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ETALE p-COVERS IN CHARACTERISTIC p

Richard M. Crew

Introduction

Let X be a separated scheme of finite type over an algebraically closed
field k of characteristic p > 0. If f: Y — X is a finite étale covering then
the Euler-Poincaré formula states that

X((Y’QI)=(degf)XC(X’Q[) (0’1)
for any prime / # p; here we have put, as usual

2 dim X
x.(X, Q)= Z (——1)'dimQ,Hc’(X,Q,)

i=0

(cohomology with supports) and similarly for Y. It is the purpose of this
paper to inquire into case /= p; then 0.1 is no longer generally valid,
though we shall show that 0.1 does hold with /=p in one important
special case: f: Y — X is a finite étale cover, galois and of degree a power
of p = char k. (cf. 1.5 1.7 below).

If X is a complete nonsingular curve, then x (X, Q,)=1 — p, where
P is the p-rank of X, i.e. the number of independent Z/pZ-covers of X.
Thus 0.1 gives the relation between the p-rank of a complete nonsingular
curve and the p-rank of a finite étale galois p-cover. This relation was
already known to Shafarevich [12], who used it to prove that the maximal
pro-p-quotient of m, of a complete nonsingular curve is a free profinite
p-group. We shall give another, independent proof of this last fact.

The proofs of the above statements and their corollaries forms the
contents of §1 below. In §2 we give some applications to algebraic
surfaces, and show in particular that the fundamental group of a weakly
unirational surface has no p-torsion.

Let us now suppose that X/k is complete and nonsingular, so that the
crystalline cohomology groups H_;(X/W) are finitely generated mod-
ules over the ring W of Witt vectors of k. Let K be the fraction field of
W, and denote by H_, (X/W), the part of H ;(X/W)® K where the
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32 Richard M. Crew [2]

geometric Frobenius acts with slope A. Then we can define the quantities

2dim X

x(X)= X (=1) dimyHy (X/W), (0.2)

and for A =0 we have x,(X)=x(X, Q,). It would be interesting to
know whether an analogue of 0.1 holds for the x,; i.e. whether

xA(Y) = (deg f)x»(X) (0.3)

whenever f: Y — X is a finite etale galois p-covering. I hope to return to
this question at a later time.

The paper concludes with two other proofs of 1.7 which were sug-
gested to the author by L. Moret-Bailly and N.M. Katz.

Section 1

1.0. We fix once and for al a prime p and an algebraically closed field &
of characteristic p.

The main result in this section will follow easily from a basic finiteness
theorem in etale cohomology. To state it, we need to recall the notion of
a perfect complex: if R is any ring with unit, then a perfect complex of
R-modules is simply a complex of R-modules that is quasi-isomorphic to
a bounded complex of finitely generated projective R-modules. For a
thorough discussion of this notion the reader may consult SGA 6 1.

The finiteness result we need is a special case of SGA 4!/2 Rapport
4.9:

1.1. THEOREM: Let X /k be a separated scheme over an algebraically closed
field k, and let R be a finite ring and F a constructible sheaf of flat
R-modules on X. Then RI.(X, F) is a perfect complex of R-modules.

From now on we shall be concerned with the following situation: X is
a separated scheme of finite type over k of characteristic p, and G is a
finite group (a p-group, eventually) acting on X. We shall further assume
that G acts freely on X, by which we mean that the quotient Y = X/G
exists and that the projection map f: X — Y is finite étale. In this
situation, if R is any finite ring, then 1.1 says that the groups H (X, R)
are finitely generated R[G]-modules. In fact, we have

1.2. PROPOSITION: If A is a finite ring, X / k a separated scheme of finite
type over an algebraically closed field, and G a finite group acting freely on
X, then RI.(X, A) is a perfect complex of A [G]-modules.

PRrOOF: Since f is finite étale, we have Rf, = f, and the Leray spectral
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sequence
H!(Y,Rf A)=H'"(X, A)

degenerates to yield H(Y, f,A)= H/(X, A). By 1.1 it is enough to show
that f, A is a constructible sheaf of flat A[G]-modules on Y. Construct-
ibility is trivial from the definition. As to flatness, we need only remark
that if y — Y is any geometric point, then (f,A); = A[G].

We need analogues of 1.2 for the /-adic cohomology groups H'( X, Z,)
=lim,H (X,Z/1"Z) and H (X, Q,)=H (X, Z))#Q, for any prime /
(even the characteristic!). The first step in the passage to the limit is

1.3. LEMMA: Let R be a noetherian ring, I a two-sided ideal, R, =R /I"* /R,
and suppose that R is I-adically separated and complete. Let {K,}, €
{D(R, )}, be an inverse system such that

(a) K, is a perfect complex of R,-modulus;

(b) the transition maps K, — K, _, induce isomorphisms

(1.3.1)

Then the inverse system {K,}, can be realized by an inverse system of
perfect complexes, and lim,K, = K is a perfect complex of R-modules;
furthermore the natural maps K" — K, induce quasi-isomorphisms

L
K ®R,—K,. (13.2)
R

A proof may be found in [3], B.11.

We now set R=2Z,[G], I=(!), K, =RT.(X,Z/I""'Z). To see that
K, — K, _, induces an isomorphism as in 1.3.1. we need only compute

L L
K, ® R,_,=RT.(X,2/I"'Z) ® R, _,
R R,
L
=RT,(Y,f+«Z/I""'Z) ® R, _,
Rn

L
=RT,|Y,(fsZ/1""'Z) @ R, _,
R,

=RI.(Y,f«Z/1"T)
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since one readily verifies that
L
(f+Z/1""'Z) ® R, ,=(f+Z/1""'Z) ® R, _,
R R,

=f.2/1"Z.

1.4. PROPOSITION: There is perfect complex K of Z ,[G]-modules such that
H(K)=H/(X,Z,).

PROOF: We may apply 1.3 to the inverse system RI.(X,Z/!"*'Z),

thanks to 1.2 and the preceding calculation. If K, and K~ are as in 1.3.1
and 1.3.2, then we have

H(K')=H(limK, )

since any inverse system of finite
groups satisfies Mittag-Leffler.

n

=limH (K,)
=limH (X,Z/1"Z)
= Hc ( X’ z l)
We can now prove the main result of this section:
1.5. THEOREM: Suppose that X / k is a separated scheme of finite type over

an algebraically closed field k of characteristic p. Suppose that G is a finite
p-group acting freely on X. Then the virtual representation of G on

Z(_l)chl‘(X’ Qp)

is a sum of regular representations.

PROOF: Let K' be a bounded complex of projective Z,[G]-modules
representing RI'(X, Z ,). Then H (X, Q,)= H' (K ® Q) and therefore

L(-D'H(Xx,Q,)=2(-1)K'®Q,

as virtual representations. To conclude the proof we need only remark
that K'® Q, is a free Q,[G]-module; in fact each K' is a free Z ,[G]-
module, as follows from the next lemma.
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1.6. LEMMA: If G is a finite p-group, then a finitely generated projective
Z ,[G]-module is free.

If G is abelian, then Z [G] is a local ring and the result is standard.
The general case offers no novelties; the reader may consult Serre [11],
14.4 Cor. 1 and 15.6.

If now S is any separated k-scheme of finite type, then we put, as
usual,

x.(S.Q,)= Z(—l)’ dimg H!(S, Q,).

We have

’ ("‘/(A w—“'/\/
1.7. COROLLARY: If X /k, G, Y are as in 1.5, then %w o ) ¢

x.(X,Q,)=(Card G)x.(Y,Q,).

PrOOF: The Hochschild-Serre spectral sequence shows that
H(Y,Q,)=H)(X,Q,)°

and the corollary then follows from 1.5.

1.7.1. REMARK: 1.7 is of course true for x (X, Q,) and G a finite group
of any order, if /+# char(k); this is just the Euler-Poincaré formula in
l-adic cohomology ([SGA 5]X). We shall see presently that 1.7 does not ) 7
hold if G is not a p-group.

Let us now consider the case of a complete, connected, nonsingular
curve X defined over an algebraically closed field k of characteristic
p > 0. The p-rank p, of X can be defined as

pX=dimeH‘(X, Q,,).

Now let G be a finite p-group acting on X, although we no longer
make the assumption that G acts freely. Denote by Y the quotient of X
by G and by X™™ the set of points of X that are ramified over Y. If
x € X™™ let e, denote the ramification index at x. With this notation 1.7

has the following ube o
ef - LM,
1.8. COROLLARY: With X, G, Y, and k as above, we have AN 19)
((qs) A1
h ’lq 7
1-p,=(Card G)(1-py)— Y (e, —1). ’f(-‘\"

x € Xrm

PROOF: Let f: X — Y denote the natural projection and let U be the open
subscheme of Y over which f is étale. Let also V=f"'(U), D=Y — U,
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then f~'(D)= X — V and D, f~ (D) are finite sets of points. The excision
exact sequences

-H(U,Q,)»H(Y,Q,)~H!(D,Q,)
- H(v,Q,)-H(X,Q,)>H(f(D)Q,)-
give
x.(U,Q,)+(Card D)=x.(Y,Q,)

x(V.Q,)+(Card /7'(D)) = x.( X, @,).
We can apply 1.7 to V' — U. Since

x(Y.,Q,)=1-p,, x(X,Q,)=1-p,
we get

1-py=(Card G)(1-p,— Card D) + Card (D).
A simple calculation shows that

(Card G)(Card D) —Card f" (D)= Y, (e, —1)

xeXxm
from which 1.8 follows immediately.

1.8.1. REMARK: It is interesting to note that 1.8 contains no terms
depending on wild ramification, unlike the Hurwitz genus formula for
this situation. On the other hand, simple examples show that there can be
no formula such as 1.8 relating only the p-ranks, the degree, and the
ramification indices in the case that G is not a p-group. If p # 2, for
example, any elliptic curve can be represented as a double cover of P!
branched at four places, but the p-rank can be either zero or one.
In the case that X — Y is unramified, 1.8 says that

1-p, = (Card G)(1-p,). (18.2)

Recall that a complete connected nonsingular curve over an algebrai-
cally closed field is said to be ordinary if its p-rank is equal to its genus
(i.e. the p-rank is the maximum possible). We have

1.8.3. COROLLARY: Let Y be a complete nonsingular connected curve over
an algebraically closed field of characteristic p and let X = Y be a finite
étale galois covering of degree a power of p. Then X is ordinary if and only
if Y is ordinary.
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PROOF: Follows from 1.8.2 and the definitions.

1.8.2 was first proven by Shafarevich [12]. He deduced from it the
following interesting result:

1.9. THEOREM: Let X be a complete, connected, nonsingular, curve over an
algebraically closed field k of characteristic p> 0. Then the maximal
pro-p-quotient of the fundamental group of X is a free pro-p-group on p
generators.

A free pro-p-group, the reader will recall, is the completion of a free
group with respect to its set of normal subgroups of p-power index. The
proof that 1.8.2 implies 1.9 can be found in Shafarevich’s paper [12].
Nowadays, however, it is easier to prove 1.9 directly by using, for
example,

1.9.1. LEMMA: Let G be a pro-p-group
1.9.1.1. The minimal number of generators of G is equal to

dimg Hom(G, Z /pZ)
1.9.1.2. G is free if and only if H(G, Z/pZ) =0
ProoOF: Cf. [13] Theorem 12 and Cor. 2 to Proposition 23.
We also need

1.9.2. LEMMA: Let X be a complete irreducible curve over an algebraically
closed field of characteristic p. Then H*(X, F,) = 0.

PRrOOF: Since X is irreducible and complete and k is algebraically closed,
Artin-Schreier theory ([SGA 4]IX 3.5) tells us that

H"(X,F,)=Ker(1-F:H"(X,0)—> H"(X,0))

Since X is a curve, H?( X, 0)= 0, whence H?( X, F,)=0.

We now prove 1.9. By 1.9.1 it is enough to show that H'(w,, F,) has
dimension py and that H?*(m, F,)=0. Now recall the equivalence of
categories

finite étale group ) - finite groups on which
schemes on X m (X, x) acts

F; with its natural
Fr—— (1.9.2.1)

action of 7,( X, X)
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and the equality H'(X, F)=H'(m (X, X), F;). If we put F=F,, we get
px=dimgH'(X,Q,)=dimzH'(X,F,) (cf.3.1)
= dimeHl(wl, F,)= dim; Hom(m,, F,).

which proves the statement about H'. We have now an exact sequence
0->F,»>4—->B-0

where 4 is the F,-module of continuous maps 7, — F,; so that 4 and B
are ind-objects of the left hand side of 1.9.2.1. It is well known that 4 is
cohomologically trivial. If 4, B are the sheaves corresponding to A, B,
then we have a diagram

H'(m,A) - H'(m, B) > H*(m,F,) > H*(m, A)=0
\ \

H'(X,A)—>H'(X,B)—>H*(X,F,)=0 by1.9.2.

Since the vertical arrows are isomorphisms, an easy diagram chase shows
that H?(m,, F,)=0, as was to be shown.

Section 2

In this section we shall apply 1.7 to some questions regarding algebraic
surfaces. It will be necessary to prove that certain H/( X, Q) vanish and
for this we need some remarks.

Suppose that X /k is smooth and proper. As usual we denote by W the
ring of Witt vectors W(k) of k and by K the fraction field of W. The
crystalline cohomology groups H_;(X/W) are then finitely generated
W-modules, and the K-space H_,.(X/W)® ,, K equipped with the semi-
linear endomorphism arising from the Frobenius morphism is an F-iso-
crystal (cf. [2], [8]). If (M, F) is any F-isocrystal and A is a positive
rational number, then we shall denote by M, the part of M where F acts
with slope A (cf. [8] §2).

The next proposition, whose proof can be found in [6] (II Theorem
5.2) shows in particular that H'(X, Q,) ® , K is the “slope zero” part of
H(X/W)® K.

2.1. PROPOSITION: Suppose that X /k is smooth and proper. There are
exact sequences

1-F
w w

(2.1.1)
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1-F
0-H(X,Q,)>H(X,W0,)® K > H(X, W0,) ® K0
w w

(2.1.2)

where F is the map induced by the Frobenius morphism. (The WOy are
Serre’s Witt vector sheaf and the cohomology is that of the Zariski

topology.)

2.2. COROLLARY: Suppose that X /k is smooth and proper and that
H2,(X/W)® K is generated by chern classes of algebraic cycles. Then
H(X, Q ») =0

PrOOF: If x € H2,,(X/W) is the chern class of an algebraic cycle, then
Fx = px. Therefore 1 — F has no kernel on H2, (X/W)® K if the latter
is generated by chern classes, and so H?( X, Q,)=0by 211
2.3. COROLLARY: Suppose that X/k is smooth and proper. Then
H'(X, Q,)=0if i>dim X.

PrROOF: Since the W0, are inverse limits of successive extensions of
coherent sheaves, we have H'(X, W0, )= 0 if i > dim X. The corollary is
then an immediate consequence of 2.1.2.

We can now give the promised applications. Recall that a normal,
complete connected variety X/k of dimension N is said to be weakly
unirational if there exists a generically subjective, generically finite ra-
tional map PY - X. X/k is said to be unirational if in addition the
extension of function fields k(P,Y /k(X) is separable. Luroth’s theorem
says that any unirational surface is rational, but there are weakly unira-
tional surfaces and unirational threefolds that are not rational (cf. [1],
[14]). Let us recall some basic facts about weakly unirational varieties:

2.4.1. If X/k is weakly unirational, then =, ( X) is finite. (For a proof, cf.
SGA I XI 1.3)

2.4.2. An étale covering of a weakly unirational variety is weakly unira-
tional. (Cf. [9] §1.)

In fact a unirational variety in characteristic zero is simply connected
[9]. (cf. [10]) and a unirational threefold in any characteristic is simply
connected. In a little while we shall describe an example due to Shioda
[14] of a weakly unirational surface with nontrivial ;.

2.4.3. If X/k is a smooth, weakly unirational surface then
H2(X/W)®, K is generated by the chern classes of algebraic cycles
(cf. [9] §1).

The application we have in mind is
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2.5. THEOREM: Let X /k be a smooth weakly unirational surface over an
algebraically closed field k of characteristic p > 0. Then @, (X) has no
p-torsion.

This was proven by Katsura in the case that k is the algebraic closure
of a finite field [7]. We shall deduce 2.5 from

2.5.1. LemMaA: If X /k is as in 1.11, then x(X, Q,) = I.

PrOOF: We shall compute the H'( X, Q,):

(1) H(X, Q,)=Q,, since X is connected

) H\(X,Q,)=Q,®, (lim,H'(X, Z/p"Z)

=Q,®, (lim, Hom(m, Z/p"Z)=0 by 2.4.1

(3) H(X,Q,)=0 by 3.2 and 2.4.3.

(4) By 2.3, we have that H>(X, Q,)= H*(X,Q,)=0.
Summing up, we find that x(X, @,)=1 for any weakly unirational
surface X.

PROOF of 2.5: Since m,( X) is finite, there is a *“ universal cover” X ""¥ — X
of X which by 2.4.2 is also weakly unirational. Suppose now that a7, ( X)
has a nontrivial subgroup G of order a power of p; then G corresponds to
an étale map X""V — Y making X """ an etale G-torsor over Y. We may
therefore apply 1.7 to get

x(x*, @,)=(Card G)x(Y,Q@,). (2.5.2)

On the other hand, if X """ is weakly unirational, then Y must be so too;
then 1.11.1 gives x(Y, @,) = x(X"", @,) = 1, contradicting 2.5.2.

2.6. Here is Shioda’s example of a non-simply-connected weakly unira-
tional surface. Suppose that p # 5 and that p =1 mod 5. Let X be the
surface in P? defined by

X3+ X2+ X5+ X5 =0.

Shioda [13] shows that X is weakly unirational. Now pus acts on X by
X, > {'X,, {€ps, and one easily checks that this action is free. The
quotient X/, the “Godeaux surface”, is then weakly unirational and
has Z /5Z as its fundamental group.

Here is another application of 1.7:

2.7. THEOREM: Let X be a singular Enriques surface over an algebraically
closed field of characteristic 2 and let X' be the K3 surface which is a double
cover of X. Then X' is an ordinary K3 surface.
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The basic facts about Enriques surfaces in characteristic 2 can be
found in Bombieri-Mumford [4]. There are three sorts of them, known as
classical, singular, and supersingular accordingly as Pic is Z /2Z, p.,, or
a,. Of these, only the singular ones have a double cover by a K3 surface.
If X is any Enriques surface, then H2, (X/W)® , K is generated by the
chern classes of algebraic cycles.

For our purposes an ordinary K3 surface is one for which
dim c"S(X/W)o =1, in which case we must also have dim? , (X/W),
=20 and dim HZ, (X/W),=1.

cris

CrIS

PrROOF of 2.7: We first show that if X is any Enriques surface, then

x(X, @,)=1.In fact, we have that H°(X, Q,)=Q, and H};(X/W )=
0 (cf. [6] II 7.3.5). Since HZ (X/W)® WK is generated by alge-
braic cycles, we must have H?(X, Q »)=0 by Cor. 2.2. Finally 2.1
and 2.3 show that H'(X,Q,)= H3(X Q,)=HX,Q,)=0, so that
x(X,Q,)=1

Suppose now that X is a singular Enriques surface and that X’ is its
double cover. By 1.7 and the calculation in the previous paragraph, we
must have that x(X’ Q ) 2. Since X’ is a K3 we have HL, (X' /W)=0,
and therefore H'(X’, . Q,)=0. We must therefore have that
dim HY (X' /W), = dlmQ HZ(X' Q@,) =1, showing that X" is ordinary.

2.8. REMARK: This strengthens a result of Katsura [7]. One notes that in
virtue of 2.5, a singular Enriques surface cannot be weakly unirational.
On the other hand, P. Blass [5] has recently shown that the classical and
supersingular Enriques surfaces are weakly unirational.

Section 3

We shall conclude by briefly describing two other proofs of 1.7, which
were suggested to the author by L. Moret-Bailly and by N.M. Katz
(respectively). Both proofs require

3.1. LemMma: If X /k is a separated scheme of finite type over an algebrai-
cally closed field k, then

x(X,Q,)=x.(X,F,).

ProOF: Let K' be a perfect complex of Z,modules representing
RT.(X, Z,) (cf. 1.4). Then we have

L
RT.(X,F,)=RI.(X,Z,) ®F,
V4

P

4
= the mapping cone of k' — K~
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If we let a, be the number of torsion factors of H'( X, Z ), then a simple
computation using the long exact sequence of the triangle

K - K —>RI(X,F,)~
gives
dimg H/(X, F,)=dimg H/(X,Q,)+a,+a,,.
We have a, =0, and 3.1 follows on taking the alternating sum.

3.2. Remark: This is of course true for all primes p, not merely for
p = char(k).
We must therefore show that

X (X,F,)=(Card G)x (Y, F,)

where X, Y, G, are as in 1.5. Denote by f: X — Y the natural projection.
The equivalence of categories 1.9.2.1 has a special case

. frlY. 5
locally constant sheaves representations of m, (¥, )

on finite-dimensional

of [ -vector spaces on Y
[ ,-vector spaces

The sheaf fF, corresponds to a representation of m(Y,y) in GLIF,,
((f «F,);) which must factor

m(Y,y) = G- GL¢ ((f4F,);)

since f 4«F, becomes constant when pulled back to X. Since G is a p-group,
however, the representation must be a successive extension of trivial
representations, so that f,F, must be a successive extension of constant
sheaves. An easy induction then shows that

X (X, F,)=x(Y,f4F,) = rankg (f4F,)x.(Y,F,)
= (Card G)x (Y, F,).

The second proof begins with a reduction to the case where & is the
algebraic closure of a finite field. This is done as follows:

For any X, Y, G, k satisfying the hypotheses of 1.5 we may find a
subring R of k that is finitely generated over F,, and separated schemes
Xy, Y, of finite type over R such that

(a) G acts on X;/R with quotient Y;
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(b) the map n: Spec(k) — Spec(R) induces X = X, ® gk,

Y=Y, ® k.
R

Denote by g: X, = R, h:Y, = R the structure maps. By a basic
finiteness theorem (e.g. [SGA 41] Rapport Thm. 4.9), the sheaves
on Spec(R) are constructible, so that we may, at the expense of
replacing Spec(R) by a nonvoid affine open subscheme, assume
that

(c) the sheaves R'g\F,, R'h\F, are locally constant.

Now let s be a closed point of Spec(R), and 5 a geometric point lying

above S. By (b) and the proper base change theorem we have

H(X,F,)=H!((X,), F,)=(RgF,),
and

Hc’( X, le) = (ng!ﬂ:p)

and similarly for Y. By (c) we have

dimg (R'gF,), = dim; (RgF,)

whence

X (X F,)=x.(X.F,)
and similarly

X (Y, F,) =x.(¥;. F,).

Since s is a closed point of a scheme finitely generated over F,, the
residue field «(s) is a finite field. This completes the reduction to the case
k=F,.

Top prove the formula in this case we shall use the well-known
congruence formula, due to Katz, for the zeta-function of a variety over a
finite field (cf. [SGA 7] XXII or [SGA43] “Fonctions L...”). Let k, be a
finite field over which X /k has a model X, /k,. The congruence formula
is then

(_1)l+]

Z(Xo/ko, T) =TT det(1 - TF* H!( X, F,)) inF,(T).

Now given X, Y, G, and k= ﬂ_fp we can find models X,, Y, over k, (at
least after enlarging k a bit) such that G acts on X,,/k,, with quotient Y.
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The congruence formula written above shows that the Euler characteris-
tics are simply the total degree of the corresponding zeta-functions, so
that it is enough to show that

Z(Xy/ko, T) = Z(Yy/ky, T)(Card @

mod p. (3.3)
Since Z(X,/Ky, T)=L(Yy/kg, f+F,, T), 3.3 will follow from the fact
that L(Yy/ko, f+F,, T) and Z(Y,/ko, T) ™ © have the same Euler
factors, i.e. that

det(l - TFdeg(y)l(f*le)) = det(l _ TFdeg('V)lle )(Card G)

for all closed point y of Y. To check this last claim, it is enough to recall
that since f is etale and G is a p-group, (f«F,); =F,[G] is a successive
extension of the trivial G-modules F,.
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