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Introduction

The first results on the deformations of ruled varieties were obtained by
Kodaira and Spencer [8], where they show that all small deformations of
a ruled surface are also ruled. Their argument uses the Castelnuovo-En-

riques criterion for ruledness in an essential way, and thus, in view of the
absence of a similar criterion for varieties of higher dimension, their
method cannot be applied to the study of the deformations of a general
ruled variety. In fact, our paper [9] shows that the straightforward
generalization of the Kodaira-Spencer theorem is false, in that there is a
ruled threefold that can be deformed into a threefold that is not ruled.
Here we will study the deformations of ruled varieties, and other related
varieties, and we will give some natural conditions which allow one to
recover the stability results.

Section 1 is concerned with a technique of an approximate resolution
of singularities in a family of varieties. In Section 2, we define the various
classes of varieties that we will study, and we prove our main results in
Section 3 (see especially Theorem 3.11).
We should mention that the smooth deformations of uni-ruled varie-

ties have been studied by ourselves in [10] and in a work of Fujiki [4].
Both of these papers use somewhat different techniques from those
employed in this work; the main result in both papers is that all smooth
deformations of a uni-ruled variety are uni-ruled in characteristic zero. In
characteristic p &#x3E; 0 a similar result holds after imposing a separability
hypothesis.

If X and Y are cycles, intersecting properly on a smooth variety U, we
let X · Y denote the cycle intersection; if X and Y intersect in a zero cycle,
we denote the degree of X · Y by I(X · Y; U). Subvarieties of U will be
identified with cycles, without additional notation, as the context re-
quires ; if Z is a subscheme of U, we let |Z| denote the associated cycle.
We fix an algebraically closed base field k and a discrete valuation ring 0
with residue field k and quotient field K. Unless otherwise specified, all
schemes, morphisms, and rational maps will be over k. If X and Y are
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schemes, with morphism f: X ~ Y, we call X a fiber variety over Y if X is
of finite type over Y, and f is faithfully flat with connected and reduced
fibers.

If f : V ~ M is a flat, projective morphism, we denote the Hilbert
scheme of V over M by Hilb( /M), the universal bundle of subschemes
of V, flat over M, by h : H(V/M) ~ Hilb(V/M), and the Hilbert point
of a subscheme X of V by h(X).

This paper is a modification of the author’s Brandeis doctoral thesis. 1
am greatly indebted to my thesis advisor, Teruhisa Matsusaka, for his
guidance and encouragement.

§ l. Résolution of singularities in a family

In this section we consider the following problem: suppose we are given a
smooth projective fiber variety p : V ~ Spec«9) over a DVR (9, and a
rational map ç from the closed fiber ho to a variety Y. How can we

resolve the indeterminacy of (p by replacing V with a birationally equiva-
lent family p* : V* ~ Spec(O), and keep the new family as smooth as
possible?
We will use without comment the elementary properties of monoidal

transformations; for definitions and proofs of these basic results we refer
the reader to [5].

If X is a noetherian scheme and W a closed subscheme, we let

denote the monoidal transformation with center W. Let Y be a closed
subscheme of X. We define SingX(Y) to be the closed subset of Y,

is not smooth on X,

or y is not smooth on Y

Let p : X ~ Spec(O) be an 0-scheme with closed subscheme Y. We define
Sing( Y ) to be the closed subset of Y,

U { y | X 0 k and Y do not intersect properly at y ) .

In general, if u : Y - X is a birational morphism of smooth varieties,
then the exceptional locus of u is a pure codimension one subset of Y. If
this exceptional locus has irreducible components E,,...,E,, we call the
divisor E = 03A3s1Ei the exceptional divisor of u.

The following result is an easy consequence of the basic properties of
monoidal transformations, and we leave its proof to the reader.
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LEMMA 1.1: Let p : X ~ Spec(O) be a ( quasi-) projective fiber variety over
Spec(O) and let W be a reduced closed subscheme of X. Let X’ = X -
Sing(W), W’ = W - Sing(W) and let u: XW ~ X, u’ : X’W’ ~ X’ be the
respective monoidal transformation. Then

(i) p 03BF u: XW ~ Spec(O) is a (quasi-)projective fiber variety over
Spec(O).

Suppose further that p : X ~ Spec(O) is a smooth quasi-projective fiber
variety with geometrically irreducible fibers and that X ~ k is not con-
tained in Sing(W). Then

(ii) p 03BF u’ : X’W’ ~ Spec(O) is a smooth quasi-projective morphism
with geometrically irreducible fibers

(iii) X’W’ is an open subscheme of XW
(iv) X’W’ ~ K ~ X ~ K and X’W’ ~ k ~ X ~ k are birational morphisms.
(v) Let é be the exceptional divisor of u’, and E the exceptional

divisor of u’ ~ k. Then

DEFINITION 1.2: Let p : V ~ Spec«9) be a smooth projective fiber variety
of fiber dimension n. Suppose there is a smooth complete variety S and a
dominant rational map ~: V 0 k - S. A good resolution of the singulari-
ties of ~ for the family V is a pair ( u: V’ ~ V, U’) where u: V’ - V is a
projective birational morphism, V’ is irreducible, and U’ is an open
subscheme of V’ satisfying

(i) p 03BF M: U’ ~ Spec«9) is a smooth quasi-projective morphism with
geometrically irreducible fibers;

(ii) the morphism u 0 k: U’ 0 k ~ V ~ k is birational.
(iii) Let U’ 0 k denote the closure of U’ 0 k in V’. Then U’ 0 k is

smooth and the induced rational map ~’ : U’ 0 k - S, ~’ = ~ 03BF (u
0 k ), is a morphism. Furthermore

(iv) Let 03B5 ~ U’ be the exceptional divisor of the morphism u : U’ ~ V.
Write é as a sum of irreducible divisors

and denote the divisor di 0 k by £°. If E is an irreducible

component of 03B5~ U’ 0 k, then we can write the divisor 1 - E as

for suitable integers n,.
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We note that condition (iv) is trivially satisfied if all the 03B5l0 are

irreducible; in general, (iv) states that the subgroup of the group of
divisors on U’ 0 k generated by the (° is the same as the subgroup
generated by their irreducible components. We also note that (iv) refers
to divisors on U’ 0 k, not divisors modulo linear equivalence.

EXAMPLE: Let V = P2 X Spec(O). Blow up V 0 k at a point p, and then
blow up this surface at a point q lying on the exceptional curve. Let S be
the resulting surface, let v: S ~ V~k be the blowing up morphism and
let E = El + E2 (Ei-irreducible) be the exceptional divisor of v, where E2
is the exceptional divisor of the blowup at q. Let ~: V ~ k ~ S be the
inverse to v. Now let Cl 9 V be the image of a section sl : Spec(O) ~ V
that passes through p, and let ul : Vi - V be the blow up of V along CB.
We identify V, 0 k with the blow up of V 0 k at p. Let C2 ç hl be the
image of a section S2: Spec(O) ~ V1 that passes through q, but is not
contained in the exceptional divisor of ul. Let u2: h2 ~ V1 be the blow up
of V, along C2 and let u: V2 - V be the composition UI 0 u2. Then ( u:
V2 - V, h2 ) is a good resolution of the singularities of 0 for the family V.
In fact (i)-(iii) are obvious since V2 is smooth over O and since V2 0 k is
isomorphic to S. To check (iv), we note that the exceptional divisor é of
u : V2 ~ V consists of two irreducible components é, and 03B52, where
03B52 = u-12(C2) and éi is the proper transform u-12[u-11(C1)]. We have
CI ~ k = El + E2 and C2 ~ k = E2, so (iv) is satisfied.

Our main object is to show that a good resolution exists for each
family and each rational map. Our procedure will be inductive; to help
the induction along we require a slightly different notion: that of the
replica of a birational morphism.

DEFINITION 1.3: Let p: V ~ Spec(O) be a smooth quasi-projective mor-
phism with geometrically irreducible fibers. Let X and X’ be smooth
varieties and let g: X’ ~ X be a projective birational morphism. Suppose
we have a birational morphism f : V 0 k ~ X with

A replica of g for the family V is a pair ( u: V’ - V, U’) where u: V’ - V is
a projective birational morphism, and U’ is open subscheme of V’

satisfying
(i) p’ = p 03BF u: U’ ~ Spec«9) is a smooth quasi-projective morphism

with geometrically irreducible fibers,
(ii) the morphism p’ 0 k: U’ ~ k ~ V 0 k is birational,
(iii) the induced rational map
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is a morphism and

(iv) Let dbe the exceptional divisor of u: U’ ~ V.
Write é as a sum of irreducible divisors

and let 03B5l0 denote the divisor £ 0 k. If E is an irreducible

component of dO k, then we can write the divisor 1 - E as

for suitable integers ni.
LEMMA 1.4 ( Severi ’s method of the projecting cone): Let X be a smooth
quasi-projective variety contained in a projective space p N. Let Z, B1, ... , Bs
be subvarieties of X. Then there is a subvariety Y of PN such that

(i) e and X intersect properly in (FD N.
(ii) e. X = Z + 03A3ri=1 Zi as a cycle, with Z =1= Zl for all i = 1,..., r and

Z, 4= Z. for all i =1= j; i, j = 1, ... , r.
(iii) Z, ~ Bj is of codimension at least one on both Bj and Z, for all

i = 1, ... , r; j = 1, ... , s.

PROOF (see [3], [12], or [13]): In each of these works, eis the cone over Z
with vertex a suitably general linear subvariety of (FD N.

The next lemma provides the key step in the inductive argument.

LEMMA 1.5 : Suppose a is equi-characteristic. Let p: V ~ Spec(O) be a
smooth quasi-projective morphism with geometrically irreducible fibers.

Let X be a smooth variety, C a smooth subvariety of X of codimension at
least two, uC: XC ~ X the monoidal transformation with center C; let

Bl,...,B, be irreducible subvarieties of Xc and let BI denote the image
uC(Bi) in X. Suppose there is a birational morphism f : V ~ k - X. Letting
P = X - f(V 0 k) and X ° = X - P, we further suppose that
(a) codimX(P)  2,
(b) C rl X ° and B; n X °, i = 1, ... , s, are nonempty,
( c) f-1 is a morphism in a neighborhood of C ~ X ° and B; ~ X °, i =

1,...,s.
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Then there is an open subset U of V, and a subvariety W of V such that
(A) (uw: VW ~ V, Uw) is a replica of Uc for the family V, where

W= Wn U.

( B) Letting fw: UW ~ k-- Xc be the induced morphism, and letting P,
Xc - fw (Uw 0 k) and X0C = Xc - P,, then B, n X0C is nonempty
for i = 1, ... , s, and f-1W is an isomorphism in a neighborhood of
B, n X0C.

(C) W is smooth over Spec«9).

PROOF : We first note that we may replace V ~ k with V ~ k - f-1(P),
and V with V - f -’ 1 (P). Having done so, and changing notation, we may
assume that f(V~k) is contained in X °. We may also assume X = X0.

Noting that f -1 is an isomorphism in a neighborhood of C and the B’l ,
we let Û = f-’(C), BI = f-’(B’’).
We may assume that V is a Spec(O) subscheme of PNk X k Spec«9). By

Lemma 1.4, there is a subvariety Z of PNk such that
(1) Z n V 0 k is proper; 
(2) DI =1= Dj for i =1= j and DI =1= Û for all i,
(3) D, n B, is of codimension at least one on both D, and Ê,, for all

i = 1,...,r and j = 1,...,s.
Let W be the closed subscheme (Z X Spec( tP )) n V of V and let T be

the closed subset of V

Note that (b) and (c), together with statements (1)-(3) imply that
(4) codimV(T ~ k)  2; neither C nor any B ’’ is contained in f(T ~ k ).

Let U be the open subscheme V - T of V. Let C and BJ denote the
intersection of U with Û and El respectively. Then from (1)-(3) it follows
that 

(5) W ~ U ~ k is proper; W·(U~k)=C; BJ ~(U~k) ~ Ø. 
suchIf W is reducible, replace W with an irreducible component W0 such

that W0 ~(U~k) = C; changing notation, we may assume that W is
irreducible. 

Let W = U ~ W and let uW : Uw- U, uW: VW ~ V be the respective
monoidal transformations. We claim that (uW: VW ~ V, UW) is a replica
of uc,

Conditions (i) and (ii) of Definition 1.3 are immediate from our
construction. For condition (iii) we note the following diagram of ra-
tional maps
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where fW is defined to make the diagram commute.
Since f -’ 1 is an isomorphism in a neighborhood of C ~ X0 and since

it follows that uW ~ k: U w 0 k ~ U 0 k is the monoidal transformation
with center C, and fW is a birational morphism. Let Pc be the closed
subset XC-fW(UW~k) of Xc. By (6), we see that

Suppose there was an irreducible component A of Pc of codimension one
on XC. Then

and as codimX(P ~ f(T))  2, it follows that

and hence

But by (b), (c), and (4), P ~ f(T) does not contain C. Thus
codim Xc [uC 1(C ~ ( P U f ( T )))] is at least two, and no such A could exist.
This completes the verification of (iii) in Definition 1.3. We now check
(iv).

As W is smooth and irreducible, the exceptional divisor éof u w is the
irreducible subvariety u-1W(W) taken with multiplicity one. From the
diagram (6), we have

As the right hand side is irreducible, property (iv) is clear and the proof
of (A) is complete.

(B) follows easily from (5) and diagram (6); to show (C), we note that
W is flat over Spec(O) since W 0 K and W 0 k have the same dimension.
As both W 0 K and W 0 k are smooth, W is smooth over Spec(O) by [6,
exp. II, thm. 2.1]. This completes the proof of the lemma. Q.E.D.

PROPOSITION 1.6 : Assume (9 is equi-characteristic. Let p : V - Spec«9) be a
smooth quasi-projective morphism with geometrically irreducible fibers. Let
X be a smooth variety and let
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be a sequence of monoidal transformations with smooth center C1 c X,. Let
C/ denote the image of C1 in Xo for i = 0,..., n - 1 and let v: Xn - X denote
the composition v = Vo 0 ... 0 vn-1. Suppose there is a birational morphism
f : V 0 k - X. Letting P = X - f(V), X ° = X - P, we further suppose that
(a) codimX(P)  2;
(b) CI ~ X ° is non-empty, for i = 0,..., n - 1;
(c) f-1 is an isomorphism in a neighborhood of Ci’ ~ X °, for i = 0,..., n - 1.

Then there is a sequence of monoidal transformations

with irreducible center W ~ Vi, and open subsets U of V, such that Ui
and U n W are smooth over Spec(O), ui(U,,j) is contained in U, and

is a replica of v for the family V, where u is the composition, u =

U0 03BF ... 03BF Un -1.

PROOF: We proceed by induction on n, the case n = 0 being trivial. Let
C," denote the image of C, in Xl, for i  1. By Lemma 1.5, there is a
subvariety Wo of V, and an open subscheme Uo of V, such that,
(1) (uW0: V1 ~ V; Ul ) is a replica of v0: X1 ~ X for V, where V, = hWo,

U1 = (U0)(W0 ~ U0).
(2) Let f1: U, 0 k - Xl be the morphism, f = VOl 0 f 03BF (uW0 o k ), let

Pl = X1 - f1(U1 0 k ), and let X10 = Xl - Pl. Then X ° ~ C"i ~ Ø and
f-11 1 is an isomorphism in a neighborhood of X10 ~ C,", for each

i=1,...,n-1.
(3) Wo n Uo is smooth over 0.

From (1) and (2), we see that the family p1: U, - Spec«9), p = P 0 u Wo,
the sequence of monoidal transformations

and the birational morphism

satisfy the hypotheses of the proposition. Let vl be the composition
v1 = v1 03BF ... 03BF vn, By induction, there is a sequence of monoidal transfor-
mations
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with irreducible center W1 c V1l, and open subsets U 1 of Vl1 such that
Ul1 and Ul1 ~ W are smooth over Spec(O), and

is replica of v’ for the family UI. Define (9-varieties I ;, i = 1,...,n, and
subvarieties Wl, i = 1,..., n - 1, of lg inductively by letting W, be the
closure of W,1 in V, and letting Vl+1 be the monoidal transform of V, with
center W, . Clearly V1l is a subscheme of V,; let U be the open subscheme
Ul1 of lg, and let u : Vn ~ V be the composition of the monoidal
transformations

We claim that ( u: Vn ~ V; Un) is a replica of v for the family V. Indeed,
properties (i)-(iii) of Definition 1.3 follow immediately from the fact that
(u1 : V,,’ - Ul ; Un) and (uW0: V1 ~ V; U1) are replicas f or vl and vo
respectively. It remains to check condition (iv).

Let é be the exceptional divisor of u: Un ~ V, and write éas a sum of
irreducible divisors

Let é" be the exceptional divisor of ul : l£ - Ul. From the factorization
of u,

we see that we may take one of the irreducible components of 03B5, say é’,,
to be the proper transform of u-1W0(W0) under (u1)-1. In addition, we can
write tff as 

W0

Furthermore, since U and U ~ Wi are smooth over Spec«9), the

exceptional locus of u1 ~ k: Un ~ k ~ U1 ~ k is 03B51 ~ (Un~k), as one sees
by an easy induction.

Let E be an irreducible component of dO k. If E is an exceptional
subvariety for u’ ~ k, then E is a component of é" 0 k. As (u’: v:,1 ~ Ul;
Un ) is a replica of vl, we can write 1 - E as a sum
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for suitable integers n,. In case u’ ® k does not collapse E, we must have

Thus each irreducible component of 1. E - tffr 0 k is exceptional for
ui 0 k, and we are reduced to the preceeding case. This completes the
verification of (iv), and the proof of the proposition. Q.E.D.

We now prove the main result of this section.

THEOREM 1.7 : Let p : V ~ Spec«(9) be a smooth projective fiber variety of
fiber dimension n. Suppose (9 is equi-characteristic and that either char(O)

&#x3E; 5 and n  3, or char(O) = 0. Suppose there is a smooth complete variety
S and a dominant rational map 0: V ~ k -S. Then there is a good
resolution of the singularities of ~ for the family V.

PROOF : By [2] in case char(O) &#x3E; 5 and n  3, or by [7] in case char(O) = 0,
there is a birational morphism v: X ~ V 0 k that can be factored into a
sequence of monoidal transformations with smooth center, such that the
induced rational map : X - S is a morphism. Let (u,: VI ~ V, U1) be a
replica of v for the family V. Let U, 0 k be the closure of U, 0 k in V1,
and let

be the induced rational map ~1 = ~ 03BF v-1 03BF (u1 ~ k ). U, and U, ~ k are
smooth and ~1: U, ~ k ~ S is a morphism. Applying [2] or [7] again,
there is a projective birational morphism U2: V’ ~ V1 that resolves the
singularities of the variety U1 0 k and the indeterminacy of the map ~1.
In addition, u2 1 is an isomorphism when restricted to Ul. Let U’ =
u-12(U1), and let u’ : V’ ~ V be the composition u’ = Ul 0 u2 . We claim
that ( u’: V’ ~ V, U’) is a good resolution of the singularities of ~ for the
family V. 

Let ~’: U’ 0 k - S be the induced morphism ~’ = ~1 03BF ( u2 ~ k).
Let f 1: U, ~ k - X be the birational morphism, f, = v-1 03BF (ul 0 k ).

Let F c X be the closure of the fundamental locus of f-11. Then

But codim X(X-f1(U1 ~ k)) is at least two, since ( u 1: hl - V; U1) is a
replica of v. Also codimX(F) is at least two. Thus

This verifies condition (iii) in definition 1.2. Conditions (i), (ii), and (iv)
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follow from the isomorphism u2: U’ ~ U, and the fact that ( ul : V1 - V,
Ul ) is a replica of v. Q.E.D.

§2. Ruled, quasi-ruled, and strongly uni-ruled varieties

In this section we define our notion of stability, we introduce the classes
of varieties which are natural higher dimensional generalizations of the
class of ruled surfaces, and we verify the easy half of a criterion for
stability of these classes.

DEFINITION 2.1: Let X be a variety of dimension n, and let Y be a variety
of dimension n - 1.

(i) X is said to be ruled over Y if X is birationally isomorphic to
Y  P1. The induced rational map ~: X ~ Y is called a ruling of
X.

(ii) X is said to be quasi-ruled over Y if there is a dominant separable
rational map ~: X ~ Y such that ~-1(y) is an irreducible rational
curve for all y in a Zariski open subset of Y.

(iii) X is called uni-ruled if there is a ruled variety W of dimension n,
and a dominant rational map 0: W ~ X.

(iv) X is called strongly uni-ruled if there is a variety W, birationally
isomorphic to X, a variety Z of dimension n - 1, and a subvariety
Y of Z X W such that

(a) pi : LT- Z is smooth and proper,
(b) p-11(z) is a rational curve for all z in Z,
(c) p2: Y ~ W is etale.

The notions of ruledness, quasi-ruledness, uni-ruledness and strong uni-
ruledness are birational in nature.

Before discussing these varieties further, we will prove a lemma that
will aid in their description.

LEMMA 2.2: Let ~: X ~ Y be a dominant rational map of varieties with X,
Y, and ~ defined over a field k. Let y be a generic point of Y over k.
Suppose that ~-1(y) is a complete non-singular rational curve, say Cy. I f
there is a divisor D ç X such that Cy rl D is contained in the smooth locus of
X and deg(Cy · D ) = 1, then X is ruled over Y via ~.

PROOF: Let K ~ k be a field of definition for D and let y’ be a generic
point of Y over K. By our assumptions, Cy, = ~-1(y’) is defined over the
field K( y’). Let x be a generic point of Cy’ over K( y’), hence x is also a
generic point of X over K. The divisor d= D - Cy, is rational over K( y’),
hence by Riemann-Roch, there is a function tl E K(y’)(x) such that
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Thus xo is a K( y’) rational point of Cy.. Again by Riemann-Roch, there
is a function t ~ K(y’)(x) with

Thus t: Cy, ~ P1 is an isomorphism and hence

which proves the lemma. Q.E.D.

REMARK: Suppose X is a variety defined over k. If char(k) = 0, or if

char( k ) &#x3E; 5 and dim(X)  3, then
(i) if tp: X - Y is a quasi-ruling then ~ is a ruling if and only if

admits a rational section s: Y ~ X. This follows from the lemma
once we replace X with a smooth projective variety X*, biration-
ally isomorphic to X, such that the induced rational map ~*:
X* - Y is a morphism;

(ii) if X is a ruled variety when X is a quasi-ruled variety;
(iii) if X is a quasi-ruled variety, then X is a strongly uni-ruled variety,

for suppose X is quasi-ruled over Y via ~: X ~ Y. As above there is a
smooth projective X* birationally ismorphic to X such that the induced
rational map ~* : X* ~ Y is a morphism. If Yo is an open subset of Y
such that ~* is smooth over Yo, then the graph of ~*, restricted to X*, Yo,
exhibits X as a strongly uni-ruled variety.

(iv) If X is a strongly uni-ruled variety then X is a uni-ruled variety,
for suppose X is strongly uni-ruled via a family e of curves on W
parametrized by Z,

where W is a variety birationally isomorphic to X. Let pl : Y ~ Z,
p2 : it- W be the restrictions to LT of the projections on the first
and second factor, respectively. Let q : Z’ - Z be a quasi-finite
morphism such that the pullback Y’,

admits a rational section to the morphism p,,: Y ~ Z’. By (i) e’
is ruled over Z’, furthermore the morphism P2 ’ p: Y’ ~ W
exhibits W, and hence X, as a uni-ruled variety.

(v) Suppose that X is a projective variety defined over k, and let x be
a generic point of X over k. Then X is uni-ruled if and only if
there is a rational curve on X containing x. See Lemma 2 of [10]
for proof.

The celebrated example of the cubic threefold was shown by
Clemens-Griffiths to be uni-rational but not rational; one easily deduces
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from this that the cubic threefold is not ruled. It is quasi-ruled (in fact a
conic bundle) by the conics cut out by the p2 of planes passing through a
line contained in the threefold, which gives an example of a quasi-ruled
variety that is not ruled. More generally, it is easy to show that any
non-trivial conic bundle over a base S, where S is not uni-ruled, is

quasi-ruled but not ruled. See the discussion following Theorem 3.4 for
an example of a strongly uni-ruled variety that is not quasi-ruled.
We do not know of an example of a uni-ruled variety that is not

strongly uni-ruled. It is not difficult, however, to construct a family of
rational curves on a variety V which exhibit V as a uni-ruled variety, but
not as a strongly uni-ruled variety. For example, if x is a general point of
a general quartic threefold V, then the intersection of V, the tangent
hyperplane to V at x, and the tangent cone to V at x gives a degree eight
rational curve Cx with an eight-tuple point at x. If S is a general surface
section of V, then the curves Cx, as x runs over S, gives a uni-ruling of V.
This is not a strong uni-ruling, since in a strong uni-ruling the k-closure
of the singular points of the generic curve in the uni-ruling must have
codimension at least two in the ambient variety.

DEFINITION 2.3: Let 9 be a class of nonsingular projective varieties. We
say that P is stable under small deformations (in the algebraic sense) if,
given a variety Xo in P and smooth projective fiber variety

over a variety M, with

then there is a Zariski neighborhood U of m o in M such that the variety
p-1(m) is in P for all m in U.

LEMMA 2.4: Let -9 be a class of smooth projective varieties such that
(i) If p: X - M is a smooth projective fiber variety over a variety M,

and if X 0 k(M) is in P, then there is an open subset U of M such
that p-1(u) is in Yfor all u in U;

(ii) if p: X - Spec(D) is a smooth projective fiber variety over an
equicharacteristic DVR-Q, with quotient field L and algebraically
closed residue field Ko, and if X 0 Ko is in .9, then X 0 L is in .9.

Then .9 is stable under small deformations.

PROOF: This follows by a simple noetherian induction.

LEMMA 2.5: Let p: X - M be a proper fiber variety over a variety M.
Suppose there is a variety YM, defined and proper over k(M), and a
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dominant rational (resp. birational) map 03C8M: X 0 k (M) - Ym, also de-
fined over k(M). Then there is an open subset U of M, a flat and proper
morphism q: Y - U and a subvariety F of p-1(U) X u Y such that

(i ) Y 0 k(U) is k(U) = k(M) isomorphic to Ym; r 0 k(U) is the

graph of 03C8M;
(ii) Y 0 k(u) is reduced and geometrically irreducible for each u in U;
(iii) r 0 k(u) is the graph of a dominant rational ( resp. birational) map

03C8u: X 0 k(u) - Y 0 k(u), for each u in U.

PROOF : Ym defines by specialization a proper fiber-variety YM over an
open subset U, of M. Let U2 be an open subset of Ml over which YM is
flat, and such that YM 0 k(u) is reduced and geometrically irreducible for
each u of Ul. Let f M denote the graph of 41m, and let f M denote the
k-closure of rM in X X M YM . As 0393M is k(M)-closed, Irm 0 k(M) = 0393M. If
03C8M is a birational map, we take U to be an open subset of U2 such that
f M is flat over U, r M 0 k(u) is reduced and geometrically irreducible for
each u of U, and such that

for each u in U. If 03C8M is merely a dominant rational map, we take U to
be an open subset as above, only we require that

and that p2 : 0393M ~ k(u) ~ YM ~ k(u) is dominant for each in U. Letting
completes the proof. Q.E.D.

PROPOSITION 2.6: Let f!JJ 1 be the class of strongly uni-ruled varieties, f!JJ 2 the
class of quasi-ruled varieties, and.93 the class of ruled varieties. Then P1,
P2, and f!JJ 3 satisfy condition (i) of Lemma 2.4.

PROOF: Let p : X ~ M be a smooth projective fiber variety over a variety
M. Let XM denote the generic fiber X ~ k ( M )

(1) Suppose XM is strongly uni-ruled. Then there is a variety WM, a
variety Zm and a subvariety Y M of Zm X WM satisfying conditions (a)-(c)
of Definition 2.1 (iv). We may assume that WM, Zm and em are defined
over a finite field extension L of k(M), and that XM 0 L and WM are
birational over L. Replacing M with its normalization in L, and changing
notation, we may assume that L = k ( M ). Let WM and Zm be varieties
proper over k(M), containing WM and Zm respectively, as k(M)-open
subsets. By Lemma 2.5, there is an open subset U of M, and proper
morphisms q: Z ~ U, r: W - U such that

(i) 
(ii) Z 0 k (u) and W ~ k(u) are reduced and geometrically irreducible

for each u in U;
(üi) W ~ k(u) is birational to X ~ K(u) for each u in U.
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Let Y be the k-closure of em in Z x u W. As YM is smooth and proper
over ZM, and etale over WM, there is an open subset Z of Z such that

(iv) (a) p1(Z) is smooth and proper over Z;
(b) is etale over W

By Lemma 5 of [13], we have
(v) p-11(z) is a rational curve, for each z in Z.
Let

As smooth, proper, and etale morphisms are stable under base change,
we have

(vi) (a) Y ~ k(u) is smooth and proper over Z ~ k ( u );
(b) eo k(u) is etale over W ~ k(u).

By (iii), (v), and (vi), X 0 k(u) is strongly uni-ruled.
(2) Suppose XM is quasi ruled via ~M: XM ~ YM. Arguing as in (1), we

may assume that YM and CPM are defined over k(M), and that YM is
proper over k ( M ). Apply Lemma 2.5 to YM and ~M, and let p : Y - U,
0393 ~ p-1(U) U Y be as given by that lemma. By assumption, the generic
fiber of om is an irreducible rational curve, and om is separable. In
particular, there is an open subset of XM that is smooth over Yl,,l; thus
there is an open subset ro of r, smooth over Y. Shrinking U if necessary,
we may assume that the rational map ou: X ~ k(u) ~ Y ~ k(u) defined
by the graph r 0 k(u) is separable, and that the generic fiber of ~u is
irreducible. By Lemma 5 of [13], the generic fiber of ou is a rational

curve, hence X ~ k(u) is quasi-ruled for each u in U.
(3) If XM is a ruled variety, then our result follows from Theorem 1.1

of [11]. Q.E.D.

A similar result also holds for the class of uni-ruled varieties. As the
uni-ruled varieties (in characteristic zero) have been shown to be stable
under smooth deformation (see [4] and [10]), we omit the proof.

§3. Stability

In this section we will prove our main results on the stability of ruled,
quasi-ruled and strongly uni-ruled varieties. We first prove a result about
the deformations of rational curves.

DEFINITION 3.1: Let p : V - M be a flat projective morphism of schemes.
Let O be a point of U, and let Z be a subscheme of p-1(0). A locally
closed irreducible subset Y of Hilb( /M) is called a maximal algebraic
family of deformations of Z in V if

(i) h(Z) ~ Y;
(ii) if T - M is an M-scheme, OT a point of T over O, Z ~ T  M V a

subscheme flat over T such that k(OT) ~ Y= Z, and f : T ~

Hilb( /M) the morphism induced by e, then there is an open
neighborhood U of OT in T such that f(U) is contained in Y.
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PROPOSITION 3.2 : Let p : V ~ Spec(C) be a projective morphism and let U
be an open subset of V, smooth over a with geometrically irreducible fibers
of dimension n. Suppose U 0 k contains a complete smooth rational curve X
with

Then there is a subvariety Y of Hilb(V/O) such that, letting y be the
pullback Y hilb H(V/O). we have

(i) Y is a maximal algebraic family of deformations of X in V;
(ii) the morphism g: Y ~ Spec(C) induced by the inclusion of Y into

Hilb(V/O) is smooth, and the fibers of g have dimension n - 1.
(iii) OY is a subscheme of Y X Spec(O) U;
(iv) y is smooth and proper over Y and etale over U;
( v) each fiber of pl : y ~ Y is a rational curve.
In particular, U 0 k, and U 0 K are strongly uni-ruled.

PROOF : Let Y’ be an irreducible component of Hilb(V/O) containing
h (X). Since

and since U is smooth over Spec(O), we have
(a) Y’ is the only component of Hilb(V/O) passing through h ( X) ;
(b) h(X) is smooth on Y’;
(c) Th(x)(Y’) is isomorphic to HO(X, Nx/u),

by corollary 5.2, exp. III of [6]. We now give a description of the
isomorphism in (c).

Let OY’ c Y’ X Spec(O)V be the subscheme induced by the inclusion of Y’
in Hilb(V/O).

Denoting h( X) by 0, we note that fV§ = OY’ 0 k (o) is isomorphic to X,
hence is a smooth variety. As Cf!!’ is flat over Y’, this implies that there is a
neighborhood of fV§ in y’, smooth over Y’. In particular, the normal
sheaf of fV§ in OY’ is the trivial sheaf,

Thus, if v is a tangent vector, v E T0(Y’), there is a unique section Sv in
H0(y’0; Ny’0/y’ ) such that, for each x in y’0,

where dp1(x): Ny’0/y’ 0 k(x) ~ T0(Y) is the homomorphism induced by
the tangent map d p 1.
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The tangent map dp2: T(y’0) ~ T(X) induces a map d p2 :
H0(y’0; Ny’0/y’) ~ H0(X; NX/U).
We define the map p: T0(Y’) ~ H0(X; Nx/u) by

This described the isomorphism of (c).
We have the exact sheaf sequence on X:

As NX/U~k = (OX)n-1, and NU~k/U ~ OX = fflx, and since

Ext1X(OX, (OX)n-1) = 0, the above séquence splits, and

Thus, by (c), dim( Y’) = n.
Next, let u be a non-zero vector in the Zariski tangent space of

Spec(O) at the closed point, and let Su be a global section of NX/U such
that

for each x in X. Let v ~ T0(Y’) be such that

Let g: Y - Spec(O) be the morphism induced by the inclusion of Y’ into
Hilb(V/0). We note that g is given by the map of C9 into a Y defined by

Thus, we see that

and hence the map g is smooth at h(X).
Furthermore, we claim that OY’ is etale over in a neighborhood of

éK§. As p2 : y’0 - X is an isomorphism, it is enough to show that

is an isomorphism for each x in &#x26;0’. Let v be a non-zero element of

Ny’0/y’ 0 k(x). As Ny’0/y’ is a free sheaf, there is a unique global section
Sv of Ny’0/y’ such that Sv(x) = v. Clearly we have
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since d p1(v) ~ 0. As Nlu is the trivial sheaf (OX)n, this implies that

Thus dP2(X) is an injection, hence an isomorphism as desired.
Thus there is an open neighborhood Y of h(X) in Y’ such that Y is

smooth over Spec«9), q ~ p1-1(Y) is smooth over Y and úJJ’ ~ p-11(Y) is
etale over V.

As X is contained in U, we may take Y so that p2(y’ ~p-11(Y)) is
contained in U. Let OY= q’ ~ p-11(Y). Since Y is open in Y’, (i) is clear,
as is (ii) and (iii), noting that dim(Y) = dim(Y’)=n. The previous
paragraph proves (iv). As for (v), the fiber qo k(0) is isomorphic to the
rational curve X. Since the genus of a smooth complete curve is a

deformation invariant all smooth deformations of Y ~ k(0) are also

rational, proving (v). Our final assertion follows from (iv), (v), and the
base change theorems for smooth, proper, and etale morphisms. Q.E.D.

We also require the following basic result on extensions of invertible
sheaves. As the result is well known, we merely sketch the proof.

LEMMA 3.3: Let f : V ~ M be a smooth, projective morphism of integral
schemes with geometrically irreducible fibers, 0 a point of M, and Lo an
invertible sheaf on f-1(O) = Vo. Suppose that h2(V0, OV0) = 0. Then there
is an etale neighborhood r: M’ ~ M of 0, an invertible sheaf L’ on
v’ = V  MM’, and a point 0’ of r-1 (O) such that L’ 0 a VÓ’ is isomorphic

PROOF: Let M denote the formal completion of M at mo and let  denote
the formal scheme V  M. By proposition 7.1 of [5], there is an

invertible sheaf L on V with L ~ OV0 isomorphic to Lo. Let  denote the
completion of the local ring of O in M at its maximal ideal, M the scheme
Spec(). By Grothendieck’s existence theorem [EGA III, 5.4.5], L ex-
tends to an invertible sheaf L on V X m M. Finally, Artin’s algebraization
theorem [2] applied to the functor F,

T an M-scheme,

yields the desired sheaf L’ and etale neighborhood r : M’ - M. Q.E.D.

THEOREM 3.4: Let uk(n) denote the class of smooth projective strongly
uni-ruled varieties of dimension n, defined over a field containing k. If
char(k) = 0, or if char(k) &#x3E; 5 and n  3, then au k (n) is stable under small
deformations.

PROOF : By Proposition 2.6, we need only verify (ii) in Lemma 2.4. Let C9
be an equi-characteristic DVR with quotient field K and algebraically
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closed residue field Ko, and let p : V ~ Spec(O) be a smooth projective
morphism with geometrically irreducible fibers of dimension n. Changing
notation, we may assume K. = k. Suppose V 0 k is strongly uni-ruled.
Then there is a variety W, birational to V 0 k, a variety Y and a family of
curves qc Y X W such that

(a) p 1: 13(- Y is smooth and proper;
(b) P2: y ~ W is etale;
(c) each fiber of pl : Y ~ Y is a rational curve.

Let v : W’ - V 0 k be a projective birational morphism such that W’ is
smooth, and the induced map v : W’ ~ W is a morphism. Shrinking Y if
necessary, we may replace W with W’; changing notation we may assume
W = W’. Let ( u’: V’ ~ V; U’) be a good resolution for the singularities
of the map v-1 for the family V. Let U’ ~ k ~ W denote the induced
morphism, 03C8 v - 1 o ( u’ 0 k ). Let P = W - 03C8(U’ ~ k) and let F be the
closure of the fundamental locus of 03C8-1. Since ( u’: V’ ~ V; U’) is a good
resolution, we have

codimW(P ~ F)  2 .

Let O be a point of Y such that

and let X = p2(p-11(O)). Since y is etale over W, the formal neighbor-
hood of p-11(O) in y is isomorphic to the formal neighborhood of X in
W; thus

Furthermore, since X ~ (P ~ F) = ~, X is contained in 41 (U’ (D k) and
03C8-1 is an isomorphism in a neighborhood of X. Letting X’ = 03C8-1(X), we
have

and X’ is a smooth complete rational curve. Applying Proposition 3.2, we
see that V’ 0 K and hence V 0 K, is strongly uni-ruled, which completes
the verification of (ii) and the proof of the theorem. Q.E.D.

We now turn to stability results for quasi-ruled and ruled varieties.
The reader will note that we require additional hypotheses in Theorems
3.8, 3.9, and 3.10 to yield stability. These hypotheses are actually quite
necessary. Regarding Theorem 3.8, we give in [9] an example of a family
p : V - Spec(O), with V 0 k quasi-ruled over a ruled threefold, such that
V ~ K is not quasi-ruled.
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We also give an example of a family q : W - Spec(O), with W 0 k
ruled over, a base Y via a morphism, but with h2(Y, OY) ~ 0, such that
W 0 K is not ruled, which illuminates the final hypothesis of theorem
3.10. The variety V 0 K above, being the deformation of the quasi-ruled
(hence strongly uni-ruled) V ~ k is, in virtue of the above theorem, a
strongly uni-ruled variety. This gives an example of a variety which is
strongly uni-ruled, but not quasi-ruled, as mentioned in Section 2.
We first prove some basic results about extending rational maps to a

family of varieties.

DEFINITION 3.5: Let p: U ~ Spec(C) be a smooth morphism with geo-
metrically irreducible fibers. Suppose there is a variety Yo and a domi-
nant rational map f : U ~ k - Yo. An extension of f to the family U is a
pair ( g: Y - Spec(O); F) where g: Y - Spec(C) is a smooth morphism
with geometrically irreducible fibers, and F: U ~ Y is a dominant
rational map over C9, defined along U 0 k, such that

(i) Yo is birational to Y 0 k, by some 03BE: Y0 ~ Y 0 k;
(ii) f.
The following lemma gives a criterion for a subvariety y of U X Spec(O)Y

to be the graph of the extension of a rational map.

LEMMA 3.6: Let p : U ~ Spec(C) be a smooth quasi-projective morphism
with geometrically irreducible fibers, let Yo be a variety and let f: U ~ k - Yo
be a dominant rational map. Suppose there is a smooth morphism g:
Y - Spec(C), with geometrically irreducible fibers, a subvariety y of U
X a Y, a birational map 03BE: Y0 ~ Y 0 k, and a point xo of U 0 k such that

(i ) y ~ K and y ~ k are irreducible and reduced;
(ii) OYO k is the graph of 03B6° f: U ~ k ~ Y ~ k;

(iii) 03BE 03BF f is a morphism at Xo.
( iv ) Let xt be a point of U and xt ~ xo a specialization. Let Yt be a point

of p2((xt Y) ~ y). If we extend Xt - xo to a specialization
yt ~ y, then y = 03B6 03BF f(x0).

Then y is the graph of a dominant rational map F: U - Y over ffl, and ( g:
Y - Spec(O) ; F) is an extension of f to the family U.

PROOF: Since p2 : &#x26;0 k ~ Y 0 k is dominant, and y and Y are irreduci-
ble, it follows that p2: OYO K - Y ~ K is also dominant. To complete the
proof, we need only show that there is an open subset W of CljJ, such that
W is isomorphic to p1(W) via p1.

Since y is integral and dominates Spec(O), y is flat over C9. Further-
more, since t - f is morphism at xo, the graph OYO k of e - f is smooth at
(x0, 03BE° f(xo)). Thus y is smooth over a in a neighborhood of

(x0, 03BE o f(x0)), hence there is a neighborhood W of (x0, 03BE° f(x0)) on 03(
such that

(a) g o p2 : W - Spec(O) is a smooth morphism;
(b) p 1: W ~ U is quasi-finite and dominant.
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Our assumption (iv), together with the valuative criterion for properness,
shows that the map pl : W - U is proper over a neighborhood of xo in U.
Shrinking W if necessary, we may assume that W is proper over its image
p1(W). Thus, since p1: W - p 1(W) is both quasi-finite and proper,

is a finite morphism.
In particular, if x is a point of Pl (W), specializing to xo, then

where "dim" refers to the vector space dimension. Thus p1: W - p 1(W)
is an isomorphism, as desired Q.E.D.

Most of the work in verifying the conditions of Lemma 3.6 for the
situation at hand has already been done, as is shown below. We recall
that the Hilbert point of a subvariety X of a projective variety V is
denoted h(X).

LEMMA 3.7 : Let p : V ~ Spec(O) be a smooth projective fiber space of fiber
dimension n. Suppose char(k) = 0, or that char(k) &#x3E; 5 and n  3. Suppose
that V 0 k is quasi-ruled over a variety Yo via ~: V 0 k - Yo. Then there is
a local extension 0’ of C9, with quotient field K’ and residue field k,

a good resolution ( u* : V* ~ V’; U*) of the singularities of cp 0 pl : V’ 0 k
- Yo for the family V’, a smooth quasi-projective fiber variety g: Y -
Spec(O’), and a subvariety y of U* X Spec(O’) Y such that

( i ) y is smooth over d’; OYO K’ and OYO k are geometrically irreduci-
ble ;

( ii ) there is a birational map 03BE: Yo - Y 0 k such that y ~ k is the

proper transform under id x e of the graph of the morphism 0*:
U* 0 k - Yo induced by ~ 03BF P2;

(iii) y is smooth and proper over y, and each fiber of p2 : y ~ Y is a
rational curve;

(iv) Y is a locally closed subset of Hilb(V*|O’) and y = Y

 Hilb H(V*/O’). Furthermore, if cp is a morphism, we may take
U* = V’.
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PROOF: Let (UI: VI - V; U1) be a good resolution of the singularities of
: V ~ k ~ Yo. Let U1 o k be the closure of Ul 0 k in VI and let 0,:
U1 ~ k ~ Yo be the induced morphism. Since ( ul : V1 ~ V; U1) is a good
resolution, we have

(a) Ul ~ k is smooth;
(b) codim Y0 [~1(U1 ~ k - U1 ~ k)]  1.

Thus there is a smooth point yo of Yo such that ~1-1(y0) is a smooth
complete rational curve contained in U, 0 k, with trivial normal bundle.
Denote ~-11(y0) by X.
We apply Proposition 3.2, to give a maximal irreducible algebraic

family, Yi, of deformations of X in Ul. Let gl: YI ~ Spec«9) and
y1 ~ Y, X Spec(O)U1 be as given by that proposition.

Let K’ be a finite extension of K such that Y, (D K’ is a union of

geometrically irreducible components defined over K’. Let be a local
extension of O with quotient field K’. Take the various pull-backs

Both U1’ and V’ are smooth over (9’. Let cp;: U’1 ~ k ~ Yo denote the
rational map induced by ~1. We note that ~’1 restricted to U’1 ~ k is a
morphism.

Just as in Theorem 1.7, we resolve the singularities of U’1 ~ k and ~’1 to
yield a good resolution ( u* : V* - V’; U*) of the singularities of ç O p2 :
vl o k Yo.

Let ~* : U* 0 k - Yo be the morphism induced by ç O p2, and let X*
be the curve ~*-1(y0). By construction, U* 0 k is isomorphic to U, 0 k,
and hence X* is a smooth rational curve, with trivial normal bundle in
U* 0 k.

We identify Y’1 with a locally closed subset of Hilb(V*/O’) in the
obvious fashion, so that y’1 = fvi ~0O’ is identified with the restriction to
Y’1 of the universal family H(V*/O’). One of the irreducible components
of Y,, say Y’ contains h ( X*).

Let g: Y - Spec( C9’) be a maximal algebraic family of deformations of
X* in U* as given by Proposition 3.2. Counting dimensions, we find that
Y contains an open subset of Y’, and vice versa. As Y’ 0 K’ is geometri-
cally irreducible so is Y ~ K’. Shrinking Y if necessary we may assume
that Y ~ k is irreducible.

Let y = Y  Hilb(V*/O’)H(V*/O’). OY satisfies (iii) by Proposition 3.2; as
Y is smooth over a with irreducible fibers, so is CW, which proves (i). We
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note that Y 0 k is a maximal algebraic family of deformations of X* in
U* ~ k. Thus the rational map

factors through Y 0 k, and is easily seen to be birational. Clearly id X e:
(U* ~ k )  Y0 ~ (U* 0 k ) X ( Y 0 k ) transforms the graph of ~* to y ~ k.
This verifies (ii) and completes the proof. Q.E.D.

THEOREM 3.8: Let p : i’ - Spec(O) be a smooth projective fiber variety, of
fiber dimension n. Suppose char(k) = 0, or that char(k) &#x3E; 5 and n  3.

Suppose that V 0 k is quasi-ruled via 0: V 0 k - Yo. Suppose further that
Yo is not uni-ruled. Then V 0 K is a quasi-ruled variety.

PROOF: LetC9’,p’: V’ ~ Spec(O’), (u* : V* ~ V’; U*),g: Y0 ~ Y ~ k, g:
Y - Spec«9’), and fvc U* O, Y be as given by Lemma 3.7. We need
only show that qo K’ c (U* 0 K’) X (Y ~ K’) is the graph of a rational
map CPK’: U* 0 K’ ~ Y 0 K’. By Lemma 3.6 and 3.7, we need only verify
(iv) of Lemma 3.6.

Since Y ~ k is not uni-ruled, there is a point y. of Y 0 k that is not
contained in any rational curve lying in Y ~ k. We may choose yo so that
the rational map  = 03BE 03BF ~*: U* ~ k ~ Y ~ k is a morphism in a neigh-
borhood of -1(y0). Let X denote the smooth rational curve -1(y0) and
let xo be a point of X. Let xr - xo be a specialization, let yt be a point of
p2(y ~ (Xt  Y)), and let Yt ~ y be a specialization extending Xt - xo.
We must show = ~(x0) = yo.

Let Xt be the smooth rational curve p1(y ~ ( U* X yt )). Clearly x is in
Xt, and h(Xt) = yt. As yt is in Hilb(V*/O’), which is a union of compo-
nents projective over C9’, y is also in Hilb(V* /C9’). Thus the specialization
yt ~ y defines a specialization of subschemes of V*, Xt ~ X with

As x, is a point of Xt, xo is a point of X; furthermore, by Lemma 5 of [13]
each irreducible component of X is a rational curve. Let Xo be a
component of X containing xo. Then either Xo = X, or (X0) is a

rational curve on Y 0 k containing yo. Since there are no such curves on
Y 0 k, we have Xo = X. Also, X, Xt, and X have the same Hilbert
polynomials, which forces X = X. Thus y = h(X) = h(X) = y0, and (iv) is
verified. This completes the proof of the theorem. Q.E.D.

THEOREM 3.9: Let p : V ~ Spec(O) be a smooth projective fiber variety.
Suppose that V 0 k is quasi-ruled over a projective variety Yo ç; pm via a
morphism cp: V ~ k - Yo. Then V ~ K is quasi-ruled.
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PROOF: Let (f)’, p’ : V’ ~ Spec(O’), g: Y - Spec(O’), 03BE: Y0 ~ Y ~ k, and
y ~ V’ X O’ Y be a given by Lemma 3.7 for the morphism cp. As above, we
need only verify (iv) in Lemma 3.6.

Let yo be a point of Y such that ~’ = 03B6 03BF ~: V’ ~ k ~ Y ~ k is a

morphism in a neighborhood of ~’-1(y0). Let xo be a point of X =
~’-1(y0), let x, - xo be a specialization, let yt be a point of p2(y ~ (xt X
Y)), and let yt ~ y be a specialization extending xt ~ x0. Let Y denote
the closure of Y in Hilb(V’/O’).

As yt is in Y, is in Y 0 k, which is connected by Zariski’s connected-
ness theorem. 

Let Xt be the subscheme of V’ with h(Xt) = yt, let X be the subscheme
with h(X) = y and let Xt ~ X be the specialization defined by yt ~ y.
Xt ~ X defines a specialization of positive cycles Xt ~ |X|. Since Y ~ k is
connected, we have

Thus  on (FD As supplXI contains xo, and is
connected, this forces

Since X and X have the same Hilbert polynomial, we have

and

which completes the proof. Q.E.D.

We now consider the case of ruled varieties

THEOREM 3.10: Let p: V ~ Spec(O) be a smooth projective fiber variety of
fiber dimension n. Suppose that V ~ k is ruled over a variety Yo via ~:
V 0 k ~ Yo. Suppose that either

(a) ~ is a morphism and Yo is projective,
or

(b) Yo is not uni-ruled and char ( k ) = 0,
or

( c) Yo is not uni-ruled and char(k) &#x3E; 5 and n  3.

Finally suppose that h2(V 0 k, OV~k) = 0. Then V 0 K is ruled.

PROOF : Let (9’, p : V’ - Spec(O’), (u*: V* ~ V, U*), g: Y - Spec(O’),
Yo ~ Y 0 k, and OYC U* xm,Ybe as given by Lemma 3.7 for the map cp.
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Let 0*: U* o k - Yo be the map induced by 0. Just as in Theorems 3.8
and 3.9, we have that

( g: Y ~ Spec(O’), F )
is an extension of 0*: U* 0 k ~ Y0 to the family U*, where F: U* - Y is
the map with graph OY.

Let a : Yo ~ U* ~ k be a rational section to i7: U* ~ k ~ Yo. Let D be
the divisor 1 · 03C3(Y0) on U* 0 k, and let D’ be the divisor (u*)*(D) on
V’ ~ k.

Since h2(V’ 0 k, OV’~k) = 0, Lemma 3.3 implies there is a local exten-
sion U" of 0’ and an invertible sheaf L on V’ ~O’O" such that L ~ k =
OV’~k(D’). Changing notation, we may assume (9’ = (9".

Let f be a rational section of L over h’ and let Z be the divisor of f.
Choosing f appropriately, we may assume that supp(Z) does not contain
V’ 0 k. Then Z 0 k is linearly equivalent to D’on V’ 0 k. Let Z* denote
the divisor (u*)-1(Z) on U*.

Let tffç; U* be the exceptional divisor of u*: U* ~ V’. Write tff as a
sum of irreducible divisors

and write supp(03B5~) k) as a union of irreducible components

Then

for suitable integers

for suitable integers n l ,

the last line following from Definition 1.2 (iv).
Let yt be a generic point of Y 0 K’ over K’. Let Xt be the fiber
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Let yo be a generic point of Y ~ k over k, and let Xo be the fiber

Xo and Xt are smooth complete rational curves on U* ~ k and U* 0 K’
respectively, and Xt is algebraically equivalent to Xo on U*. Thus

(The intersection numbers are preserved since Xo and Xt are both
members of a family of complete curves on U*.)

By Lemma 2.2, F 0 K: U* 0 K ~ Y 0 K is a ruling, which completes
the proof. Q.E.D.

We summarize our results in the following theorem.

THEOREM 3.11: Let p : V ~ M be a smooth projective fiber variety of fiber
dimension n over a variety M. Let 0 be a point of M. Suppose V 0 k is
quasi-ruled over a variety Yo via ~: V 0 k ~ Yo . Suppose that either

(a) ~ is a morphism and Yo is projective,
or

(b) Yo is not uni-ruled and char ( k ) = 0,
or

( c) Yo is not uni-ruled and char(k) &#x3E; 5 and n  3.
Then there is an open neighborhood U of 0 in M such that V ~ k(u) is

quasi-ruled for each u in U.
If in addition ~ is a ruling and h2(V ~ k, OV~k) = 0, then Vo k(u) is

ruled for each u in M.

PROOF : Our first conclusion follows from Lemma 2.5, Theorems 3.8 and
3.9 and a simple noetherian induction. The second conclusion follows
from Lemma 2.5, Theorem 3.8, and the following result of Matsusaka
(Theorem 1.1 [11]):

Let V be a smooth ruled variety in a projective space V’ a variety in a
projective space, and a a DVR such that V’ is a specialization of V over (9.
Then V’ is also a ruled variety. Q.E.D.
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