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Holomorphic Gauss maps have classically been attached to subvarieties
of projective spaces and complex tori. If X c Y is such a subvariety, the
Gauss map r = r x assigns to x E X the "embedded tangent space" to X
at x, suitably interpreted. More generally, a Gauss map can be attached
to any immersion into a homogeneous space, and still more general cases
are discussed below. It is natural to inquire as to the structure of r, in
particular the dimension of its fibres. As for the generic fibre, the
situation is well-understood, at least for subvarieties of projective spaces
and complex tori. For surfaces in P3 it was apparently known classically
that r fails to be generically finite only for cones and developable
surfaces, and Griffiths and Harris [2] have extended this result to

arbitrary subvarieties of Pn, showing in particular that the only smooth
subvarieties X c P n whose Gauss map is not generically finite are the
linear spaces. For X c Y, Y a complex torus, it is well-known (see [2] or
[3]), that the generic fibre of r x essentially coincides with the largest
subtours Y. c Y with respect to which X is invariant.

The "finer" structure of r, however, seems to be less well-known. It
was only recently proved by Zak (see [1]) that the Gauss map of any
smooth nonlinear subvariety of Pn is in fact finite. His proof uses the
Fulton-Hansen connectedness theorem. For smooths subvarieties X of a

complex torus Y, not invariant under any subtorus (i.e. such that Fy is
generically finite), Ueno [3] has made a conjecture which is equivalent to
the finiteness of r x.

The purpose of this note is to observe that a certain class of maps
which includes Gauss maps enjoys very strong structural properties. In
particular, when proper, not only are they, up to a Stein factorization,
smooth and flat, but they are in fact (analytically) locally trivial fibra-
tions with a homogeneous space as fibre (see Proposition below). As
applications we obtain generalizations of Zak’s Theorem and Ueno’s
conjecture (Cor. 1, 2), which imply the ampleness of certain line bundles,
as well as bounds on the dimensions of "linear"subvarieties of X. Other

applications include a bound on the size of the poles of meromorphic
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1-forms (Cor. 3), and some information about morphisms defined in a
neighborhood of a subvariety of a homogeneous space (Cor. 4).
We shall be working in the complex-analytic category, which is more

general. But the proof goes through - in fact becomes somewhat simpler
- in the algebraic category (over an algebraically closed field of char-
acteristic 0). The complex spaces we consider will be reduced and
irreducible.

DEFINITION: Let Y be a complex manifold. A set of Gauss data on Y
consists of the following:

(i) An injection of vector bundles À: TY ~ E, where TY denotes the
tangent bundle.

(ii) A surjection 03BC: F0 L - E, where V is a finite-dimensional vector

space, and L is a line bundle on Y generated by finitely many of its
global sections. (1)

Given a set of Gauss data and an immersion (D: X - Y, a Gauss map
039303A6 (sometimes (abusively) denoted 0393X) is defined as follows: Let d4Y:
TX ~ 03A6*TY denote the differential of 4Y and let the following diagram be
cartesian:

039303A6 : X- G is the classifying map associated to the injection F ~ 03A6 *L-1
~ v 0 OY. Here G is the Grassmannian G(dim X + dim V - rkE, Tl ).
EXAMPLES :

(1) Suppose TY is such that TY is generated by finitely many global
sections. Then we have a surjection V 0 (9 y - TY with dim  oo ,

whence, taking E = TY, a set of Gauss data. The corresponding
Gauss maps are said to be untwisted.

(2) In particular, when Y is a complex torus, we obtain in this manner
the usual Gauss map associated to an immersion ’D: X ~ Y. In

fact, if B is the tautological subbundle on the grassmannian, then
0393*B = TX.

(3) When y= Pn, however, the procedure of Example 1 does not

yields the usual Gauss map. To obtain the latter, take E = TY and
the natural map V ~ OY(1) ~ T Y where Y = P(V). When 03A6 : X ~ Y

(1) Note that if we work, as we can, in the algebraic category, then a vector bundle

generated by global sections already implies it is generated by finitely many such. This is
because of the noetherian nature of the Zariski topology.
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is an immersion, we have the exact diagram

where mx(l) = 03A6*OY(1) and the top row is the "Euler sequence".
This shows that our r = 039303A6 indeed coincides with the usual Gauss
map. Moreover note that if B is the tautological subbundle on G,
then det B = OG(-1), the dual of the line bundle defining the
Plucker embedding. Since r * det B = det(F 0 OX(-1)) =

det(F) ~ OX(-m-1) = det(TX) ~ OX(-m-1) by (1), where m
= det X, we obtain the well known formula

where KX = det(TX)-1 is the Canonical bundle.
For the purpose of determining their structure, the essential property of

Gauss maps is given by the following:
OBSERVATION: Let T: X ~ G be a gauss map, Z c X a fibre of r. Then in
some neighborhood of z, TX is generated by finitely many sections.

To see this let F = 039303A6, notations being as in the Definition. The

tautological subbundle B is trivial in some neighborhood U of 0393(Z),
hence so is F 0 L -1 in 0393-1(U). Since L is generated by finitely many
global sections, it follows that so is F, hence TX, in f-I(U).
Now our general result can be stated as follows:

PROPOSITION: Let p: X - U be a morphism of a complex manifold to a
complex space. Assume the tangent bundle TX is generated by finitely many
global sections. Then

(i) If Z c p-1(u) is any compact subvariety of a fibre, then there exists
a subvariety Z’ of p-1(u), containing Z and smooth there, such that
dim Z’  dim X - dim p(X) (1) and that the untwisted Gauss map

0393Z(cf. Example 1) is constant ( where defined). In particular dim Z
 dim X - det p(X) and if Z = p-1(u) is compact then fz is

constant.

(ii) If moreover p is proper and p = g 0 p’ is a Stein factorization, then
p’ is a locally trivial fibration with fibre a homogeneous space
( homogeneous - space form, for short.)

This will follow from:

LEMMA: With the assumptions of the Proposition, part ( i ), if p is not

constant than there exists a principal divisor D = ( f ) defined in a neighbor-

(1) The dimension of an arbitrary subset of V is defined to be that of its Zariski closure.
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hood of Z, containing Z and smooth there, such that dim p (D)  dim p (X)
- 1 and that rD is constant on Z.

Let’s see that the Lemma implies the Proposition. For part (i), letting
D be as in the Lemma, note that the Lemma applies again with D, p|D in
place of X, p. Continuing in this manner, we obtain a chain D = D1 ~ D2
D ... with codim Dk = k. The only way this chain could stop is if p|Dk is
constant for some k, i.e., Dk ~ p-1(u). Since dim p(Dk)  dim U - k = n
- k, this implies k  n, i.e. codim Dk  n. Now apply the Lemma again,
only this time with X, p replaced by Dk, F,,. Repeating this step, we
finally obtain a subvariety Z as required.

For part (ii), we may assume p = p’, i.e. p*OX = mu. Note that this
implies that any function f defined in a neighborhood of Z = p -’ (u) has
the form f = g 0 p for some function g on a neighborhood of u. Hence,
applying the Lemma repeatedly as above we obtain functions gl ... gn
such that Z = {g1 ° p = ... = gn ° p = 0} and is smooth and reduced.

This implies that p is smooth. Moreover, r z is constant. Hence, we have a
diagram:

As it surjective. TZ is generated by global sections, hence Z is
homogenous. As it" is an isomorphism, it follows that H0(Z, TX|Z)~
H0(Z, NZ|X) is surjective, i.e. the Kodaira-Spencer mapping TuU~
H0(Z, NZ|X ) ~ H1(Z, TZ) vanishes. As is well-known and easy to prove,
this implies that p is locally trivial.

Turning to the proof of the Lemma, let us introduce some notation.
For a space Y and a point y E Y, let My c (9 Y,y denote the maximal ideal.
For f ~ OY,y put 03BCy(f) = max(j: f ~ MJy} and for a subset S c Y put
03BCS(f) = min{03BCy(f):y ~ S}. Likewise we can define 03BCy(D), 03BCS(D) where
D is a divisor.
Now by shrinking X and changing U we may assume that U is Stein,

p(X) is Zariski-dense in U and, moreover, that there are only finitely
many divisors E c X such that dim p(E)  n - 2 where n = dim V, call
them El, ... , EN. By shrinking X we may assume El ~ Z ~ ~ for all. Let B,
denote the closure of p(El) and EI’ = p-1(Bl). Pick a point Zo E Z and a
curve A c X containing zo and not contained in U E/ U p-1(u). Let g be
a function on V, vanishing identically on p ( A ) but not on BI for any i,
and put fo = g ° p. Then the principal divisor (f0) can be decomposed as
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As A ~ (f0), P must be nontrivial. Note that nl = 03BCEl(f0) and put
k0 = 03BCZ0(f0), k = 03BCZ(f0).
Now if k = 1 put f = fo. Suppose k &#x3E; 1. We identify the tangent bundle

TX with the sheaf of derivations of OX. As TX is generated by global
sections, it follows that for a sufficiently general global derivation al of
mx and f = ~1f0, we have 03BCZ(f) = k - 1 and /LE (f1) = ni - 1 whenever
nl&#x3E; 0. On the other hand note that as fo vanishes on Z and Z ~ El =1= cp, f0
cannot equal a nonzero constant on El. Hence, if n, = 0 then we may
assume /LE (f1) = 0. Also note that 03BCz(f1)  03BCz(f0)-1 for any z E Z.

Continuing to differentiate up to k - 1 times in this manner, we
obtain at the j-th step a function fJ with

~z ~ Z.

Put f = fk-1, D = ( f ). Thus D is smooth at a generic point z’ ~ Z. Let
V  OX ~ TX be a surjection and for v ~ V denote by a, the correspond-
ing derivation of mx’ If 0393D : D - DIng - G(dim V - 1, V) = P(V*) is the
Gauss map then Ir, (x) may be identified as the hyperplane: {v ~
V: ~v (f)(x) = 0}. Take v E VBfD(z’). Then au(f)(z’) =1= 0. As Z is com-
pact, ~v(f) is constant on Z hence never vanishes there. In particular, D
is smooth along Z, so that rD is everywhere defined there. If rD were not
constant, we would have Uz~Z 0393D(z) =P(V*), hence there would be
z’ E Z such that v E rD ( z "), i.e. ~v(f)(z") = 0, which is not the case.
Now as D has only one connected component containing Z we may,

after shrinking X, assume D is irreducible. It remains to show that

dim p(D)  n - 1, i.e. that D =1= El for any i. If D = El then E, D Z and
ni = k. Now for any z E Z we have

hence it., (fo) = k. But recall that zo E Z ~ P c Ei ~ P, and the divisor
(f0) contains n,E, + P. Hence 03BCz0(f0) &#x3E; 03BCz0(niEl)  n, = k which is a

contradiction, proving the Lemma.
We turn now to some corollaries. These are mostly based on the

Observation, made above, that the conclusions of the Proposition apply
to Gauss maps.

COROLLARY 1: Let X be a compact manifold and (D: X ~ Pn an immersion
with (D(X) not a linear space, then

(i) 039303A6 is finite
( ii ) Kx 0 OX(m + 1) is ample, m = dim X.

(iii) If L ~ 03A6(X) is a linear space of dimension k, then
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PROOF: It is known that r, is generically finite (cf. [2]; this can also be
derived from the Proposition: Exercise.) By the Proposition, 039303A6 is finite.
In view of the discussion following Example 3, this implies (ii). Finally
(iii) follows because, for all x ~ 03A6-1(L), 0393X(x) ~ L, hence 0393X(03A6-1(L))
is contained in the set of all m-spaces containing L, which has dimension
(n - m)(m - k) and hence k  (n - m)(m - k).

For instance, a smooth m-dimensional hypersurface cannot contain a
linear space of dimension m/2. Part (i) was first proved, for embeddings,
by Zak [1]. Finally we note that a suitably localized version of the
Corollary holds: for instance, in part (iii) it suffices to assume that 4Y is
an immersion in a neighborhood of 03A6-1(L). Indeed, it suffices to show
that 039303A6 is generalically finite: but it is not hard to see that if it weren’t,
then the ramification locus of 03A6 must meet (the closure of) every fibre of
039303A6, which cannot happen in our case. For 0 an embedding, (iii) also
follows from the Barth-Lefschetz theorem.

COROLLARY 2: Let 03A6 : X - Y be an immersion where X is a compact
manifold and Y is a complex torus. (1) Assume X is of general type
(equivalently, 03A6(X) is not invariant under any nontrivial subtours). Then :

( i ) 039303A6 is finite.
(ii) The canonical bundle KX is ample ( in particular, X is projective, (2)

hence, so is Y if X generates Y).
( iii ) If A ~ 03A6(X) is an abelian subvariety of dimension k then

PROOF: It is well-known that 039303A6 is generically finite (cf. [2] or [3]). Hence
we can argue as above.

For 0 an embedding, part (ii) was conjectured by Ueno [3]. Note that
a localized version of this Corollary again holds.

COROLLARY 3: Suppose X is a compact manifold, L a line bundle on X such
that L and 2x 0 L are generated by global sections. Then KX ~ Lm is

ample, m = dim X, unless there is a nontrivial homogeneous-space form
p: X - Y with fibre a complex torus and a line bundle L. on Y such that
L = p*Lü’

PROOF: By assumption, there is a surj ection V ~ OX ~ 03A9X ~ L whence an
injection À: TX ~ V ~ L, which yields a set of Gauss data with E = V ~ L

(1) As is well-known, the existence of such a map 03A6 for given X is equivalent to g x being
generated by global sections.

(2) This also follows from Moishezon’s theorem that Moishezon + Kàhler - Projective.
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and a Gauss map r = 0393identity. Calculating as in Example 3 above, we get
r*mG(l) = Kx 0 L®m which is ample if r is finite. If r is not finite, it

Stein-factorizes through a homogeneous-space form p: X - Y. As r*mG(l)
is trivial on each fibre Z of p, while L Z and KX|Z = Kz are both
generated by global sections, both LIZ and Kz must be trivial. It is

well-known that the triviality of L on the fibres of p implies that

L0 = p*L is a line bundle and p*L0 ~ L. As for Z, we know TZ is
generated by global sections, hence is of the form f*Q where f : Z ~ G’ is
a map to a Grassmannian and Q is the universal quotient bundle. But
(KZ)-1 = f*OG’(1) is trivial, hence f is constant, TZ is trivial and hence Z
is a complex torus.

This result may be interpreted as giving a lower bound on the size of
the poles of meromorphic 1-forms on X. For instance, if X is a K3

surface, it says that of L is generated by global sections but is not ample,
then Ox 0 L cannot be generated by global sections.

COROLLARY 4: Let Y = G/H be a compact homogeneous space with H
connected. Let Z c Y be a closed subvariety and, X a neighborhood of Z
and p: X - U a morphism constant on Z. Then Z is contained in a

homogeneous subspace K/H c Y on which p is constant; here K is a closed
connected subgroup containing H. If moreover p is proper, then it factors
through a canonical map GIH - G/K.

PROOF: This follows directly from the Proposition upon noting that any
subvariety Z’ c Y with rz, constant is of the form K/H.

In particular, if 4Y is a Grassmannian, then H is a maximal connected
subgroup of G, and we recover the well-known result that any holomor-
phic function defined in a neighborhood of a subvariety of a Grassman-
nian must be constant.
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