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If X is a quasi-projective surface over an algebraically closed field, we let
A0(X) denote the subgroup of the Grothendieck group K0(X) generated
by sheaves with zero dimensional support contained in the smooth locus
of X. When X is affine, the cancellation theorem of Murthy and Swan
[13] shows that a projective module on X is determined by its class in
K0(X); in particular, if A0(X) = 0, then every projective is a direct sum
of rank one projectives. The vanishing of A0(X) thus has important
consequences for questions of embedding dimension, complete intersec-
tions, set-theoretic complete intersections, etc.

One method of analyzing A0(X) is via resolution of singularities. For
instance, suppose X is normal, and let f : Y - X be a desingularization of
X. The map f induces a surjection f * : A o ( X) ~ A0(Y), and, conj ectur-
ally, the kernel of f * is essentially determined by the formal neighbor-
hood of the exceptional divisor in Y. In particular, if X has only rational
singularities, then f * should be an isomorphism. At present, this conjec-
ture has only been proved in some special cases, so we must resort to
other methods.

One technique for studying A0(X) for a singular surface X is to

exhibit a pencil of rational curves whose general member is contained
entirely in the smooth locus of X. For instance if X is an irrational

(birationally) ruled surface with an isolated rational singularity then the
ruling on X has this property. If X has a unique singular point P., and
U = X-[ P], we define the logarithmic Kodaira dimension of P on X to be
the logarithmic Kodaira dimension of the non-complete variety U in the
sense of Iitaka [6]. It turns out that this is really an invariant of the local
ring (9x@p. We denote the logarithmic Kodaira dimension by K. By results
of Miyanishi, Sugie, Fujita and others (see [3,9,16] for example) one can
find a rational pencil on X whose general member is contained in U
iff K = - 00. M.P. Murthy and N. Mohan Kumar ([10,18]) attempt to
classify the algebraic local rings within given analytic isomorphism
classes which correspond to the local ring of a rational singular point on
a rational surface. They show that the Chow group A0(X) = 0 for a
rational surface X with a rational double point of type An (n ~ 7,8) or
Dn(n ~ 8), since in these cases K = - oo (in fact there is only 1 isomor-
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phism class of algebraic local ring within the given analytic isomorphism
class which can occur on a rational surface). They also study local rings
on rational surfaces analytically isomorphic to k[[xn, x n - ly, ... , xyn-1,
yn]] 9 k[[x, y]], and classify all those with K  2. In case K = 0 or 1, they
prove the existence of a pencil of elliptic curves whose general members
are contained in the smooth locus. Bloch (unpublished) has shown using
K-theory that A0(X) = 0 for a rational surface with a rational double
point, without classifying the local rings themselves.

In this paper, we consider normal projective surfaces X which carry a
certain type of elliptic pencil (like the ones studied by Murthy and
Mohan Kumar). We use linear equivalence on the general members of
the pencil to study the Chow group A0(X). This is inspired by the paper
[2] of Bloch, Kas and Lieberman, where the authors show that the Chow
group of an elliptic surface with pg = 0 is trivial. Their idea is to consider
the Jacobian fibration associated to the given fibration. A choice of a
multisection of the given fibration determines a generically finite mor-
phism from the given surface to the Jacobian fibration. Using Abel’s
theorem on the fibres and the divisibility of the " transcendental" part of
the Chow group, they reduce the problem to the case of Jacobians. They
then use geometric arguments to prove the result in this special case.

In our situation, it turns out that the Jacobian fibration associated to
our special type of elliptic pencil is a smooth surface even though the
given surface is singular. Further, we are able to construct an Abel

morphism from the singular surface to the Jacobian that on general
(smooth) fibres is "multiplication by n ". Using Abel’s theorem on such
fibres and the contravariant functoriality of Ao (valid even in the singular
case), we deduce our Main Theorem.

In contrast we remark that if X is a normal projective surface over C
with H2(X, OX) ~ 0, then A0(X) is infinite dimensional, in the sense that
there do not exist curves Cl , C2 , ... , Cn contained in the smooth locus
such that 0-cycles supported on the union of the Cl generate A o ( X). Thus
on a rational, Enriques or Godeaux surface with a non-rational singular-
ity, the Chow group is infinite dimensional (see [17] for these facts).

The paper is organised as follows. In §1 we prove Proposition 6, which
is the main technical tool giving the existence and smoothness of the
relative Jacobian, and the existence of an Abel morphism with the

desired properties. In §2 we use this to prove our Main Theorem, stated
below.

MAIN THEOREM: Let Y be a smooth, projective surface over an algebrai-
cally closed field of characteristic 4= 2. Let f : Y - C be a morphism to a
smooth curve whose general fibres are smooth elliptic curves. Let Pl,
P2, ..., Pn be points of C such that f -1 (Pl) is a reduced irreducible rational
curve with a node Q,. Let X ~ C be the singular (projective) surface
obtained by blowing up Y at the Q, and blowing down the strict transforms
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of the f-1(Pl). Then the map A0(X) ~ A0(Y) is an isomorphism (we
identify A0(Y) with Ao of the blow up of the Pl).

The reader will note that the Main Theorem provides many examples
of singular surfaces with a rational singularity such that the smooth
surface obtained by blowing up the singularities has infinite dimensional
Chow group. As far as the authors are aware, in all cases where the effect
of a rational singularity on the Chow group of a surface has been
computed in the literature, it is assumed that the Chow group of the

corresponding smooth surface is finite dimensional.
In §3 we discuss some examples of singular surfaces to which our main

Theorem applies. We consider many of the singularities with K = 0, 1 of
Murthy and Mohan Kumar which come from the classical Halphen
pencils on the projective plane. We construct an Enriques surface with
the given type of singularity, which thus has trivial Chow group. Finally,
we discuss an amusing example of an affine elliptic surface X with 2
singular points, P, Q such that A0(X) is infinite dimensional but the
surfaces obtained by resolving any one of the singularities has A0 = 0: in
particular it is of interest to prove our result for many singularities at
once. since in general one cannot assess the contributions of the singular-
ities one at a time.

The authors would like to thank Spencer Bloch for stimulating discus-
sions on this work, and Rick Miranda for showing us how to construct
the Halphen pencils. We would also like to thank the referee for his
helpful suggestions.

1. Construction of the Jacobian and the Abel morphism

We fix regular k-schemes B and X, a proper of finite type f : X ~ B, and
closed points b1, ... , bs in B such that:

(i) f-1(B - {b1,...,bs}) is smooth over B - {b1, ... , bs } and the fibres
are smooth curves of genus 1, and

(ii) the singular fibre Ci = f-1(bl) is a reduced irreducible rational
curve with a single ordinary node pl ~ Cl, for i = 1, ... , s.

Let u : Y - X be the blow up of X at all of the pl, and let E = U E; be the
exceptional locus. Let F be the proper transform of Ci. Then each F is a
smooth rational curve with self-intersection F 2 = - 4; we blow down the

u

union of the F to yield a morphism Y - Z to a normal surface Z with

singular points ql = v(Fi). Both Y, Z are B-schemes (via morphisms
g : Z - B and h : Y ~ B ). We note that the fibres Di = Zbl = v ( El ) are not
reduced: more specifically: 

(iii) (Di)red is a rational curve with an ordinary node at ql,
(iv) as a Weil divisor, Di = 2 (Dl)red.
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Our main purpose in this section is to analyse the Jacobian fibration
associated to Z ~ B and to construct an "Abel morphism" from Z to its
family of Jacobians. We first show that the relative Picard group of Z
over B is represented by an algebraic space over B by appealing to the
criterion of Artin [1].

LEMMA 1: The morphism g : Z - B is "cohomologically flat in dimension
0" i. e. for all B-schemes T - B we have (gT)*OZT = (9T’

PROOF: As the assertion is local on B, we may assume that B = Spec R
for some discrete valuation ring R with quotient field K and residue field
k = k(b) where b E B is the closed point. If the fiber Zb is smooth the
result follows easily from the fact that smooth morphisms are preserved
under base change, and Zariski’s Main theorem (see [4]). We may
therefore assume that b = b, for some i. To simplify notation we drop the
subscript i in the remainder of the proof of the lemma.
We have R1u*OY = 0 (from the formal function theorem, for example

[4]). The spectral sequence R1u*(RJf*OY) ~ R1+Jh*OY yields the exact
sequence of terms in low degree

hence R1h*(OY) = Rf *(u * (9 y) = Rf * (9,.
Since q is a rational singularity, we also have Rlv *(O Y) = 0. Hence a

similar spectral sequence argument gives R1g*OZ=R1h*OY=R1f*OX.
Also, since HO(C, (9c) = k = H’(C, (9c), HO(X,, (9x,) = HI(XK, (9x K) =
K, we have R1f*OX = R, hence Rlg * (9z = R. 

By Mumford [11], § 5, there is a complex of free R-modules

such that for any R-scheme T s ~ Spec(R), the cohomology sheaf

1’(s*(K.)) is isomorphic to the sheaf RlgT*(OZT). Applying this to the
identity map on R, we find that H1(K.) = R1g*(OZ) = R, which allows us
to split K1 as

This gives a splitting of Ko as
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Also, ker a = H0(K.) = g.«9,) = R. Hence we have, for any R-scheme
s

T - Spec(R),

The representability theorem of Artin [1] immediately yields

COROLLARY 2: The relative Picard group Pic (Z/B) is represented by an
algebraic space a : PicB(Z) ~ B over B.

LEMMA 3: The restriction map H1(Dl, O*Dl) ~ H1((Dl)red, O*(Dl)red) is an

isomorphism for each i = 1,..., s. 

PROOF: We again drop the i’s to simplify notation. We have

.where5is the ideal sheaf of Drea on D. From the proof of Lemma 1, we
know that R1g*OZ and g . (9, are invertible sheaves on B. Thus the Base
Change theorem (see [9], for example) yields

Hence all cohomology groups of Y vanish. The lemma follows at once
from the cohomology sequence associated to

PROPOSITION 4: PicB(Z) is a separated algebraic space.

PROOF: Since B is separated the assertion is local on B ; we may replace B
with Spec R, R = OB,b. If Zk(b) is smooth, the result is well known and
easy to prove, so we may assume b = b, for some i. Once more we

suppress the i. Let S - R be a D.V.R. with quotient field Ko, residue
field ko. By the discrete valuative criterion for separatedness, we need
only verify

(*) if L is an invertible sheaf on Zs that restricts to the trivial sheaf on

ZK., then L is trivial restricted to Zk.

We first consider the case when Spec S maps to the closed point of
Spec R i.e. R et. S. Then

By Lemma 3 we need only show that L restricted to Drea X Spec(s) is
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trivial, but this follows from the well known isomorphism Pick(Dred)=
Gm X Z (as schemes).

Next suppose that S dominates R. The sheaf L gives rise to an

R-morphism T : Spec(S) ~ PicR (Z) which generically factors through the
identity section 1 of PicR(Z). Suppose the closure I of I in PicR(Z) is
separated over Spec( R ). Then I = I, and hence r factors through I. In
particular T(Spec(ko)) = id, and hence L restricted to Zko is trivial, as
desired. Thus we need only show that I is separated over Spec( R ). If not,
there is a section 03C3: Spec(R) ~ PicR(Z) such that 03C3(Spec(K)) = id,
03C3 (Spec(k)) ~ id ( K is the quotient field of R, and k the residue field).
Since H2(Spec(R), Gm) = 0, such a section gives rise to an invertible
sheaf M on Z with M 0 K trivial, and M ~ k not trivial. In other words,
we may assume S = R.

We claim that the Weil divisor Drea is not a Cartier divisor on Z. For if
Drea were a Cartier divisor, the pullback v*(Dred) would be a Cartier
divisor on Y such that v*(Dred). F = 0 (here F = v -1 (q)). Furthermore we
could express v*(Dred) as an integral linear combination v*(Dred) = E +
nF where E = u-1(p) = v-1 [Dred], the strict transform of D,ed. As E - F =
2 and F 2 = - 4, this is impossible.
We now return to the sheaf L on Z. Since L 0 K is trivial there is a

K-rational, nowhere vanishing section sK e H0(Z~ K, L 0 K ). Multiply-
ing sK by a suitable power of a uniformizing parameier t of R, we may
assume that sK extends to a section sR of L. Thus the divisor of sR is of

the form (sR ) = n. (Dred). Choosing the proper power of t we may further
assume n = 1 or 0. But n = 1 is impossible since ( sR ) is Cartier. Hence
n = 0. As L is invertible and Z is normal, L is trivial. Q.E.D.

Let Jac,(Z) denote the connected component of the identity in

PicB(Z). We first make a local analysis of JacB(Z). Let K = k(B). Since
JacK(ZK) is the Jacobian of the elliptic curve Zx, JacK(ZK) is complete,
and hence JacB(Z) is the closure of JacK(ZK) in PicB(Z). Similarly, if
b E B, and R is the completion of the local ring of b in B, then JacR(ZR)
is the closure in PicR(ZR) of Jac(Z), where K is the quotient field of
R. Furthermore, by functoriality, we have

and also Jac(Z)=JacK(ZK) ~ . Thus JacB(Z) ~ R = JacR(ZR) (i.e.
the connected component of the identity remains connected under com-
pletion). Hence for our local analysis we may assume B is the spectrum
of a complete local ring. As the local analysis of JacB(Z) is well
understood when Z is smooth over B, we may assume that B = Spec ( 9 1, b
where b = b, for some i. We will denote JacB(Z) by Jac(Z), C, by C, etc.

In the sequel we will be constructing various surfaces as quotients of
group schemes by finite group actions. In this vein we will require the
following lemma.
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LEMMA 5. Let X be a normal variety, with a proper map to a variety Y, and
let X ° be an open subset of X such that X - X ° is of dimension zero.
Suppose T0 : X 0 ~ X0 is an automorphism over Y. Then T0 extends to an
automorphism T of X over Y.

PROOF : Let T be the extension of T0 to a rational map of X over Y. If x
is in XO, then the total transform T(x) is j ust T0(x), hence T-1(X - X0)
is contained in the finite set X - X0. Thus T-1 is a morphism by
Zariski’s Main Theorem. Similarly, T is a morphism. Q.E.D.
We will use Lemma 5 in the following situation: X will be a normal

surface proper over a smooth curve Y via f : X ~ Y, we will have an open
subset XO as above, together with a section a : Y - XO to f which makes
X ° into a group scheme over Y with identity section a. If 03B2: Y - X ° is
another section, then translation by 03B2, T003B2 : X0 ~ XO, extends by the
above to an automorphism T03B2 : X ~ X.

PROPOSITION 6 : The closed fibre Jac(Z) ~ k = Gm. Further Jac(Z) has a
smooth completion Jac(Z)* such that:

( i ) Jac(Z)* - Jac(Z) is a single point a E Jac(Z)* ~ k;
(ii) Jac(Z)* ~ K is a smooth elliptic curve; Jac(Z)* ~ k is a rational

curve with a single ordinary node at a;
(iii) Jac(Z)* is a proper B-scheme ( this is what we mean by a comple-

tion ).

Further, let S = R[u]/(u2 - t ) where t is the local parameter in R. Let
g*s : Z*s ~ Spec S be the normalisation of the fibre product ZS = Z X R S.
Then there is a section s : Spec S ~ Z*s of the map g1 with image in the
regular locus of Z*s. Furthermore, for any such section there is an

S-morphism ws : Jac(Z)* ~ S ~ Z*s which is an isomorphism satisfying
ws(0S) = s (where 0S is the 0-section of Jac(Z) ~ S), and such that

ws ~ KS : Jac(Z)* ~ KS ~ ZS is the canonical isomorphism of ZKS with its
Jacobian (determined by the given KS-point as base point). Finally ws is
uniquely determined by s.

PROOF: Let YS denote the normalisation of YS. The commutative dia-
gram

identifies YS with the blow up of XS at the ordinary double point
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pS = j-1(p), and identifies Z*S with the blow down of YS along FS =
i-1(F) = u-1s(CS). The picture is as follows:

Since X-f p 1 is smooth over R, X - ( p} admits a section 0X : Spec R -
X - {p} making x - {p} into a commutative group scheme over R. The
fibre Y*S ~ k has 2 singular points p1, p2; the induced 0-section of

Y*S - {p1, p2} = Y0S makes YS into a commutative group scheme over S.
We claim that the subgroup of 2-torsion sections G2 ç YS is finite and

etale over S. In fact G2 is the kernel of the morphism Yi - Yi given by
multiplication by 2, so by Hensel’s lemma it is enough to show that
Y0S ~ k has 4 distinct 2-torsion points. From Kodaira [7] Yso 0 k = G_ X
(Z/2Z) which has the required 2-torsion subgroup. Let {0, al, a2, 03B13} be
the corresponding 4 2-torsion sections of YO. By construction, 0 passes
through Fs; label the a, so that al meets Fs (and is disjoint from Es) and
a2, a3 meet Es (and avoid Fs).

We now define an S-isomorphism c : Z*S ~ Xs as follows. Let c be the
composite us ° T03B12 ° v-1s, where 7§° denotes translation by s for any
section s : Spec S 1 Yso, and T, is the corresponding automorphism of Ys
given by Lemma 5. As Fs is the exceptional divisor of vs, and Ta2( Fs ) = Es
which is the exceptional divisor of us, the composition c (considered as a
birational transformation over S) has neither fundamental locus on ZS
nor exceptional locus on Xs. Hence by Zariski’s Main theorem and the
normality of Zg and Xs, we see that c is an isomorphism.

Let ? : Spec S ~ Spec S be the involution of S over R. Lift ? to

involutions $$ : ZS ~ Zs and $ : XS ~ Xs; this is done by writing Zs = Z
X R S, and letting $$ be the identity on the first factor (and similarly for $
on Xs ). Clearly $$ lifts to an involution on Z*S which we denote by the
same symbol. Thus Z = Z*S/$$&#x3E; and X = XS/$&#x3E;. The isomorphism c



187

induces a second involution $ + : XS ~ XS given by $ + = c° $$ °c-1,
and we have Z = XS/$ + ).
We now give an explicit description of $ + . The fibre XS ~ k has only

the two 2-torsion points corresponding to the sections OXS 0 k and
us ( al ). Hence us(03B12) and us(03B13) must specialise to the singular point on
the fibre. Since X is smooth over k, X - Spec R has no sections through
the singular point of the closed fibre. Thus us(03B12) and us(03B13) cannot be
rational over K (quotient field of R ) and are thus conjugate under the
involution $. If we identify XS and Zg via the birational map vsu-1s, we
have c = c-’ = T03B12. Hence $$ °c-1 = T a3 3 and $ + = c °$$ °c-1 = T03B12+03B13
= T03B11. From this description of $ + we see that the action of $ + on
Jacs(XS) = Jac(X) X R S is trivial. Thus

As Jac(X) = X - {p}, we may take Jac(Z)* to be X, from which (i), (ii)
are clear. We may choose the isomorphism Jac(X) = X - {p} to restrict
to the canonical isomorphism of JacK(XK) with XK induced by the
section 0X ~ K. If we let s : Spec S - ZS be the section uS(03B12) then C ° S
is the zero section 0X. Hence the composition ws = 03B2s ° c : Z*S ~ Jac(Z)*
0 S (where 8: X ~ Jac(X) is the identification given by 0X) satisfies all
the requirements of the proposition. Finally, given some other section
s’ : Spec S - ZS define ws’(x) = ws ( x - s’). This satisfies all the require-
ments of the proposition. Q.E.D.
We now return to the general setting, B will be an arbitrary k-scheme

of dimension 1. Let d : JacB(Z) ~ B be the structure map. Let Ri denote
the completion of the local ring of b; in B. We let JacB(Z)* denote the
completion of JacB(Z) obtained by completing JacR1(Z ~ Rl) = JacB(Z)
0 R via Proposition 6, for each i = 1,..., s.We take a finite Galois cover
r : B’ - B such that:

(i) over Rl, B’ ~ BRl 1 is a disjoint union of degree two ramified
extensions of R,, for each i = 1, ... , s.

(ii) the normalisation ZB, of Z  BB’ admits a section s:B’ ~ ZB’
whose image is contained in the smooth locus of ZB,.

Such a B’ can always be arranged: for instance take B’ to be the Galois
closure of a generic hyperplane section of Z which intersects all the

( DI ) red transversally. In section s : B’ ~ ZB’ induces the canonical iso-
morphism over k(B’), 03B21 : Z,, 0 k(B’) ~ JacB(Z)* ~ k ( B’). Let U = B’
- r-1{p1, ... p, 1. Then Zu is smooth over U, with elliptic curves as
fibres; hence Pl extends to a U-isomorphism 03B2U : ZU ~ JacB(Z)* X BU.
By proposition 6, Pu extends to a B’-isomorphism 03B2 : ZB’ ~ JacB(Z)* X B
B’.
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Let G be the Galois group of B’/B. We define a G-action on Z,, by
lifting to ZB, the action on Z  BB’ which is trivial on the first factor.
Similarly define a G-action on JacB(Z)* BB’. The isomorphism 8
determines a G-action on JacB(Z)* X B B’. Let a’ denote the G-action
described above on ZB, and let a denote the action on JacB(Z)*xBB’.
The new action a" on JacB(Z)* X B B’ is the composite 03B2° 03B1’°03B2-1. If we
let ao be the action of G on JacB’(JacB(Z) X B B’) induced by a", then we
have relations

As the k(B)-rational 0, in JacB(Z)* Bk(B) gives a canonical identifi-
cation of Jack(B) (JacB(Z)* Bk(B)) with JacB(Z)* Bk(B), we have
the isomorphism Jack(B)(Zk(B)) = (Jack(B)(Z)*  k(B)k(B’))/03B1. Thus the
induced action a. 0 k(B’) is the trivial action 03B1 ~ k(B’). From this we
see that ao is the trivial action a, and that a" has the form

where g ~ yg is a representation of G on a group of torsion sections of
JacB(Z) X B B’.
We collect our results in the following proposition.

PROPOSITION 7: Let f : X - B be a family of curves satisfying (i), ( ii ) at
the beginning of §2., and let g : Z ~ B be the associated singular family.
Then there is a Galois cover r : B’ ~ B with group G, and a representation
of G, /3: G - (JacB(Z) X B B’) n of G into the n-torsion subgroup of the
group of B’-sections of JacB(Z) X B B’ such that Z = (JacB(Z)’ X B B’)1,8 X
a, where a is the standard representation of G on B’.

COROLLARY 8: Let g : Z - B as above. Then there is an integer n, and
finite dominant B-morphisms u : Z - JacB(Z)*, t u : JacB(Z)* ~ Z such
that u otu = n2. IdJ ( where IdJ is the identity map on JacB(Z)) and if A is
a 0-cycle supported on a smooth fibre ZB 0 k(b), then the divisor u*(u* A)
- n 2 - A is linearly equivalent to zero on the elliptic curve Z 0 k(b).

PROOF: Let r : B’ ~ B, n, G, /3, a be as in Proposition 7. The map
n - Idj : JacB(Z)* X BB’ ~ JacB(Z)* X B B’ is invariant under the action

,8 X a, hence descends to the desired maps u, tu. Clearly n - Idi composed
with itself is n2. IdJ; hence we deduce that u 0 tu is multiplication by n 2
since this holds after the base change B’ - B. To verify the other claim,
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we may replace k(b) by its algebraic closure k(b) and identify Z 0 k b
with JacB(Z)* X B k b by the choice of a base point 0 on Zk(b)’ Then u
becomes just n· IdJ~k(b). Let Jn be the n-torsion subgroup of Zk7(-b), and
let - denote linear equivalence. We have

2. Proof of the Main Theorem

We return to the notation of the statement of the theorem. Thus X is a
smooth projective surface over an algebraically closed field k and f : X ~
C is a morphism onto a smooth curve whose general fibres are smooth
elliptic curves (and we exclude char k = 2). We are also given points
Pl , ... , P, of C such that the fibre f-1(Pl) is a reduced irreducible rational
curve with one node Q, for each i. We construct the singular surface Z by
blowing up the Q, and blowing down the strict transforms of the nodal
curves f- 1 (P,). Let g : Z - C be the resulting morphism.

Let B c C be an open subset containing all the P, such that the fibres
f-1(b) for b ~ B - {P1, ... , Pn} are smooth. Let Z0 = g-1(B). Then by
Corollary 8, there is a smooth proper B-scheme h : J0 ~ B, an integer d,
and a dominant surjective morphism u : Z0 ~ J0 (over B0 such that if
b ~ B - {P1, ... , Pn}, and A is a 0-cycle supported on g-1(b), then

u*(u*A) - d.A is linearly equivalent to 0 on the elliptic curve g-1(b).
Since Ao of a (possibly singular) surface is unchanged when we blow up a
smooth point, we may assume that for some smooth surface J there is a
diagram (where a, 03B2 are inclusions)

and
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we have a C-morphism v : Z - J extending u. Let r : W - Z be the blow
up of all the singular points; the Main Theorem asserts that r* : A0(Z)
~ Ao ( W ) is an isomorphism. We denote the composite C-morphism v 0 r
by w.

Since W, J are smooth varieties we have a map w*: A0(W) ~ A0(J)
such that we have a commutative triangle

r*v*w*
where all the triple composites Ao( W ) - A0(W), etc. are just multi-

plication by d. In particular ker r* is d-torsion. Hence we are done by the
following lemma.

LEMMA 11: Let X be a normal surface over an algebraically closed field,
and let f : Y - X be a resolution of singularities. Then the kernel of
f * : A0(X) ~ Ao(Y) is divisible.

PROOF. Let K denote ker f*. If nK, nA0(X), nA0(Y) are the respective
n-torsion subgroups, we have a diagram

Thus we have to prove that nA0(X) ~ nA0(Y) for all n. We now appeal
to a deep theorem of Roitman [15] which states that for any smooth
variety Y, there is an isomorphism (for each n) nA0(Y) ~ nA1b(Y) where
Alb(Y) is the Albanese variety of Y (in [15], Roitman proves this only
when n is relatively prime to the characteristic; Milne [8] covers the case
of p-torsion in characteristic p &#x3E; 0). Thus it suffices to prove the follow-
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ing claim: if C c X is a smooth hyperplane section contained in the
smooth locus of X, the induced composite map from the Jacobian of C

is surjective on n-torsion subgroups for each n. We have surjections
(ignoring twisting by roots of unity)

Hence it suffices to prove that we have an injection for each n

Geometrically this just means that if g : U ~ Y is an etale Galois

(Z/nZ)-covering (which is irreducible) then g-1(C) is connected (we use
the same letter to denote C c X and its inverse image in Y). Let V be the
normalisation of X in the function field of U. Then h : V - X is finite,
and C c X is ample, hence so is h-1(C) ~ V. In particular h-1(C) =
9 - 1 (C) is connected. Q.E.D.

3. Examples

(1) We describe the Halphen pencils of elliptic curves on P2 which lead
to singular rational surfaces with a singularity of the type considered in
the Main Theorem, or to a similar one where the singular fibre is an
ordinary cusp. Our argument does not work for the case of cusps since
the 2-torsion subgroup of Ga is trivial.

Let E ~ P2 be an irreducible cubic with the usual group law, and let

P1, ... , P9 be 9 points on the smooth locus of E such that the only relation
satisfied by the P, in the group of smooth points is m ( Pl + P2 + ... P9)
= 0, where m &#x3E; 1 will remain fixed during the rest of this discussion. In
particular, there is a curve D c P 2 of degree 3m such that the intersection
cycle (D · E) = m ( Pl + .ooP9). We claim that D can be chosen so that
P1, ... , P9 have multiplicitly m on D. To see this, consider first the

problem of finding a curve of degree 3m with an m-tuple point at each of
9 given general points. In general if we consider a linear system on P2
and require its members to have an m-tuple point at a given point, this
imposes m ( m + 1)/2 conditions on the linear system. Thus "in general"
the dimension of the linear system of plane curves of degree 3 m with 9
prescribed m-tuple points is (3m + 2)(3m + 1)/2 - 1 - 9 - m ( m + 1)/2 =
0. Since one such curve is just the m-fold cubic through the 9 points, in
general there is no other member. However, we impose m-tuple points at
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P,,...,P8 and for some local parameters x, y at P9 such that x = 0

determines E locally near P9 we require that the local defining function of
the curve D have no nonzero terms of order  m except the term with

y m -1. This imposes one less condition than before and so there exists a
member distinct from the m-fold curve E. This curve cannot contain E as

one of its components since this would impose other relations on the P,.
The intersection cycle (D · E ) = m ( Pi + ... + Pg ) + ( m - 1) P9 + Q for

some point Q. But this means that Q = P9 in the group structure on E,
i.e. Q = P9. But the condition that D and E have m-fold contact at P9 is
just the vanishing of the y m term, so D automatically has an m-tuple
point at P9.
We note that for any curve D of degree 3m with m-tuple points at the

P, we either have D = mE or D is reduced and irreducible. For otherwise
we would have more relations satisfied by the PI in the group law on E.
Consider the pencil spanned by mE and any curve of degree 3m with
m-tuple points at the P,. If D is a member different from mE we have
pa(D) = pa(D’) + 9m(m-1)/2 where D’ is the strict transform of D

under the blow up of P2 at the P,. But Pa(D) = (3m - 1)(3m - 2)/2,
giving pa(D’) = 1. Thus the general member of the pencil is an elliptic
curve with 9 m-tuple points which are resolved by one blow up, and the
degenerate members (apart from m E) are irreducible rational curves with
9 m-tuple points and 1 double point (perhaps infinitely near) which is at
worst an ordinary cusp. Further the strict transform of the pencil on the
blow up W of P 2 at the P, has no base locus and exhibits W as an elliptic
surface over Pl whose fibres are irreducible, with one fibre of multiplicity
m, and the only other singular fibres are irreducible rational curves with
a node (from which we can construct a singularity of the type considered
in the Main Theorem) or an ordinary cusp. The first case of interest is
m = 2, where the singular fibre of the elliptic fibration is the blow up at 9
singular points of a sextic plane curve with 10 double points which are
nodes or ordinary cusps (one of the double points can be infinitely near).
In this case we can also proceed by taking the generic projection to the
plane of a smooth rational sextic in P6, which gives a rational plane
sextic with 10 nodes. This is exhibited in a (perhaps degenerate) Halphen
pencil by taking the pencil generated by the sextic and twice the cubic
through Pl, ... , P9 where the P, are any subset of 9 of the 10 nodes. In the
classification of Mohan Kumar and Murthy, this is precisely the case of
Kodaira dimension 0; the case m &#x3E; 2 corresponds to K = 1.

(2) It is well known that an Enriques surface is obtained by the
following construction (see [5] for details). Let C c (p 1 X P1 l be an irre-
ducible curve of type (4,4), with 2 tacnodes Po, Poo (say on Pl X {0}, P1
X {~} respectively), such that the verticallines (pl X {0}, P1 X {~} are
the tangents to the branches of C through Po, P~ respectively. Let
Di = P1  X {i}, i = 0, oo . The Enriques surface is the double cover of
Pl 1 X P1 branched along the divisor C + Do + Du (which yields a singular
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surface; we then resolve the singularities). If Dt = pl 1 x ( t 1 for t ~ P1,
then the general D, meets the branch locus transversally at 4 points.
Hence the D, determine an elliptic fibration of the Enriques surface.
Singular fibres occur when 2 or more of the expected 4 points of

intersection of D, and C come together. Thus to get a nodal curve we
want Dt - C to consist of one point with multiplicity 2, and two simple
points, i.e. we want the fibre over t of the projection p2 : C - pl onto the
second factor to contain one simple ramification point. If (y0: YI) and
(xo : xl ) give homogenous coordinates on the first and second factor of
Pl X P1, consider the curve C given by

In local coordinates xo = yo = 1 this is

and we see that the origin is analytically isomorphic to y4 = x2 (char
k ~ 2) which is a tacnode. Similarly if x, = yl = 1 is used to give a local
description then we obtain

which again has a tacnode at the origin. We will henceforth only use the
second local description given by xl = yl = 1 ; let x, y denote the corre-

sponding coordinates on the affine plane. To look for ramification of the
projection p2 : C ~ P1 we must locate the zeroes of the x-partial deriva-
tive of the defining function of C. Thus we have the equations

Treating these as linear equations in y, y4 over k(x) we obtain

Hence we obtain the equation for x

Our analysis breaks down if x = 0 or x2 + 3 = 0. For other x satisfying
( * * ) we have a unique solution (x, y) by ( * ) of the equations (i), (ii).
Since the points with infinite y-coordinate on c have x = ~ or x2 + 1 = 0,
we conclude that for "most" of the solutions of ( * * ) the corresponding
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fibre of p2 has a unique ramification point. This ramification point will
be simple unless the second x-partial derivative of the defining function
also vanishes at the given point. For this to happen (x, y) must also
satisfy

Combining (ii), (iii) yields (for x ~ 0) y = - 8x/3. This rules out at most
4 points (other than the 2 tacnodes). Hence we see that the Enriques
surface obtained by taking the double cover of Pl X P1 branched along
the divisor C + Do + D (where Do, D~ are the vertical lines through the 2
tacnodes) has an elliptic pencil with many fibres which are reduced,
irreducible rational curves with a node. This concludes our discussion of
this example.

(3) The following finite dimensionality result is proved in [17]. Let X
be a normal projective surface. We say that the Chow group A0(X) is
infinite dimensional if there do not exist curves CI, .... Cn completely
contained in the smooth locus of X such that the 0-cycles supported on C,
generate A0(X). Equivalently, arbitrarily small neighbourhoods of the
singular locus have nontrivial Chow group. It is shown in [17] that if X is
projective over C and H2(X, OX) ~ 0, then A0(X) is infinite dimen-

sional. We use this result to give an example of an affine elliptic ruled
surface X with 2 singular points P, Q such that the surfaces Xp, XQ
obtained by resolving only P or only Q respectively satisfy A0(XP) =
A0(XQ) = 0; yet A0(X) is infinite dimensional. 

Our example X is the complete intersection in A4 (considered over C)
of the surfaces x3 + y3 + z3 = 0, w2 - z2 = y2 + 1 where x, y, z, w are
affine coordinates. Then X is the double cover of the cone x3 + y3 + z3 = 0
branched along the space curve where the cone meets y2 + Z 2+ 1 = 0. We
claim that the branch curve is smooth, and note that it does not contain
the vertex of the cubic cone. To check smoothness we compute that the
Jacobian matrix of partial derivatives has minors 6x2y, 6x 2z, 6yz(y + z).
For all of them to vanish at least 2 of x, y, z must vanish, or x = 0, y = z;
thus x3 + y3 + z 3 = 0 forces x = y = z = 0 which is not on the quadric
y2 + z2 + 1 = 0. Thus X has exactly 2 singular points which are each
analytically isomorphic to the vertex of the cubic cone. The inverse image
of a ruling is a conic (it is the double cover of a line branched at 2 points;
or else, use the equations given) which is either smooth (if the 2 branch
points are distinct) or a union of two lines meeting at a point lying over
the coincident branch points. Thus X is a ruled surface, and if we blowup
the 2 singular points P, Q we obtain sections of the ruling (by conics) so
that the base of the ruling is the elliptic curve in p 2 with equation
x3 + y3 + z3 = 0 (where x, y, z are regarded as homogeneous coordinates).

Let X denote the double cover of the projective cone over the plane
curve x3 + y3 + z3 = 0, branched along the closure of the branch curve of
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the double over X. Let Z be the blow up of P, Q on X so that Z is a
smooth elliptic ruled surface with a ruling given by the inverse images of
the ruling of the blown up cubic cone. In particular reducible fibres
correspond precisely to the rulings tangent to the branch curve, and have
exactly 2 components which are exceptional rational curves of the first
kind, meeting transversally at one point. Let Cp, CQ be the two excep-
tional sections obtained on Z as the inverse images of P, Q respectively.
Then Cp, CQ never meet the same component of any reducible fibre of
the ruling. Consider the minimal model obtained from Z by blowing
down the component of each reducible fibre which meets CQ . Then if C is
the image of Cp, C’ the image of CQ, the sections C, C’ are disjoint.
Hence (exercise in [4], V) the minimal model is the projective bundle
associated to the decomposable vector bundle me fl3 (9c(C). But C is the
exceptional elliptic curve obtained by blowing up a singularity analyti-
cally isomorphic to the vertex of the cubic cone; so C has the same
normal bundle. Thus our minimal model is isomorphic to the blow up of
the cubic cone at the vertex. In particular the singular surface Xp is

obtained from the projective cubic cone by blowing up the 6 points of
intersection of a smooth hyperplane section and a smooth quadric
section, and removing the strict transform of the quadric section. Note
that the involution of X as the double cover interchanges the points P, Q
so that the surfaces Xp, XQ are isomorphic. Now we claim that A0(XP) is
isomorphic to A0(Z) i.e. to the Albanese variety of Z which is just the
elliptic curve over which Z is ruled. Once we have this it follows that

A0(XP) = 0, since the strict transform of the quadric section which we
remove from Xp to get Xp maps onto the Albanese variety of Z. To prove
that A0(XP) is isomorphic to A0(Z) it suffices to show that A0 of the
projective cone is isomorphic to A0 of the blow up of the vertex.

Equivalently, it suffices to show that Ao of the affine cubic cone is 0. This
is well known; we reproduce the elegant and simple proof of Ojanguren
[14] below.

Let C denote the smooth plane cubic, and let Y be the affine cone over
C. Let p E Y be a smooth point and O E Y the vertex of the cone; let
f : Y-{O} ~ C be the projection. Let f(p) = P ~ C. Choose a point
Q E C such that the tangent line to C at Q contains P, i.e. P + 2Q = 0 in
the group law. The cone over the tangent to C at Q is a plane section of
the cone passing through the vertex such that the intersection consists of
two concurrent lines LI, L2 where p E Li and L2 has multiplicity 2. The
line L in the plane spanned by Ll, L2 through p and parallel to L2 (the
lines Li are affine so "parallel" makes sense) is a line in the ambient
affine space whose intersection with the cubic cone is just the point p
with multiplicity 1. Since Ko of affine space is trivial we deduce that

A0(Y) = 0.
Thus we have shown that A0(XP) = A0(XQ) = 0. We now verify that

A0(X) is infinite dimensional. To do this we need only show that
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H2(X, OX) is nonzero. The Leray spectral sequence for the map g : Z ~ X
yields the exact sequence

where the last term is 0 since pg(Z) = 0. We have a surjection
H°(X, R1g*OX) ~ H1(Cp, OCP) ~ H1(CQ, (9cQ) which is 2-dimensional

while H1(Z, (9z) has dimension 1. The result follows. Note that the
infinite dimensionality of A0(X) follows immediately from that of X.
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