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This paper is divided into two independent parts. In the first part, we
show that if Y is a nonsingular model of a weighted complete intersection
surface with only rational double points as singularities, then Pic(Y) is
torsion-free. In the second part, we give an example of a surface with
torsion-free crystalline cohomology, but for which the Hodge-de Rham
spectral sequence is non-degenerate. At present, this is the only known
example of this phenomenon.

The first part was inspired by a question of P. Blass, and the second
part by a question of L. Illusie. 1 should like to thank both of them, as
well as N. Katz and M. Raynaud, for their encouragement.

Throughout the paper, we work over an algebraically closed field k of
characteristic p. All surfaces considered will be reduced, irreducible, and
complete, unless otherwise stated.

1. The Picard group of a weighted complète intersection surface

For the definition and basic properties of weighted complete intersec-
tions, see [9].

THEOREM: Let X be a weighted complete intersection surface with only
rational double points as singularities. Let Y be a nonsingular model of X.
Then Pic(Y) and Pic(X) are torsion-free.

PROOF: First, notice that it is enough to prove the theorem for one
nonsingular model of X. Therefore, we may assume that Y is a minimal
resolution of the singularities of X.

LEMMA 1: (Artin). Let X be a surface with only rational double points as
singularities, let g : Y - X be a minimal resolution of the singularities of X,
and let Y= Ox(D) be an invertible sheaf on Y. If D. E = 0 for all

components E of the exceptional divisors obtained by resolving the singulari-
ties of X, then there exists an invertible sheaf Y’ on X such that 2= g*Y’.

* Partially supported by an NSF grant.
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PROOF: See [1], Cor. 2.6.

COROLLARY: If g : Y - X is as in Lemma 1, then g* : Pic(X) ~ Pic(Y) is
an isomorphism on torsion.

By Lemma 1 and its corollary, it is enough to show that Pic( X) is
torsion-free.

LEMMA 2: Let the a prime number, t=l= p. Then Pic(X) is t-torsion-free.

PROOF: (This is presumably well-known, but a proof does not appear in
the literature.) In the proof of Theorem 3.7 of [9], Mori constructs a finite
morphism f :  ~ X, where X is an ordinary complete intersection, and
f * : Pic(X) ~ Pic() is an injection. Therefore it is enough to show that
if X is an ordinary complete intersection of dimension 2 (with arbitrary
singularities) then Pic(X) is ttorsion-free.

For this, we follow the argument of Hartshorne [5,IV.3]. (See also
[11].) Let P be the ambient projective space in which X is a complete
intersection, let U be an open neighborhood of X in P, let P be the
completion of P along X, and let Xn be the (n - 1)st infinitesimal

neighborhood of X in P. Then by the argument of Hartshorne, Pic(P) ~
Pic(U) ~ Pic() ~ lim Pic(Xn). We now show, by induction on n, that
the t-torsion part of Pic(Xn) is isomorphic to the t-torsion part of Pic(X),
and since Pic(P) == Z, this will conclude the proof of Lemma 2. We use
the exact sequence [5, op. cit.]

where I is the ideal sheaf defining X as a subscheme of P. Taking
cohomology, we get an exact sequence

But H1(X, In/In+1) = 0 [5, op. cit.], and H2(X, In/In+1) is a p-torsion
group (or torsion-free, if p = 0). Thus the map Pic(Xn+1) ~ Pic( Xn ) is an
isomorphism on t torsion. this completes the proof of Lemma 2.
We again assume that X is a weighted complete intersection surface

with only rational double points as singularities.

LEMMA 3: Pic(X) is p-torsion free.

PROOF: (Compare [SGA7], Exp. XI, Th. 1.8.) Suppose 2 is a nontrivial
line bundle on X which is killed by p. We construct a global Kahler
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1-form on X, using the d log map. The best description of this map for
our purposes is found in [4], p. 220. Let {fij} be a 1-cocycle representing
the class of 2 in H1(X, O*X), then {fpij} is a coboundary, so we may write
fpij = gl/gl’ gi E H0(Ui, O*X). Then dgl/gl is a global section of the sheaf
of Kahler differentials Q1 on X. Since d log is an injective map from
p Pic( Y ) to H0(Y, 03A91Y) (pPic(Y) denotes the kernel of multiplication by p
on Pic( Y )), and since the map is functorial, we see that d log: p Pic(X) ~
H0(X, 0’ ) is injective also.

Therefore it is enough to show that H0(X, 03A91X)= 0. For this, we use
the exact sequence of locally free sheaves on P

[9, Remark 2.4], where P is the ambient weak projective space of

dimension n in which X is a weighted complete intersection, (e0, ... , en )
are the weights of the variables, and Tp denotes the tangent bundle of P.
Dualizing, and restricting to X, we get

From this, and [9, Remark 2.2 and Prop. 3.3], it is easy to see that

Next, we use the exact sequence

where fj, 1  j  s = n - 2, are the degrees of the defining equations of X
as a weighted complete intersection in P. Taking cohomology, we find an
exact sequence

We know from above that H0(X, 03A91P|X) = 0, and H1(X, OX(-fj)) = 0 by
[9, Prop 3.3]. Therefore H0(X, QB.) = 0 and the proof of Lemma 3 is

complete.
Since Pic(X)tors ~ Pic( Y) tors’ and these groups are finite, Lemmas 2

and 3 imply the theorem.

REMARK: The motivating examples to which our theorem applies are the
generic Zariski surfaces introduced by P. Blass in [2] and [3]. Blass uses
the phrase "generic Zariski surface" in two different senses in these two
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papers, but in both cases, it refers to the nonsingular model of a weighted
hypersurface with only rational double points, to which our theorem

applies. Incidentally, it is not known if H0(Y, 03A91Y) = 0 where Y is a
generic Zariski surface.

2. Raynaud surf aces with torsion-f ree crystalline cohomology

We use freely the results and notations of [6]. Let X be a quasi-elliptic
Raynaud surface over a algebraically closed field of characteristic 3 (or,
in the notation of [7], a generalized Raynaud surface of type (3,1,d)).
Then there is a map f : X - C, where C is a smooth curve, and all fibres
are curves of arithmetic genus 1 with a single cusp. Let 2= R1f*OX, a
locally free shear of rank one on C. We know that Y6 ~ Kc*

PROPOSITION: Let X be a Raynaud surface over a curve C of genus g &#x3E; 1.

Then h0(Z1) = h0(KC) + h0(Y3), where Z1 is the sheaf of closed 1 -forms
on X, and h0(03A91X) = h0(Z1) + dim ker g : H°(C, Y5) ~ Hl(C, 23).

PROOF: This is Theorem 4.5 of [6]. The description of the map g is not
needed in the present paper.

THEOREM: Suppose f : X - C is a Raynaud surface, g(C) &#x3E; 1, Y= RIf *(2x’
If H0(C, Y3) = 0, then the crystalline cohomology of X is torsion-free.

PROOF: By Serre duality, HI(C,23)=0. Then the dimension of the
image of d : H0(03A91X) ~ H0(03A92X) is h0(Y5). By Serre duality, h0(Y5) =
h1(Y), and by the Leray spectral sequence h1(C, 2) = h2(X, (9x). Again
by Serre duality, h2(X, (9x) = h0(X, 03A92), so d is surjective. Moreover, by
the above proposition, the kernel of d (which is H0(X, Z1)) consists of
1-forms pulled up from the base so dim ker d = g.

From the Leray spectral sequence, we get an exact sequence

Since H0(C, Y3) = 0, H0(C, 2) = 0 also. Hence, H1(X, OX) ~ H 1 ( C, me)
so all of H1(X, (9x) lives forever in the Hodge-de Rham spectral se-
quence. So we find that h1DR(X) = 2 g. Since Jac(C) = A1b(X) (the fibres
of f are rational curves), we see that h1DR(X) = BI, where B, is the first
Betti number of X. It is now easy to see that H1cris(X/W) is torsion-free,
using the universal coefficient theorem and Poincare duality for crystal-
line cohomology. In fact, one can show (using the methods of [8]) that
d : H2(WOX) ~ H2(W03A91X) is injective, hence H2cris(X/W) is isomorphic
to W2(-1) as an F-crystal.

Notice also that if X is as in the theorem, then the Hodge-de Rham
spectral sequence is non-degenerate, since h0(X, 03A92) = h1(C, Y) and
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since h0(Y) = 0, the Riemann-Roch theorem implies h1(Y) = 2(g - 1)/3
&#x3E; 0.

We now want to exhibit a surface satisfying the hypothesis of the
theorem. We know that if (C, 2) is a pair consisting of a smooth
complete curve C, and a line bundle £9 on C, then there is a Raynaud
surface X together with a map f : Xi C such that R1f*OX = Y if and
only if there is a nowhere vanishing section dt of 03A91C ~ Y-6 killed by the
Cartier operator C : 03A91C ~ Y-6 ~ 03A91C ~ Y-2. We say that the triple
(C, Y, dt) is a Tango curve, or, more precisely, a curve with Tango
structure. (see [6], Section 1.)

LEMMA: If (C, Y, dt) is a curve with tango structure, then (C, Y~ T, dt) is
also a curve with Tango structure where T is a line bundle of order 2 in
Pic( C ).

PROOF: Obvious. 0

Now observe that since Y6 ~ Kc, 23 is a theta characteristic in the
sense of Mumford [10]. Replacing 2 by Y~ T, and letting T run through
all elements of Pic( C ) of order 2, we see that all theta characteristics of C
are of the form23, where (C, Y, dt) is a Tango curve. Therefore, to get a
Raynaud surface f : X - C such that H°(C, Y3) = 0, it is enough to find
a Tango curve C and a theta characteristic M on C such that H0(C, -4Y )
= 0. However, any hyperelliptic Tango curve will do for this. (See [10], p.
191. Take vit = b1-1).) Examples of hyperelliptic Tango curves are given
in [6], p. 481. An interesting open problem is to find an ordinary Tango
curve satisfying the hypothesis of the theorem. (If (C, Y, dt) is a curve
with Tango structure such that H0(C, J) ~ 0, then C cannot be ordinary,
since it gives rise to a holomorphic differential on C killed by the Cartier
operator. Thus, the examples in [6] are not ordinary.)

Notice that the observation that 23 is a theta characteristic implies
that the moduli space of Raynaud surfaces X (together with the map
f : X ~ C ) in characteristic three is disconnected, since a Raynaud surface
such that 23 is an even theta characteristic cannot be deformed into one
such that 23 is an odd theta characteristic by [10, Section 1].
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