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Abstract

Some particular types of maps from a hyperspace into [0,1] are being investigated. We give
criteria for their existence in terms of certain countability conditions. We also examine the
existence of derived Whitney maps on quotient spaces.

0. Introduction

Let X be a compact space. Its hyperspace [4] will be denoted by H(X).
By a Whitney map for X is meant a continuous monotonic function

w: H(X) ~ [0,1],

such that w({x}) = 0 for each x ~ X, and such that w(A)  w(B)
whenever A is properly included in B, [4]. For a generalization to

compact partially ordered spaces, see [6].
In [5] it is shown that "remote" maximal linked systems can be

constructed with the aid of functions satisfying somewhat weaker condi-
tions than Whitney maps do. Our present purpose is to give equivalent
conditions for the existence of such functions, and to investigate the
relationship between these functions and Whitney maps on certain metric
quotients.
We note that remote n-linked systems can also be constructed with a

method given in [1], but for compact spaces and 2-linked systems, the
method of [5] is more general.

1. Existence of generalized Whitney maps

1.1. Preliminaries

A collection 0 of nonempty open sets of a space X is called a pseudo-base
for X if every nonempty open set in X includes a member of (9. Then X is

AMS (MOS) Subject Classification (1980): primary: 54 B 20; secondary: 54 A 25.
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of countable pseudo-weight if it admits a countable pseudo-base, [2, p.5].
Let A, B be subsets of a space X. We say that A is strongly contained in

B if int X ( BBA) ~ Ø and A c B. For instance, each proper closed subset
of X is strongly contained in X.

By a Whitney-like map for X we will understand a continuous mono-
tonic function

such that w({x}) = 0 for each x E X, and such that w(A)  w(B)
whenever A is strongly contained in B.
We will also be interested in two weaker properties of a function w as

in (*) above:
(I) w is continuous, monotonic, and w( A)  w(X) for each proper closed

subset A ~ H(X);
(II) w is continuous, monotonic, and w(A)  w(X) for each nowhere

dense set A ~ H(X).
It is clear that

Whitney-like ~ (1) ~ (II).

1.2. THEOREM: Let X be a compact Hausdorff space. Then the following
assertions are equivalent:

(1 ) X has a countable pseudo-weight;
(2) X has a Whitney-like mapping;
(3) there is a map w: H(X) ~ [0,1] with property (I).

PROOF OF (1) ~ (2): (Let {On|n ~ NI be a countable pseudo-base for X.
By normality, there exist mappings

with fn(x) = 1 if x ~ On and fn(x)  1 for some x E On. This yields a map

defined by f(x) = (fn(x))n~N, x ~ X. Let

be a Whitney map for the compact metric space f(X) (cf. [4], [7]). Then
define

by w(A) = w0f(A), A ~ H(X). Then w is obviously continuous, mono-
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tone and w({x}) = 0 for each x E X. Let A, B E H(X) with A strongly
contained in B. Then there is an n E 1B1 with O" c BBA, and we can find
an x E On with fn(x) ~ fn(A). Consequently, f(x) ~ f(A), whence f(A) is
properly contained in f(B). It follows that

Note that the map f : X ~ f(X) ~ Q is irreducible by the above argu-
ment, in agreement with a result in [3].

PROOF OF (2) ~ (3): obvious.

PROOF OF (3) ~ (1): Let w: H(X) ~ [0,I] have property (1). We let F
denote the net of all finite subsets of X, which converges to X E H(X).
Hence (w(F))F~F converges to w(X), and we can pick a sequence

(Fn)n~N in F with w(Fn)n~N converging to w(X). Now (Fn)n~N and
(w(Fn))n~N converge to, respectively,

It follows from property (I) that A = X, and that D = U "Fn is a counta-
ble dense subset of X which we fix for the rest of the proof.

For each G E H(X) and for each n E N we put

The set O( G, n ) is open by the continuity of w and of the union operator.
We let O denote the collection of all sets of type

or of type

X being separable, there can be at most countably many isolated points,
whence 0 is a countable family. We show that it is a pseudo-base for X.

Let A be a proper closed subset of X. If XBA is finite, then it contains
an isolated point, and hence some 0 E (9 satisfies O n A =Ø. Assuming
XBA to be infinite, we find that D ~ (XBA) is an infinite set, which we
can arrange as a sequence (xn)n~N. Put

Then each An is a proper closed subset of X, and (An)~n=0 converges to X.
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Hence w(An)  w(X) for each n ~ 0 and w( An ) converges to w(X).
Consequently, there is an n o E N with

By the continuity of w, there is a neighbourhood 4Y of An0-1 ~ H( X)
such that for all B ~ U, w(B)  w(An0). As w is monotonic, we may
assume that Ok is of type 

where O c X is open. Fix an open set P of X with

and fix k ~ N with

Choose an increasing sequence (Gn)nEN of finite subsets of D ~ P

converging to P. Then (w(Gn))n~N converges to w(P) and (w(Gn ~
{xn0}))n~N converges to w(P ~ {xn0}). Hence there is an n ~ N such
that

and, by (*), there is an n 2 E 1B1 with

Let n = max {n1, n2}. For x E P,

whence O(Gn, 2k) ~ P = Ø. Also, xn0 ~ O(Gn, 2k) by (**), whence

O(Gn, 2k) E m. 

1.3. THEOREM: Let X be compact and Hausdorff. Then the following
assertions are equivalent:

(1) there is a countable collection (On n E NI of nonempty open sets such
that each dense open set of X contains some On;

(2) there is a map w: H(X) - [0, 1] with property (II).
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PROOF oF (1) ~ (2): Fix a sequence of maps

with fn(x) = 1 for x 1= On, and fn(x)  1 for some x ~ On. Then define

f:~ O and w:H(X) ~ [0,1]

by f(x) = (fn(x))n~N and by w(A) = w0f(A), where Wo is a Whitney map
for f(X). If A ~ H(X) is nowhere dense then there exists an x E XBA
and an n ~ N with fn(x) ~fn(A). Consequently, f(A) is a proper closed
subset of f(X), proving that w(A)  w(X).

PROOF OF (2) ~ (1): We shall largely borrow from the proof of (3) ~ (1)
in the previous theorem, with some extra complications to be solved. Let
w: H(X) ~ [0,1] be a map with property (II). Let F be the net of all finite
subsets of X. Fix a subsequence (Fn)n~N with (w(Fn))n~N converging to
w(X). Then (Fn)n~N converges to

and it follows from property (II) that N = int K ~ Ø. Note that D = u , F,
is a countable dense subset of K, and that w( K ) = w(X). Also, if X has
an isolated point x, then each dense subset of X contains {x}, whence X
satisfies (1). We assume in the sequel that X has no isolated points.

Define a new function

by w’(A) = w( A U ( KB N )). Then w’ is obviously continuous and mono-
tonic, and if A E H(X) is nowhere dense, then so is A U ( KB N ), whence
w’(A)  w’(X). We may therefore assume that the original map w
satisfies in addition the following property: if A ~ H(X) and if x E KB N,
then w(A) = w(A) ~ {x}).

Let O denote the countable collection consisting of N and of all

nonempty sets of type

N ~ O(G, n), G c D finite, n ~ N

(notation as in Theorem 1.2). Let A ~ H(X) be nowhere dense. If

A n K = Ø, then A does not meet N E G. So assume that A ~ K ~ Ø. Then
KBA is infinite (otherwise int K = Ø since X has no isolated points) and
relatively open in K. Therefore, D ~ (KBA) is an infinite dense subset of
KBA which we arrange as a sequence (xn)n~N. Writing
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we find that each An is nowhere dense in X and that (An)n~N converges
to K. Hence, w(An)  w(X) = w(K) and (w(An))n~N converges to w(K),
and we can find an no E 1B1 such that

By the continuity and monotony of w, there is an open set O ~ An0-1 of
X such that for each B E H(X) with B ~ O, w( B )  w( Ano ). Choose a
relatively open set P of K with

and choose k E N such that

As P is open in K, we can find an increasing sequence (Gn)nEN of finite
subsets of D n P converging to P in H(X). Fix n1 ~ 1B1 such that

As (Gn ~ {xn0})n~N converges to P ~ {xn0}, we can find an n 2 E 1B1 such
that

For n = max( ni , n 2 ), we obtain the following : if x E P, then

whence

whereas xno E O(Gn, 2k). By the extra assumption on w, we also find
that xno 1= KBN, whence O( Gn, 2k) n N E O. This shows that X admits a
collection of open sets as required in (1).

2. Relationship with Whitney maps

In Theorems 1.2 and 1.3, the mapping w: H(X) ~ [0,I] is obtained by
using a Whitney map on a metric quotient of the original space. This
naturally leads to the question whether or not every Whitney-like map, or
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every map with property (I) or (II), arises in this way. A necessary
condition is, of course, that w({x}) = 0 for each point x. It appears that
this "norm" conditions is rather irrelevant:

Let X be compact Tl, and let w: H(X) ~ [0,1] be continuous and
monotonic. Then there exists a continuous monotonic map w’: H(X) ~
[0,1] such that

(1) ~x ~ X: w’({x}) = 0
(2) VA c B in H(X): w(A)  w(B) ~ w’(A)  w’(B).

In particular, w’ has property (I) (or (II)) if w does. Just define a map by:

2.1. DEFINITION: Let X and Y be compact Hausdorff spaces, and let

be continuous functions. A morphism f : (X, 03BC) ~ (Y, v) is a continuous
map f : X ~ Y such that I-"(A) = vf(A) for each A E H(X).
We say that (X, 03BC) is obtained from a Whitney map if there exists an

onto morphism (X, 03BC) ~ ( Y, v) with v a Whitney mapping.

2.2. THEOREM: Let X be compact Hausdorff, and let w: H(X) ~ [0, 1] be
continuous. Then there is a quotient map f: X ~ X onto a metric space Î,
together with a continuous function w: H(X) ~ [0, 1], such that the following
are true.

(1) f is a morphism (X, w) - (X, w);
(2) The pair (, w) is universal in the following sense. For each pair

(Y, 03BC) and for each surjective morphism g: (X, w) ~ (Y, 03BC) there is a
unique morphism h: (Y, 03BC) ~ (, w) with hg = f;

(3) If (X, w) can be obtained from a Whitney map, then w is a Whitney
map, isomorphic to the given one.

PROOF: Two points xl, X2 of X are called w-equivalent if

We let f(x) denote the equivalence class of x, and we denote the resulting
quotient map by

The saturation f-1f(A) of A E H(X) will also be denoted by [A]. Define

for each xl, x2 E X. Then d is easily seen to be a pseudo-metric on the set
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X with " level" sets equal to the above equivalence classes. Hence, d
induces a metric i on the set X.

For each x e X and r &#x3E; 0 the collection

is open: let y E B(x, r ). For each A E H(X) there exist neighborhoods
O(A) of A E H(X) and P(A) of y ~ X such that

for each B e O( A ) and for each z E P(A). By the compactness of H(X)
we can select a finite cover {O(A1),... , O(An)} from the covering
{O(A)|A ~ H(X)}, and we put P = ~ni=1P(A1). Then P is a neighbour-
hood of y ~ X, and it is easily seen that P ~ B(x, r). Hence J is

compatible with the topology of the compact space X.
If A E H(X), then w(A) = w([A]). Indeed, let

F = {A U F|F ~ [A] is finite and nonempty .

Then F converges to [A], whence the w-images converge to w[A]. Select a

séquence ( A U Fn)n~N converging to w [ A ], and put D = ~nFn. Note that
w(A U D) = w[A]. Writing

(the indexation need not be injective; D may be finite), we find that

since each Xn is w-equivalent to some point of A. Now ( A U Gn)n~N
converges to A U D whence ( w( A U Gn))nEN converges to w( A UD)=
w([A]). Therefore, w(A) = (w([A]).

Define w: H() ~ [0,1] by

If follows from the above argument that for each A E H(X),

As H(X) and H() are compact, the mapping H(f) : H(X) ~ H()
with H(f)(A) = f(A) is an identification map. Hence w is continuous,
proving (1).

Let g: ( X, w) ~ (Y, p) be onto, and let g(x1) = g(x2). Then for each
A ~ H(X),
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and consequently

This shows that f(x1) = f(x2), and we find a unique map h : Y ~  with
hg = f. Also, if A ~ H(Y), then fg-1(A) = h(A), whence

proving that h is a morphism (Y, 03BC) ~ (, ). This settles (2).
Assume now that the above it is a Whitney map. then for each y1 ~ y2

in Y,

showing that h(y1) ~ h ( y2 ), i.e. h is a homeomorphism. Consequently, w
is a Whitney mapping too.

2.3. COROLLARY: Let X be compact Hausdorff, and let w: H(X) ~ [0, 1] be
continuous, monotonic, and such that w«x 1) = 0 for each x ~ X. Then

(X, w) can be obtained from a Whitney map iff for each A c B in H(X),
w(A) = w(B) implies Be [AJ (notation introduced above).

PROOF: By 2.2(3), (X, w) can be obtained from a Whitney map iff w is a
Whitney map. Using the explicit construction of (, w ) then yields the
desired result.

2.4. Questions

(1) As we already explained in the introduction, we have introduced the
present generalizations of Whitney mappings in order to construct "re-
mote" points in superextensions, [5]. To be precise, such a point is

obtained in the following way. Let w: H(X) ~ [0,I] have property (II).
Then the (2-linked) system of closed sets in X,

has the property that each nowhere dense closed subset of X misses some
member of M, and M extends to a "remote" maximal linked system, that
is: one which consists entirely of sets with nonempty interior.

Is there a similar construction possible to obtain "remote" n-linked
system on X? If so, then this would provide an extension (on compact
spaces) of a result in [1] concerning G-spaces.

(2) A fairly recent development in continual, theory is the study of
so-called Whitney properties, and of Whitney reversible properties, [4].
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The idea is that if C(X) denotes the subspace of H(X) of all subcon-
tinua of X, and if

is a Whitney map, then certain properties of X may carry over to the
spaces

or vice versa.
It is clear that by broadening the concept of a Whitney function, the

chances for a topological property to be "Whitney (reversible)" get
smaller. Are there any interesting topological properties left which are
preserved, in one way or the other, by Whitney-like mappings? A similar
question could be asked for maps with property (I) or (II), but these
conditions are probably too weak to get significant results.
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