verse can be shown similarly.

LEMMA 10: extrconv 03C0(0 U Ed) = 03C0(0 U Ed ).

PROOF: As all columns of the matrices in 7r(0 U Ed ) consists of zero or
unit vectors, no such a matrix can be written as a convex combination of

the other ones in 03C0(0 U Ed ).

The next theorem characterizes the extreme vertices of 03C0(S0) = qr(conv(0
U S )); they are precisely the matrices that leave the vertices invariant.

THEOREM 11: extr 03C0(S0) = extr 03C0(conv(0 U S )) = rr(0 U S ).

PROOF: Let T: Rd ~ Rd be a nonsingular transformation such that
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Then we have
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