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1. Introduction

Throughout this paper the following assumptions and notations apply.
The set A E IR m is bounded and measurable with Lebesgue measure
|A| &#x3E; 0, but sometimes more stringent assumptions on A will be made.
The random m-vectors ul, u2, ... are independent with common probabil-
ity density p(u) = f(~u~), where f is nonincreasing and positive. Let N be
either a nonrandom positive integer or a random variable having Poisson
distribution with parameter À and independent of the u; . The volume in
Rm covered by at least k of the random sets A + u,, i = 1, ... , N, is
denoted Vk. Here A + y = {x + y|x ~ A} . The volume covered by exactly
k of the random sets is denoted Wk. We take k ~ 1. If N = 0 we define
hk = Wk = 0. Replacing A by A + a does not change Wk or Vk, so it is no
restriction to assume 0 E A or 0 E Int(A) if A has nonempty interior.

Under the above conditions we have Vk ~ oo, a.s. if N ~ oo and in

probability if 03BB ~ oo, so that EVk ~ oo. Moran in his 1974 paper [6] took
m = 3, assumed that the u, have standard normal distribution and
derived the principal term in the asymptotic expansion of EV1 as 03BB ~ o0
or N ~ oo . This term does not depend on A. He also proved the curious
result that if A is a ball the variance a 2(V tends to zero as À - oo, or
N ~ oo, viz.

and he showed that V, when centered and normalized in asymptotically
normal. We will extend the results on expectation and variance, with
special attention to the dependence on A, to densities of the form
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where 0 &#x3E; 0 and g and h vary regularly at oo . We need some results on

regularly varying functions, to be found in De Haan [1], Feller [3] and
Seneta [7]. The function f:(0, ~) ~ (0, ~) varies regularly of order p at
00 or at 0, respectively, if

If p = 0 we say that f varies slowly. If (1.5) holds and p &#x3E; -1, then

If f varies regularly of order p at oo, it has the Karamata representation

with c(x) &#x3E; 0, x ~ 1, c(x) - c &#x3E; 0, ~ (x) ~ 0, x ’ oo . If f is nondecreas-
ing, it follows from (1.7) with f(03BBx) ~ f(03BB), x ~ 1, that

with C = C(03B4), for x &#x3E; 0, 03BB ~ À(&#x26;), for any 8 &#x3E; 0. Let g:(0, ~) ~ (0, ~)
be nondecreasing with g(x) - ~, x ~ ~ . The generalized inverse g-1 of
g is defined by

If p &#x3E; 0, then g varies regularly at o0 of order p if and only if g-1 varies
regularly at o0 of order p -1. But g-1 may vary slowly without g varying
regularly and then xn/g(x) ~ 0, x - oo, n &#x3E; 0.

In Section 3 the asymptotic behaviour of EVk and EWk as À - oo for
Poissonian N will be studied. Under (1.4) they tend to 00 of the same
order depending on h and m with coefficients involving k and JAI. Under
(1.3) there is no dependence on A in the principal term and we may have
EWk ~ 0.

Estimating the variance is far more difficult and we have to restrict
our attention to hl since in contrast to (2.12) below the expressions for
the other variances contain terms with opposite signs. In Section 4 we
consider Poissonian N. Our results suggest that 03C32(V1) may tend to zero
only if p ( u ) decreases faster than exponentially. If the u, have probability
density (1.2) with 03B8 &#x3E; 1 2 and A is convex and bounded by a regular
surface aA with curvatures bounded below and above,
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in accordance with (1.1 ). So 03C32(V1) ~ 0, 03C32(V1) is bounded and 03C32(V1) ~
00, if m - 1 + ( m + 3)(1 2 2013 8) is negative, zero and positive, respectively.
However, the order of decrease or increase of 03C32(V1) does not only
depend on m and 8, but, strongly, on the shape of A. It was shown in

Stam [8] that if 03B8 = 1 and A is a parallelopipedum, we have for Poisso-
nian N

For subexponentially decreasing p of the form (1.3) or (1.4) the exact
first-order term for 03C32(V1) is derived. We see that then 03C32(V1) ~ oo .

In Section 5 the results for Poissonian N are extended to nonrandom
N by comparing the corresponding expectations and variances. Section 2
contains the general relations from which our proofs will start. We will
take m ~ 2. Results for m = 1 will be stated in remarks. The proofs that
may different from those for m ~ 2 are given in Stam [9], as are the
derivations of the second-order terms that in some cases may be found.
We write g(x)dx for the Lebesgue integral of g over Rm,

A - B = (x-y|x~A, y ~ B}, -A = {-x|x ~ A} and IA f or the indica-
tor function of A. The inner product of m-vectors is written (x, y). The
notation ( r, w ) will always stand for the spherical coordinates of x ~ Rm,
so that r = ~x~, w = x/r and w is the generic point of the unit sphere 03A9.

The area element of 03A9 will be written d03C3(03C9) or d03C3, so that

is the area of the unit sphere in Rm. If m = 1 a good definition turns out
to be S, = 2. By the identification x = (r, 03C9) we will sometimes write
g( r, 03C9) for g( x ). The argument w often will be suppressed.

In estimates and remainder terms we will often have to do with

functions of r, m, À or N that are bounded by some constant. These
functions all will be denoted by the same symbol ~ or byq, if they are
nonnegative. The argument usually will be suppressed.

2. General formulae

The probability that the point x E IR m is covered by the set A + u, is,
since p(u) = f(~u~),
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The probability that x and y are covered by A + u, is

By interchanging intergrations and using the fifth term in (2.1) and the
third term in (2.2) we find

From (2.2) and (2.3)

Let e(x) be the number of random sets that cover x. Then

From (2.6), the independence of the u, and (2.1) we find for nonrandom
N

and for Poissonian N by conditioning with respect to N
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In a similar way, for nonrandom N

and for Poissonian N

Since Vk = Wk + Wk+1 + ..., we have for Poissonian N by (2.9) and the
relation

Let wk(R) and vk(R) be the contribution to (2.9) and (2.13) from the
domain DR = {x|r ~ R).

Since p(u) ~ c(R) &#x3E; 0 on DR we have for some y = 03B3(R) &#x3E; 0

Now let IL be the measure on R induced from Lebesgue measure on D’
by the restriction to D" of P given by (2.1), i.e.

Then from (2.13), with H = sup{P(x)|r &#x3E; R},

We will always take R so large that P( r, m) is nonincreasing in r for
r ~ R. Let
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Then, since for 0  u ~ H and m ~ 2

for m ~ 2 where we have by (2.14) for some y = y( R ) &#x3E; 0

If P( r, w ) for r ~ R has a strictly negative continuous partial derivative

so that r( ., m) defined by (2.17) is the inverse of P( ., 03C9 ), we have from
(2.9) for Poissonian N and m ~ 2

3. Expectation f or Poissonian N

THEOREM 3.1.: Let the u, have probability density (1.4), with h nondecreas-
ing and h -’, defined by (1.9), varying regularly at 00 of order p E [O,m -1).
Then as 03BB ~ 00

REMARK: if m = 1 these relations hold with S1 = 2, see Stam [9]. That
03C1 ~ 0 follows from the fact that h is nondecreasing. From (1.7) we see
that 03C1m ~ 1 is necessary in order that p(x)dx  oo, since h varies

regularly of order p -1 if p &#x3E; 0.

PROOF: To prove (3.1) we start from (2.19) where we take R &#x3E; dA =
diam( A ). From (2.1), for r &#x3E; R,



63

Since P( r, w) is nonincreasing in r for r &#x3E; R we have by (1.9) and (2.17),
for 0  u  P(R, 03C9)

By the regular variation of h -’ and by (1.8), since ( a + b)m  2m(am +
bm), a ~ 0, b ~ 0,

with mp + 8  1 for À &#x3E; 03BB(03B4). It follows from (2.19), (2.20) and (3.3) by
dominated convergence that

From the other inequality in (3.3) the reversed inequality for liminf
follows and this proves (3.1).

The relation (3.2) follows from (3.1) since Wk = hk - Vk+1.
Theorem 3.1 applies to densities like (1.2) and (1.3) with g(x)/log x

- oo. Then we have p = 0 so that (3.2) gives no more than

EWk/(H-1(03BB))m ~ 0. The principal term for Wk then is given by

THEOREM 3.2: Let the u, have probability density (1.3) where g has a
continuous positive derivative g’ that varies regularly at 00 of order 03C4 ~ - 1,
where if T = -1 we assume that g - 1(log x) varies slowly at 00. Then, as
À - 00,

PROOF: We start from (2.22) with R sufficiently large. From (2.1) by
applying (1.7) to g’

where E ( r, v, 03C9) ~ 0, E ( r, cj) - 0, r ~ oo, uniformly in ( v, w ) and m. For
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r &#x3E; dA with (2.17), noting that P(r, 03C9) decrease with r for r &#x3E; dA,

Since P(ru, 03C9) = u we have with (2.14) and with (3.5), noting that as
u ~ ~ r(u, 03C9) ~ ~ uniformly in w by (3.5), for R = R1(03B4),

If T &#x3E; - 1 we see from (1.6) that g varies regularly at o0 of order

T + 1 &#x3E; 0, so that g-1 varies regularly of order ( T + 1)-1. By (3.6) and
(1.7) for g

uniformly in w. If T = 1, this follows from the slow variation of g 1(log x ).
From (3.8) and (1.7) for g’, noting that 03C8(u) ~ oo as u 10,

uniformly in w. From (3.7), (3.8) and (3.9) for R = R2(03B4) and some a &#x3E; 0

From (3.8) and the regular variation of g-1 if T  1, or by assumption if
T = 1, it follows that 03C8 varies slowly at 0 and then, e.g. by (1.7), we see
that g’o03C8 varies slowly at 0. So the integrand in (3.10) varies regularly of
order k at 0. By applying the Abelian theorem given in Feller [3], Ch.
XIII.5, we see that the right-hand side of (3.10) is asymptotically equal to

So, since this holds for all 8 &#x3E; 0,

From (3.5) and (3.6) we find in the same way the reversed inequality for
liminf and this proves (3.4).

If the density p has the special form (1.2) a second-order term in the
expansion of EVk and EWk may be found. The proofs start from (2.19)
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and (2.22) and proceed by expanding (2.1) and (3.5) into a suitable
number of powers of r and a remainder term. From the expansion of
P(r, m) or from an inequality like (3.6) an expansion for r(u, a) with
remainder term uniform in w is derived. Substitution into (2.19) and
(2.22) then gives the asymptotic relations. The proofs are given in Stam
[9]. Writing

we find for m ~ 2, if p(u) is given by (1.2): If 03B8 &#x3E; 1 2 and A is a convex

body and 0 E Int(A),

If m = 2, then MA is equal to the length of the perimeter of A and if
m = 3 it is equal to the integral of the mean curvature of aA. See

Valentine [10], Ch. XII, and Hadwiger [5], §18. If 0 = 2,

If 0  03B8  1 2, with a = mm{2,(203B8)-1},

4. Variance for Poissonian N

THEOREM 4.1: Let m ~ 2 and let the u, have probability density (1.2) with
28 &#x3E; 1. If A is convex and its boundary aA is a twice continuously
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differentiable surface in Rm whose principal curvatures k1,... , km - 1 satisfy
0  c1 ~ kl(x) ~ C2  oc, i = 1,... , m - 1, x E 3A, then, with bl given by
(1.11),

Here Sm is given by (1.13), dO(03BE) is the surface area element of aA at e
and K(03BE) the gaussian curvature of aA at e, i.e.

REMARK: If m = 2 we will have to define Sm _ = 2, as will be seen from
the proof. It is conjectured that the inequality (4.1) may be replaced by
an actual limit. If m = 1 and A = [ - a, a] we have, see Stam [9],

If p(u) decreases with ~ul~ faster than exponentially, estimates for
03C32(V1) are difficult. This makes the proof of Theorem 4.1 very long. It is
given in the appendix.

If p(u) decreases with Ilull exponentially or slower, we may obtain
first-order asymptotic terms for 03C32(V1) with the methods of Section 3.
We use the notation w = x/r, r = ~x~ defined in Section 1 and start from
(2.12). Let U1 be the contribution to (2.12) for r  03B3(03BB) to be chosen later
on. Putting y - x = z and noting (2.4) and (2.5) we have, with P(y) ~
P(x,y),
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THEOREM 4.2: Let m ~ 2 and let the u, have probability density (1.2) with
0 = 1. Then as À - 00

where A, is given by (2.3) and

REMARK 1: The integral in (4.6) is finite since 0 ~ ~(Az) ~ x(A) and
exp(-03B1-1( z, 03C9)) ~ c0 &#x3E; 0.

REMARK 2: If A is a ball with radius a, then X (A) does not depend on w
and, see Grôbner und Hofreiter [4], §313, 21h, and (1.13),

where 7g is the Bessel function of index 03B2. Also ~(Az, 03C9) = 03C8(03C1, ~)
depends only on p = Il z Il and the angle T between z and w . So, since
A - A is a ball with radius 2a and 99 is distributed uniformly on [0,2 ir ],
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PROOF oF THEOREM 4.2: From (2.1), (2.2) and

In (4.4) and (4.5) we take 03B3(03BB) = 1 203B1 log À. From (4.9) for some CI &#x3E; 0

Substituting (4.9)-(4.11) into (4.4) and putting y = À exp( - r/a) we find

After dividing by (log À)m -1 we may interchange limit and integral, since
~(A, 03C9) ~ bo &#x3E; 0 and 03BBy-1 &#x3E; Àl/2 in the integral. With (4.12) and Grôbner
und Hofreiter [4], §313, 3 b we find (4.6).

THEOREM 4.3: Let the ui have probability density (1.3), where g has a

positive continuous derivative g’ that varies regularly at 00 of order T ~ [ -
1,0). Let g -l(log x) vary slowly at 00. Then as 03BB ~ oc, with Az given by
(2.3) and 03BE0 by (3.4),

REMARK 1: If m = 1 we have to take Sm = 2. If 03C4 &#x3E; -1, the regular
variation of g’ implies the slow variation of g-1(log x ), see the proof of
(3.8).

REMARK 2: If g(x) = (x/03B1)203B8, with 0  203B8  1, we have 03BE0(log 03BB) =
m03B1m(log03BB)p-1/203B8, p = m/203B8. Comparison with (4.1) and (4.6) shows
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that the order of the asymptotic behaviour of 03C32(V1) depends continu-
ously on 03B8 if p(u) is given by (1.2), but the coefficient of the leading term
does not.

PROOF oF THEOREM 4.3: Since g’(x) ~ 0, x - oo, we have f(x + b)/f(x)
~ 1, x - oo, uniformly with respect to b in compacta. So from (2.1)-(2.3)

where (1 - 0, r - oo, i = 1,2,3, uniformly with respect to w and z E A - A.
In (4.4) we take 03B3(03BB) = y fixed and so large that E; 
for r ~ y. Then

The integrand in (4.15) does not depend on w. We replace the integration
variable r by y = Àf(r) and find

with e. given by (3.4). Here U1 ~ 0, exponentially as À - oo, by (4.5).
Since g-1(log x ) varies slowly and g’(x) varies regularly at oo, also

03BE0(log x) varies slowly. We want to divide (4.17) by 03BE0(log 03BB) and
interchange limit and integral in the right-hand side. In the domain of
integration we have c03BBy-1 &#x3E; exp(g(03B3)). Since g(x) ~ oc, x - oc, we
may take y so large that by applying (1.7) with p = 0 to 03BE0(log x ) we find,
with |~(s)|03B41, s ~s1,

So, taking into account (4.16), we may apply dominated convergence.
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This gives, with Grôbner und Hofreiter [4], §313,3b,

A reversed inequality for liminf may be obtained from (4.4) with
Fatou’s lemma in a similar way by taking 03B3(03BB) = y so large that in (4.14)
we have ~l ~ 03B4, i = 1,2, ~3 ~ - 03B4. Since these inequalities hold for all

03B4 &#x3E; 0, the relation (4.13) follows.

THEOREM 4.4: Let the u, have probability density (1.4) where h is nonde-

creasing and varies regularly at 00 of order p-  &#x3E; m. Then, with h - 1

defined by (1.9) and ,S’m by (1.13) and with S, = 2,

PROOF: With y = 03B3(03BB) sufficiently large in (4.4), the relations (4.14)-(4.16)
continue to hold since f (x + b)/f(x) ~ 1, x ~ oo, uniformly in b, by
(1.7) applied to h. Define the measure 03BC on the Borel sets of R+ by

Then (4.15) becomes
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where h -’ 1(03BE-1) varies regularly at 0 of order - p. So as t 10

where the right-hand side varies regularly at 0 of order - m p with
-1  - m03C1  0. By applying the Abelian theorem in Feller [3], Ch. XIII.
5 to (4.20) we see that as À - oo,

This limit may be interchanged with the integration in (4.19) since with
(4.16) and |Az| ~ JAI

where the right-hand side in (4.20) would make applicable the same
Abelian theorem, showing that G(z, 03BB)(h-1(03BB))m is bounded by a con-
stant for 03BB ~ 03BB0, so that there is dominated convergence. So from (4.19)

Since this inequality, and a similar reversed one for liminf to be derived
by Fatou’s lemma, hold for any 8 &#x3E; 0, the relation (4.18) follows with
(4.16).

5. A nonrandom number of sets

We compare corresponding expectations and corresponding variances for
a nonrandom number N = M of sets and for a number of sets that is

Poissonian with parameter À = M. Expectations and variances for the
Poissonian number of sets will be denoted by El, al and for the

nonrandom number of sets by E2, 03C322.
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PROOF: We write, also for k = 0,

We use the inequalities for x ~ 0, y ~ 0:

With (5.7) and (2.9)

With (5.6) and (2.9), since P(x) ~ 1,

With (5.5), (5.7) and (2.9), since P(x) ~ 1,
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The relation (5.1) follows from (2.8), (2.9), (5.2), (5.3), (5.4), (5.8), (5.9),
and (5.10). For k = 0 we have T1(x)= T3(x) = 0, so with (5.9)

COROLLARY 5.1: For nonrandom N = M theorems 3.1 and 3.2 with À = M
continue to hold.

PROOF : Since

we have from (2.8), (2.9) and hk = 03A3j~kWk,

The corollary follows from (5.1), (5.11) and (5.12) since in theorem 3.1 we
have E Wk = O(EVj) and in Theorem 3.1 and 3.2 all E Wk are of the same
order.

REMARK: The asymptotic relations stated at the end of Section 3 also
hold for nonrandom N, since they only contain logarithmic terms.

THEOREM 5.2: with a,2(V,), i = 1,2 as defined above,

PROOF: From (2.7), (2.10), (2.11), (2.12) and (2.5) we have, writing
U(x,y) = P(x) + P(y) - P(x, y) and L=1(x,Y)lY-xGA-A1,
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From (5.6) by symmetry, with U(x, y) ~ P(x) and by (2.9)

In a similar way

The relation (5.13) follows from (5.14)-(5.17).

COROLLARY 5.2: For nonrandom N = M Theorems 4.1, 4.2, 4.3 and 4.4

with 03BB = M continue to hold.

PROOF: From (5.13). In Theorem 4.1 and 4.2 the behaviour of 03C312(V1) is
logarithmic, whereas E1Wk ~ 0, 03BB ~ 00, by Theorem 3.1. In Theorem 4.3
there is slow variation of 03C312(V1) as 03BB ~ ~ and the same holds for E1Wk
by Theorem 3.2. In Theorem 4.4 the order of 03C312(V1) and El Wk is the
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same by Theorem 3.1 and we have M-1E1W1 ~ 0 since (h-1(x))m varies
regularly at o0 of order mp  1.

Appendix

PROOF oF THEOREM 4.1: Define d = d(x) and T = T(x) by d(x) = ~x~,
x E A, and

So d(x), if x fl A, is the distance of x to the foot T(x) of the unique
normal to aA, that passes through x. For fixed x ~ A we define a
Cartesian coordinate system with coordinates ( wl, ... , wm ) = w and origin
T( x ). The wm-axis is the inner normal to aA at T( x ) and the other axes
are along the principal directions in the tangent plane to aA at T( x ). See
Do Carmo [2], §3.2 and §3.3. In a neighbourhood of T( x ) the surface 3A
is described by

where k, = k1(T(x)).
In (2.1) we take w as new integration variable. Note that the v- and

w-systems have different origins. We have

where B = B(x) is the set A "as seen from T(x) in the w-coordinates".
For d = d(x) ~ d 1 sufficiently large, with the convention about bounded
functions stated in section 1, we have
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where b(x) = max{wm|w ~ B(x)} and S(y) is the intersection of B(x)
with the plane wm = y. Let P~(x) be the contribution to (8) for 0 ~ wm ~ E.
Then P~(x )/P(x) ~ 1 as d(x) ~ oo, uniformly in T( x ). In a neighbour-
hood of T( x ) the boundary aA lies between the paraboloids

so we may take e so small that for 0 ~ wm ~ ~

In (8) this gives, by putting u1 = w1d03B8-1(x), i=1 ,... ,m-1, um =

wmd203B8-1(x),

Since aA has uniformly continuous derivatives by the compactness of A
and 0  c1 ~ k1(x) ~ C2  oo, i = 1, ... , m - 1, x E ôA, we have, uniformly
in T(x), as d(x) ~ oc,

This gives in (12)

By considering the reversed inclusion with 1 + 8, analogous to (11),
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following from (10), and noting that P~(x)/P(x) ~ 1 we find that as
d(x) ~ oo, uniformly in T(x),

We now return to (2.12). By symmetry and with the inequality
exp(-a)-exp(-b)~b-a, 0 ~ a ~ b, noting that P(x,y) ~ P(y), we
have, with

where Hl and H2 are the contributions to the integral for x E De and
x E D, respectively, with

By (15), since 0  a1 ~ K(03BE) ~ a2, 03BE ~ ~A, we may choose q(03BB) so that
for some cl &#x3E; 0 if 03BB ~ ÀI,

With (2.4)

We proceed with
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Also from (2.12)

From (2.5) we see that in (22) we may assume ~y-x~  2dA so that
T(x) - T(y) ~ 0 and K(T(x)) - K( T( y)) - 0 as d(x) - 00. Since q(À)
- oc as À - oo it follows from (17) that in (22)

So that with (21)

We now have to estimate Q( x ). From (21), (2.2) and (2.3)

With the same coordinates and notations as in (4), (5) and (6)

where F(x, w) for fixed w is the set A ~ (J(x) - x + v ) "as seen in the
new coordinates" (see Fig. 1), where F(x, w) = F1 ~ F2, with F1 =
F(x, w) ~ {y|ym ~ wm} and F2 = F(x, w) ~ {y|ym  wm}.With S( y ) defined as following (8) and (9) and with the same
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Figure 1. F(x, w) = Fl U F2

inclusions as in (10) and (11), denoting by |m-1 volume in Rm-1, we
have

uniformly in T(x). For d(x) ~ oo the set J(x) approximates to a ball
with radius d(x), uniformly in T(x). The projection of Fl on the plane
Wm = 0 has diameter O(w1/2m), uniformly in x and we have

With (26) this gives

with ~(wm)~0, wm ~ 0, uniformly in x. We also may prove (27) by
considering the paraboloids approximating aA in T(x), see (10), and to
aF( x, w) in w and integrate the volume between them.
We now have to substitute (7) and (27) into (25), write (25) in the



80

same form as (8) and apply the same technique of two-sided inclusion
that derived (15) from (8). We find

as d(x) - oc, uniformly in T( x ). With (15) this gives, uniformly in T( x ),

In order to apply (15) and (30) to (20) we define a third, curvilinear,
coordinate system on A". The new coordinates (R,03BE) and the Cartesian
coordinates x = (x1, ... , xm) of a point in Ac are connected by the

relations

with T( x ) and d( x ) defined by (1), (2), so that t E aA, and N(03BE) the unit
inward normal to aA at 03BE. So x(R, 03BE) is the endpoint of the outer normal
to aA at Z with length R. To derive the Jacobian of (32) we replace e by a
set of coordinates u1, ... , um in aA in a neighbourhood of t, i.e. a

diffeomorphism f: U c IR m -1 ~ v n aA, where V is a neighbourhood in
IR m of e. Then (32) becomes

and the Jacobian J of (33) is the determinant of the matrix consisting of
the column vectors - N, fu1 - RNu1,...,fu-1 where fu1, etc.,
denotes partial differentiation. So

where J1 is the determinant of the matrix consisting of the column vectors
N, Nu1,...,Num-1. Now let {aij = aij(u ), i, j = 1, ... , m - 1) be the matrix
describing the differential of the Gauss map at t with respect to the basis
of the tangent vectors fui, i = 1, ... , m - 1. Then we have, see Do Carmo
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Applying this to Jl we find

where J2 is the determinant of the matrix consisting of the column vectors

N, fu l’ ... ,fu ni - 1.
Now N is a unit vector orthogonal to the fu. So J2 is the (m - 1)-

dimensional volume of the parallelopiped spanned by the fu and J2
du1...dum-1 is equal to the surface area element d (9 (e) at e of ~A. We
have Det{aij} = K(Z), see Do Carmo [2], §3.3. So

Writing P( R , 1) for P(x) we see from (20), (17) and (29)

with ~3 = ~3(R,03BE) ~ 0 as R - oo, uniformly in 03BE. In (35) we take P(R,03BE)
as new integration variable. From (6)

So with (18) and (1.11)

where ~4 = ~4(u, ~) ~ 0, u - 0, uniformly in e and R u = R(u,03BE) is de-

fined by
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Note that P(R, 03BE) decreases strictly and continuously with R for R &#x3E; 2dA.
From (6)

So from (37)

uniformly in 03BE. Substitution into (36) and putting À u = y gives

where ~5= ~5(03BBy-1, 03BE) and Ís(t, Í) - 0 as t ~ oo, uniformly in e. Sub-
stituting into (34) and dividing by (log 03BB)b1 we find the right-hand
inequality of (4.1) by (19) and dominated convergence. Note that 03BBy-1~
03BB1/2 in the domain of integration. This disposes of the case b  0. If

bl &#x3E; 0 we apply the inequality

From (24) we derive the left-hand inequality of (4.1) in a similar way,
using Fatou’s lemma, the factor i arising from the exponent -03BB(2 +
~2(03BB))P(x) instead of -03BBP(x).
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